1
|
Mutte SK, Barendse P, Ugarte PB, Swarts DC. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep 2025; 44:115110. [PMID: 39752253 DOI: 10.1016/j.celrep.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination. Our results reveal the widespread presence of RecA, SSB, and RecOR proteins and phyla-specific distribution for the DNA repair complexes RecBCD, AddAB, and AdnAB. Furthermore, we report co-occurrences of DNA repair proteins with immune systems, including specific CRISPR-Cas subtypes, prokaryotic Argonautes (pAgos), dGTPases, GAPS2, and Wadjet. Our results imply that while certain DNA repair proteins and immune systems might function in conjunction, no immune system strictly relies on a specific DNA repair protein. As such, these findings offer an updated perspective on the distribution of DNA repair systems and their connection to immune systems in bacteria.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands; MyGen Informatics, 6706 JE Wageningen, the Netherlands
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | | | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
2
|
Warren GM, Meir A, Wang J, Patel DJ, Greene EC, Shuman S. Structure-activity relationships at a nucleobase-stacking tryptophan required for chemomechanical coupling in the DNA resecting motor-nuclease AdnAB. Nucleic Acids Res 2021; 50:952-961. [PMID: 34967418 PMCID: PMC8789073 DOI: 10.1093/nar/gkab1270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks. The AdnB subunit hydrolyzes ATP to drive single-nucleotide steps of 3′-to-5′ translocation of AdnAB on the tracking DNA strand via a ratchet-like mechanism. Trp325 in AdnB motif III, which intercalates into the tracking strand and makes a π stack on a nucleobase 5′ of a flipped-out nucleoside, is the putative ratchet pawl without which ATP hydrolysis is mechanically futile. Here, we report that AdnAB mutants wherein Trp325 was replaced with phenylalanine, tyrosine, histidine, leucine, or alanine retained activity in ssDNA-dependent ATP hydrolysis but displayed a gradient of effects on DSB resection. The resection velocities of Phe325 and Tyr325 mutants were 90% and 85% of the wild-type AdnAB velocity. His325 slowed resection rate to 3% of wild-type and Leu325 and Ala325 abolished DNA resection. A cryo-EM structure of the DNA-bound Ala325 mutant revealed that the AdnB motif III peptide was disordered and the erstwhile flipped out tracking strand nucleobase reverted to a continuous base-stacked arrangement with its neighbors. We conclude that π stacking of Trp325 on a DNA nucleobase triggers and stabilizes the flipped-out conformation of the neighboring nucleoside that underlies formation of a ratchet pawl.
Collapse
Affiliation(s)
- Garrett M Warren
- Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Aviv Meir
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Juncheng Wang
- Structural Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
3
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
4
|
Clutch mechanism of chemomechanical coupling in a DNA resecting motor nuclease. Proc Natl Acad Sci U S A 2021; 118:2023955118. [PMID: 33836607 DOI: 10.1073/pnas.2023955118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The N-terminal motor domain of the AdnB subunit hydrolyzes ATP to drive rapid and processive 3' to 5' translocation of AdnAB on the tracking DNA strand. ATP hydrolysis is mechanically productive when oscillating protein domain motions synchronized with the ATPase cycle propel the DNA tracking strand forward by a single-nucleotide step, in what is thought to entail a pawl-and-ratchet-like fashion. By gauging the effects of alanine mutations of the 16 amino acids at the AdnB-DNA interface on DNA-dependent ATP hydrolysis, DNA translocation, and DSB resection in ensemble and single-molecule assays, we gained key insights into which DNA contacts couple ATP hydrolysis to motor activity. The results implicate AdnB Trp325, which intercalates into the tracking strand and stacks on a nucleobase, as the singular essential constituent of the ratchet pawl, without which ATP hydrolysis on ssDNA is mechanically futile. Loss of Thr663 and Thr118 contacts with tracking strand phosphates and of His665 with a nucleobase drastically slows the AdnAB motor during DSB resection. Our findings for AdnAB prompt us to analogize its mechanism to that of an automobile clutch.
Collapse
|
5
|
Gurung D, Blumenthal RM. Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla. MICROBIOLOGY-SGM 2020; 166:1047-1064. [PMID: 33085588 DOI: 10.1099/mic.0.000980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli; while bacteria in other phyla, like the Firmicute Bacillus subtilis, use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.
Collapse
Affiliation(s)
- Deepti Gurung
- Present address: Department of Cancer Biology, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA.,Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| |
Collapse
|
6
|
Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection. Proc Natl Acad Sci U S A 2019; 116:24507-24516. [PMID: 31740608 DOI: 10.1073/pnas.1913546116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Here we report cryoelectron microscopy (cryo-EM) structures of AdnAB in three functional states: in the absence of DNA and in complex with forked duplex DNAs before and after cleavage of the 5' single-strand DNA (ssDNA) tail by the AdnA nuclease. The structures reveal the path of the 5' ssDNA through the AdnA nuclease domain and the mechanism of 5' strand cleavage; the path of the 3' tracking strand through the AdnB motor and the DNA contacts that couple ATP hydrolysis to mechanical work; the position of the AdnA iron-sulfur cluster subdomain at the Y junction and its likely role in maintaining the split trajectories of the unwound 5' and 3' strands. Single-molecule DNA curtain analysis of DSB resection reveals that AdnAB is highly processive but prone to spontaneous pausing at random sites on duplex DNA. A striking property of AdnAB is that the velocity of DSB resection slows after the enzyme experiences a spontaneous pause. Our results highlight shared as well as distinctive properties of AdnAB vis-à-vis the RecBCD and AddAB clades of bacterial DSB-resecting motor nucleases.
Collapse
|
7
|
Xie P. Modeling DNA Unwinding by AddAB Helicase-Nuclease and Modulation by Chi Sequences: Comparison with AdnAB and RecBCD. Cell Mol Bioeng 2018; 12:179-191. [PMID: 31719908 DOI: 10.1007/s12195-018-00563-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/29/2018] [Indexed: 01/28/2023] Open
Abstract
Introduction AddAB enzyme is a helicase-nuclease complex that initiates recombinational repair of double-stranded DNA breaks. It catalyzes processive DNA unwinding and concomitant resection of the unwound strands, which are modulated by the recognition of a recombination hotspot called Chi in the 3'-terminated strand. Despite extensive structural, biochemical and single molecule studies, the detailed molecular mechanism of DNA unwinding by the complex and modulation by Chi sequence remains unclear. Methods A model of DNA unwinding by the AddAB complex and modulation by Chi recognition was presented, based on which the dynamics of AddAB complex was studied analytically. Results The theoretical results explain well the available experimental data on effect of DNA sequence on velocity, effect of Chi recognition on velocity, static disorder peculiar to the AddAB complex, and dynamics of pausing of wild-type and mutant AddAB complexes occurring at Chi or Chi-like sequence. Predictions were provided. Comparisons of AddAB complex with other helicase-nuclease complexes such as RecBCD and AdnAB were made. Conclusions The study has strong implications for the molecular mechanism of DNA unwinding by the AddAB complex. The intriguing issues are addressed of why Chi recognition is an inefficient process, how AddAB complex pauses upon recognizing Chi sequence, how the paused state transits to the translocating state, why the mutant AddAB with a stronger affinity to Chi sequence has a shorter pausing lifetime, why the pausing lifetime is sensitive to the solution temperature, and so on.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
8
|
Lohman TM, Fazio NT. How Does a Helicase Unwind DNA? Insights from RecBCD Helicase. Bioessays 2018; 40:e1800009. [PMID: 29603305 DOI: 10.1002/bies.201800009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/26/2018] [Indexed: 01/06/2023]
Abstract
DNA helicases are a class of molecular motors that catalyze processive unwinding of double stranded DNA. In spite of much study, we know relatively little about the mechanisms by which these enzymes carry out the function for which they are named. Most current views are based on inferences from crystal structures. A prominent view is that the canonical ATPase motor exerts a force on the ssDNA resulting in "pulling" the duplex across a "pin" or "wedge" in the enzyme leading to a mechanical separation of the two DNA strands. In such models, DNA base pair separation is tightly coupled to ssDNA translocation of the motors. However, recent studies of the Escherichia coli RecBCD helicase suggest an alternative model in which DNA base pair melting and ssDNA translocation occur separately. In this view, the enzyme-DNA binding free energy is used to melt multiple DNA base pairs in an ATP-independent manner, followed by ATP-dependent translocation of the canonical motors along the newly formed ssDNA tracks. Repetition of these two steps results in processive DNA unwinding. We summarize recent evidence suggesting this mechanism for RecBCD helicase action.
Collapse
Affiliation(s)
- Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicole T Fazio
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA 5' Flaps and the Removal of 5' Adenylylated Products of Aborted Nick Ligation. J Bacteriol 2017. [PMID: 28630124 DOI: 10.1128/jb.00304-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterize Mycobacterium smegmatis FenA as a manganese-dependent 5'-flap endonuclease homologous to the 5'-exonuclease of DNA polymerase I. FenA incises a nicked 5' flap between the first and second nucleotides of the duplex segment to yield a 1-nucleotide gapped DNA, which is then further resected in dinucleotide steps. Initial FenA cleavage at a Y-flap or nick occurs between the first and second nucleotides of the duplex. However, when the template 3' single strand is eliminated to create a 5'-tailed duplex, FenA incision shifts to between the second and third nucleotides. A double-flap substrate with a mobile junction (mimicking limited strand displacement synthesis during gap repair) is preferentially incised as the 1-nucleotide 3'-flap isomer, with the scissile phosphodiester shifted by one nucleotide versus a static double flap. FenA efficiently removes the 5' App(dN) terminus of an aborted nick ligation reaction intermediate, thereby highlighting FenA as an agent of repair of such lesions, which are formed under a variety of circumstances by bacterial NAD+-dependent DNA ligases and especially by mycobacterial DNA ligases D and C.IMPORTANCE Structure-specific DNA endonucleases are implicated in bacterial DNA replication, repair, and recombination, yet there is scant knowledge of the roster and catalytic repertoire of such nucleases in Mycobacteria This study identifies M. smegmatis FenA as a stand-alone endonuclease homologous to the 5'-exonuclease domain of mycobacterial DNA polymerase 1. FenA incises 5' flaps, 5' nicks, and 5' App(dN) intermediates of aborted nick ligation. The isolated N-terminal domain of M. smegmatis Pol1 is also shown to be a flap endonuclease.
Collapse
|
10
|
Gupta R, Unciuleac MC, Shuman S, Glickman MS. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Res 2016; 45:762-774. [PMID: 27899634 PMCID: PMC5314763 DOI: 10.1093/nar/gkw1130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 01/31/2023] Open
Abstract
Current models of bacterial homologous recombination (HR) posit that extensive resection of a DNA double-strand break (DSB) by a multisubunit helicase–nuclease machine (e.g. RecBCD, AddAB or AdnAB) generates the requisite 3′ single-strand DNA substrate for RecA-mediated strand invasion. AdnAB, the helicase–nuclease implicated in mycobacterial HR, consists of two subunits, AdnA and AdnB, each composed of an N-terminal ATPase domain and a C-terminal nuclease domain. DSB unwinding by AdnAB in vitro is stringently dependent on the ATPase activity of the ‘lead’ AdnB motor translocating on the 3′ ssDNA strand, but not on the putative ‘lagging’ AdnA ATPase. Here, we queried genetically which activities of AdnAB are pertinent to its role in HR and DNA damage repair in vivo by inactivating each of the four catalytic domains. Complete nuclease-dead AdnAB enzyme can sustain recombination in vivo, as long as its AdnB motor is intact and RecO and RecR are available. We conclude that AdnAB's processive DSB unwinding activity suffices for AdnAB function in HR. Albeit not excluding the agency of a backup nuclease, our findings suggest that mycobacterial HR can proceed via DSB unwinding and protein capture of the displaced 3′-OH single strand, without a need for extensive end-resection.
Collapse
Affiliation(s)
- Richa Gupta
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mihaela-Carmen Unciuleac
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
11
|
Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1170-9. [PMID: 26884156 DOI: 10.1073/pnas.1516674113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1-a recently identified human SSB that promotes DNA resection during homologous recombination-supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells.
Collapse
|
12
|
RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria. J Bacteriol 2015. [PMID: 26195593 DOI: 10.1128/jb.00290-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation of adnAB or recO individually causes partial impairment of HR, but loss of adnAB and recO in combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNA in vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis of recF and recR in mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCE This study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284-2295, 2013, http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair.
Collapse
|
13
|
Mycobacterium smegmatis HelY Is an RNA-Activated ATPase/dATPase and 3'-to-5' Helicase That Unwinds 3'-Tailed RNA Duplexes and RNA:DNA Hybrids. J Bacteriol 2015; 197:3057-65. [PMID: 26170411 DOI: 10.1128/jb.00418-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Mycobacteria have a large and distinctive ensemble of DNA helicases that function in DNA replication, repair, and recombination. Little is known about the roster of RNA helicases in mycobacteria or their roles in RNA transactions. The 912-amino-acid Mycobacterium smegmatis HelY (MSMEG_3885) protein is a bacterial homolog of the Mtr4 and Ski2 helicases that regulate RNA 3' processing and turnover by the eukaryal exosome. Here we characterize HelY as an RNA-stimulated ATPase/dATPase and an ATP/dATP-dependent 3'-to-5' helicase. HelY requires a 3' single-strand RNA tail (a loading RNA strand) to displace the complementary strand of a tailed RNA:RNA or RNA:DNA duplex. The findings that HelY ATPase is unresponsive to a DNA polynucleotide cofactor and that HelY is unable to unwind a 3'-tailed duplex in which the loading strand is DNA distinguish HelY from other mycobacterial nucleoside triphosphatases/helicases characterized previously. The biochemical properties of HelY, which resemble those of Mtr4/Ski2, hint at a role for HelY in mycobacterial RNA catabolism. IMPORTANCE RNA helicases play crucial roles in transcription, RNA processing, and translation by virtue of their ability to alter RNA secondary structure or remodel RNA-protein interactions. In eukarya, the RNA helicases Mtr4 and Ski2 regulate RNA 3' resection by the exosome. Mycobacterium smegmatis HelY, a bacterial homolog of Mtr4/Ski2, is characterized here as a unidirectional helicase, powered by RNA-dependent ATP/dATP hydrolysis, that tracks 3' to 5' along a loading RNA strand to displace the complementary strand of a tailed RNA:RNA or RNA:DNA duplex. The biochemical properties of HelY suggest a role in bacterial RNA transactions. HelY homologs are present in pathogenic mycobacteria (e.g., M. tuberculosis and M. leprae) and are widely prevalent in Actinobacteria and Cyanobacteria but occur sporadically elsewhere in the bacterial domain.
Collapse
|
14
|
Dewhare SS, Umesh TG, Muniyappa K. Molecular and Functional Characterization of RecD, a Novel Member of the SF1 Family of Helicases, from Mycobacterium tuberculosis. J Biol Chem 2015; 290:11948-68. [PMID: 25802334 DOI: 10.1074/jbc.m114.619395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 01/14/2023] Open
Abstract
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5' overhangs relative to the 3' overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having ≥18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3' overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5' overhangs, it could also catalyze significant unwinding of substrates containing 3' overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5' → 3' and weak 3' → 5' unwinding activities. The extent of unwinding of Y-shaped DNA structures was ∼3-fold lower compared with duplexes with 5' overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.
Collapse
Affiliation(s)
| | - T G Umesh
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Lemak S, Nocek B, Beloglazova N, Skarina T, Flick R, Brown G, Joachimiak A, Savchenko A, Yakunin AF. The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity. Nucleic Acids Res 2014; 42:11144-55. [PMID: 25200083 PMCID: PMC4176176 DOI: 10.1093/nar/gku797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cas4 nucleases constitute a core family of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins, but little is known about their structure and activity. Here we report the crystal structure of the Cas4 protein Pcal_0546 from Pyrobaculum calidifontis, which revealed a monomeric protein with a RecB-like fold and one [2Fe-2S] cluster coordinated by four conserved Cys residues. Pcal_0546 exhibits metal-dependent 5' to 3' exonuclease activity against ssDNA substrates, whereas the Cas4 protein SSO1391 from Sulfolobus solfataricus can cleave ssDNA in both the 5' to 3' and 3' to 5' directions. The active site of Pcal_0546 contains a bound metal ion coordinated by the side chains of Asp123, Glu136, His146, and the main chain carbonyl of Ile137. Site-directed mutagenesis of Pcal_0546 and SSO1391 revealed that the residues of RecB motifs II, III and QhXXY are critical for nuclease activity, whereas mutations of the conserved Cys residues resulted in a loss of the iron-sulfur cluster, but had no effect on DNA cleavage. Our results revealed the biochemical diversity of Cas4 nucleases, which can have different oligomeric states, contain [4Fe-4S] or [2Fe-2S] clusters, and cleave single stranded DNA in different directions producing single-stranded DNA overhangs, which are potential intermediates for the synthesis of new CRISPR spacers.
Collapse
Affiliation(s)
- Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
16
|
Ordonez H, Uson ML, Shuman S. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res 2014; 42:11056-70. [PMID: 25200080 PMCID: PMC4176160 DOI: 10.1093/nar/gku752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study unveils Mycobacterium smegmatis DinB2 as the founder of a clade of Y-family DNA polymerase that is naturally adept at incorporating ribonucleotides by virtue of a leucine in lieu of a canonical aromatic steric gate. DinB2 efficiently scavenges limiting dNTP and rNTP substrates in the presence of manganese. DinB2's sugar selectivity factor, gauged by rates of manganese-dependent dNMP versus rNMP addition, is 2.7- to 3.8-fold. DinB2 embeds ribonucleotides during DNA synthesis when rCTP and dCTP are at equimolar concentration. DinB2 can incorporate at least 16 consecutive ribonucleotides. In magnesium, DinB2 has a 26- to 78-fold lower affinity for rNTPs than dNTPs, but only a 2.6- to 6-fold differential in rates of deoxy versus ribo addition (kpol). Two other M. smegmatis Y-family polymerases, DinB1 and DinB3, are characterized here as template-dependent DNA polymerases that discriminate strongly against ribonucleotides, a property that, in the case of DinB1, correlates with its aromatic steric gate side chain. We speculate that the unique ability of DinB2 to utilize rNTPs might allow for DNA repair with a 'ribo patch' when dNTPs are limiting. Phylogenetic analysis reveals DinB2-like polymerases, with leucine, isoleucine or valine steric gates, in many taxa of the phylum Actinobacteria.
Collapse
Affiliation(s)
- Heather Ordonez
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Maria Loressa Uson
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
17
|
The adnAB locus, encoding a putative helicase-nuclease activity, is essential in Streptomyces. J Bacteriol 2014; 196:2701-8. [PMID: 24837284 DOI: 10.1128/jb.01513-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance.
Collapse
|
18
|
Carrasco C, Dillingham MS, Moreno-Herrero F. Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination. DNA Repair (Amst) 2014; 20:119-129. [PMID: 24569169 DOI: 10.1016/j.dnarep.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
Abstract
The fate of a cell depends on its ability to repair the many double-stranded DNA breaks (DSBs) that occur during normal metabolism. Improper DSB repair may result in genomic instability, cancer, or other genetic diseases. The repair of a DSB can be initiated by the recognition and resection of a duplex DNA end to form a 3'-terminated single-stranded DNA overhang. This task is carried out by different single-strand exonucleases, endonucleases, and helicases that work in a coordinated manner. This manuscript reviews the different single-molecule approaches that have been employed to characterize the structural features of these molecular machines, as well as the intermediates and products formed during the process of DSB repair. Imaging techniques have unveiled the structural organization of complexes involved in the tethering and recognition of DSBs. In addition to that static picture, single molecule studies on the dynamics of helicase-nuclease complexes responsible for the processive resection of DSBs have provided detailed mechanistic insights into their function.
Collapse
Affiliation(s)
- Carolina Carrasco
- Centro Nacional de Biotecnología, CSIC, Campus UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Mark S Dillingham
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Centro Nacional de Biotecnología, CSIC, Campus UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Stelter M, Acajjaoui S, McSweeney S, Timmins J. Structural and mechanistic insight into DNA unwinding by Deinococcus radiodurans UvrD. PLoS One 2013; 8:e77364. [PMID: 24143224 PMCID: PMC3797037 DOI: 10.1371/journal.pone.0077364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 09/02/2013] [Indexed: 11/18/2022] Open
Abstract
DNA helicases are responsible for unwinding the duplex DNA, a key step in many biological processes. UvrD is a DNA helicase involved in several DNA repair pathways. We report here crystal structures of Deinococcus radiodurans UvrD (drUvrD) in complex with DNA in different nucleotide-free and bound states. These structures provide us with three distinct snapshots of drUvrD in action and for the first time trap a DNA helicase undergoing a large-scale spiral movement around duplexed DNA. Our structural data also improve our understanding of the molecular mechanisms that regulate DNA unwinding by Superfamily 1A (SF1A) helicases. Our biochemical data reveal that drUvrD is a DNA-stimulated ATPase, can translocate along ssDNA in the 3'-5' direction and shows ATP-dependent 3'-5', and surprisingly also, 5'-3' helicase activity. Interestingly, we find that these translocase and helicase activities of drUvrD are modulated by the ssDNA binding protein. Analysis of drUvrD mutants indicate that the conserved β-hairpin structure of drUvrD that functions as a separation pin is critical for both drUvrD's 3'-5' and 5'-3' helicase activities, whereas the GIG motif of drUvrD involved in binding to the DNA duplex is essential for the 5'-3' helicase activity only. These special features of drUvrD may reflect its involvement in a wide range of DNA repair processes in vivo.
Collapse
Affiliation(s)
- Meike Stelter
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
- University Grenoble Alpes, Institut de Biologie structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie structurale, Grenoble, France
- Commissariat à l’énergie atomique et aux énergies alternatives, Département du Science du Vivant, Institut de Biologie structurale, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Sean McSweeney
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Joanna Timmins
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
- University Grenoble Alpes, Institut de Biologie structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie structurale, Grenoble, France
- Commissariat à l’énergie atomique et aux énergies alternatives, Département du Science du Vivant, Institut de Biologie structurale, Grenoble, France
- * E-mail:
| |
Collapse
|
20
|
Ordonez H, Shuman S. Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3'-to-5' DNA translocase and helicase that prefers to unwind 3'-tailed RNA:DNA hybrids. J Biol Chem 2013; 288:14125-14134. [PMID: 23549043 DOI: 10.1074/jbc.m113.466854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We are interested in the distinctive roster of helicases of Mycobacterium, a genus of the phylum Actinobacteria that includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis Lhr as the exemplar of a novel clade of superfamily II helicases, by virtue of its biochemical specificities and signature domain organization. Lhr is a 1507-amino acid monomeric nucleic acid-dependent ATPase that uses the energy of ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single strand DNA and to unwind duplexes en route. The ATPase is more active in the presence of calcium than magnesium. ATP hydrolysis is triggered by either single strand DNA or single strand RNA, yet the apparent affinity for a DNA activator is 11-fold higher than for an RNA strand of identical size and nucleobase sequence. Lhr is 8-fold better at unwinding an RNA:DNA hybrid than it is at displacing a DNA:DNA duplex of identical nucleobase sequence. The truncated derivative Lhr-(1-856) is an autonomous ATPase, 3'-to-5' translocase, and RNA:DNA helicase. Lhr-(1-856) is 100-fold better RNA:DNA helicase than DNA:DNA helicase. Lhr homologs are found in bacteria representing eight different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis) and Proteobacteria (including Escherichia coli).
Collapse
Affiliation(s)
- Heather Ordonez
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065.
| |
Collapse
|
21
|
Gupta R, Ryzhikov M, Koroleva O, Unciuleac M, Shuman S, Korolev S, Glickman MS. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res 2013; 41:2284-95. [PMID: 23295671 PMCID: PMC3575820 DOI: 10.1093/nar/gks1298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 11/14/2012] [Indexed: 11/14/2022] Open
Abstract
Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombination and repair. Loss of RecO elicits hypersensitivity to DNA damaging agents similar to that caused by deletion of RecA. We show that RecO participates in RecA-dependent HR in a pathway parallel to the AdnAB pathway. We also find that RecO plays a role in the RecA-independent SSA pathway. The mycobacterial RecO protein displays a zinc-dependent DNA binding activity in vitro and accelerates the annealing of SSB-coated single-stranded DNA. These findings establish a role for RecO in two pathways of mycobacterial DNA double-strand break repair and suggest an in vivo function for the DNA annealing activity of RecO proteins, thereby underscoring their similarity to eukaryal Rad52.
Collapse
Affiliation(s)
- Richa Gupta
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mikhail Ryzhikov
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Olga Koroleva
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mihaela Unciuleac
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sergey Korolev
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michael S. Glickman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 South Grand boulevard, St. Louis, MO 63021, USA and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
22
|
Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 2012. [DOI: 10.1038/nrmicro2917] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Yakovleva L, Shuman S. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3' to 5' translocase and helicase activities. Nucleic Acids Res 2012; 40:7465-75. [PMID: 22641846 PMCID: PMC3424565 DOI: 10.1093/nar/gks417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/13/2023] Open
Abstract
Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and a C-terminal DUF1998 domain (containing a putative tetracysteine metal-binding motif). We show that SftH is a monomeric DNA-dependent ATPase/dATPase that translocates 3' to 5' on single-stranded DNA and has 3' to 5' helicase activity. SftH homologs are found in bacteria representing 12 different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis). SftH homologs are evident in more than 30 genera of Archaea. Among eukarya, SftH homologs are present in plants and fungi.
Collapse
Affiliation(s)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
24
|
Ordonez H, Unciuleac M, Shuman S. Mycobacterium smegmatis RqlH defines a novel clade of bacterial RecQ-like DNA helicases with ATP-dependent 3'-5' translocase and duplex unwinding activities. Nucleic Acids Res 2012; 40:4604-14. [PMID: 22287622 PMCID: PMC3378886 DOI: 10.1093/nar/gks046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Escherichia coli RecQ DNA helicase participates in a pathway of DNA repair that operates in parallel to the recombination pathway driven by the multisubunit helicase–nuclease machine RecBCD. The model mycobacterium Mycobacterium smegmatis executes homologous recombination in the absence of its helicase–nuclease machine AdnAB, though it lacks a homolog of E. coli RecQ. Here, we identify and characterize M. smegmatis RqlH, a RecQ-like helicase with a distinctive domain structure. The 691-amino acid RqlH polypeptide consists of a RecQ-like ATPase domain (amino acids 1–346) and tetracysteine zinc-binding domain (amino acids 435–499), separated by an RqlH-specific linker. RqlH lacks the C-terminal HRDC domain found in E. coli RecQ. Rather, the RqlH C-domain resembles bacterial ComF proteins and includes a phosphoribosyltransferase-like module. We show that RqlH is a DNA-dependent ATPase/dATPase that translocates 3′–5′ on single-stranded DNA and has 3′–5′ helicase activity. These functions inhere to RqlH-(1–505), a monomeric motor unit comprising the ATPase, linker and zinc-binding domains. RqlH homologs are distributed widely among bacterial taxa. The mycobacteria that encode RqlH lack a classical RecQ, though many other Actinobacteria have both RqlH and RecQ. Whereas E. coli K12 encodes RecQ but lacks a homolog of RqlH, other strains of E. coli have both RqlH and RecQ.
Collapse
Affiliation(s)
- Heather Ordonez
- Molecular Biology Program, Sloan-Kettering Institute, NY 10065, USA
| | | | | |
Collapse
|
25
|
Yeeles JTP, van Aelst K, Dillingham MS, Moreno-Herrero F. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease. Mol Cell 2011; 42:806-16. [PMID: 21700225 DOI: 10.1016/j.molcel.2011.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/03/2011] [Accepted: 04/11/2011] [Indexed: 12/24/2022]
Abstract
AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- DNA:Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
26
|
Abstract
Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions.
Collapse
Affiliation(s)
- Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
27
|
Abstract
Genotoxic agents from endogenous and exogenous sources cause double-strand breaks (DSBs) in chromosomal DNA. Given the threat these lesions pose to viability, it is not surprising that multiple, conserved mechanisms exist for their detection, processing and repair. Previous studies have established both functional non-homologous end-joining (NHEJ) and homologous recombination (HR) systems in mycobacteria. However, relative pathway utilization in these organisms, which include the major human pathogen Mycobacterium tuberculosis, remains unclear. In this issue, Glickman and colleagues describe an elegant assay to distinguish DSB repair outcomes through simple phenotypic screening. By applying their novel reporter system to a panel of repair pathway mutants, they identify an unexpected role for single-strand annealing (SSA) in the related non-pathogen, Mycobacterium smegmatis. As such, these results expand the mycobacterial DSB repair pathway complement to three mechanisms that are distinguishable by their differential requirements for the DSB-resecting, helicase-nuclease machines, AdnAB and RecBCD. Notably, in an unexpected departure from classical models, they establish that mycobacterial RecBCD is a dedicated SSA nuclease, while AdnAB is required for RecA-dependent HR. Here, we consider the implications of their observations, which include the asymmetric cross-regulation of pathway function, for the role of DSB repair in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Digby F Warner
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, PO Box 1038, Johannesburg 2000, South Africa.
| | | |
Collapse
|