1
|
Zhang Y, Wan Y, Li J, Ju S, Tong X, Wu J, Wu H, Zhang L, Shao S, Wang Y, Guo L, Zhao J, Cao L, Jiang D. Zinc finger protein ZC3H18 is abnormally expressed in esophageal cancer tissues and facilitates the proliferation of esophageal cancer cells. Front Immunol 2025; 16:1556509. [PMID: 40070828 PMCID: PMC11894379 DOI: 10.3389/fimmu.2025.1556509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Esophageal cancer presents significant challenges due to the limited efficacy and severe side effects associated with conventional treatments. The identification of epigenetic regulatory molecules that are aberrantly expressed in tumors is crucial for elucidating the mechanisms underlying the development and progression of esophageal cancer. Methods We performed high-throughput methylation level analysis on cancerous and adjacent tissues from 25 patients, identifying the differentially methylated gene ZC3H18 utilizing Bismark software and data from TCGA. Esophageal cancer cell lines with ZC3H18 knockdown were used to validate the biological role of ZC3H18 in tumorigenesis in vitro and in vivo. Eukaryotic transcriptome sequencing analysis was conducted to investigate the potential mechanisms underlying ZC3H18 function. Results We identified 30 genes exhibiting significant methylation differences between cancerous and adjacent non-cancerous tissues in 25 patients. Subsequent analysis utilizing the TCGA database revealed that the gene ZC3H18 is aberrantly expressed in tumor tissues and is closely associated with patient prognosis. Examination of esophageal cancer tissue samples demonstrated overexpression of the ZC3H18 protein, which was positively correlated with adverse prognosis indicators, including tumor differentiation, stage, and invasion depth. ZC3H18 knockdown significantly inhibited cellular proliferation, migration, invasion, and damage repair. Additionally, ZC3H18 significantly promoted tumor growth in vivo. The expression of various cytokeratins was significantly reduced following the ZC3H18 gene knockdown. ZC3H18 and multiple keratins were co-localized in esophageal cancer tissue. Discussion ZC3H18 gene exhibits differential methylation in esophageal cancer was positively correlated with unfavorable patient prognosis. ZC3H18 plays a critical role in the regulation of biological functions within esophageal tumors.
Collapse
Affiliation(s)
- Yujin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yilong Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiaxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Tong
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liuqing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shengxiang Shao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Williams ME, Howard D, Donnelly C, Izadi F, Parra JG, Pugh M, Edwards K, Lutchman-Sigh K, Jones S, Margarit L, Francis L, Conlan RS, Taraballi F, Gonzalez D. Adipocyte derived exosomes promote cell invasion and challenge paclitaxel efficacy in ovarian cancer. Cell Commun Signal 2024; 22:443. [PMID: 39285292 PMCID: PMC11404028 DOI: 10.1186/s12964-024-01806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.
Collapse
Affiliation(s)
- Michael Ellis Williams
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - David Howard
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Claire Donnelly
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Fereshteh Izadi
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Jezabel Garcia Parra
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Megan Pugh
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kerryn Lutchman-Sigh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea, Wales, SA2 8QA, UK
| | - Sadie Jones
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lavinia Margarit
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, Wales, CF31 1RQ, UK
| | - Lewis Francis
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Deyarina Gonzalez
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
3
|
Escalante PI, Quiñones LA, Contreras HR. Exploring the impact of MiR-92a-3p on FOLFOX chemoresistance biomarker genes in colon cancer cell lines. Front Pharmacol 2024; 15:1376638. [PMID: 38659583 PMCID: PMC11039864 DOI: 10.3389/fphar.2024.1376638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: One of the primary obstacles faced by individuals with advanced colorectal cancer (CRC) is the potential development of acquired chemoresistance as the disease advances. Studies have indicated a direct association between elevated levels of miR-92a-3p and the progression, metastasis, and chemoresistance observed in CRC. We proposed that miR-92a-3p impairs FOLFOX (fluorouracil/oxaliplatin) chemotherapy response by upregulating the expression of chemoresistance biomarker genes through the activation of β-catenin and epithelial-mesenchymal transition (EMT). These FOLFOX biomarker genes include the pyrimidine biosynthesis pathway genes dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), and the genes encoding the DNA repair complexes subunits ERCC1 and ERCC2, and XRCC1. Methods: To assess this, we transfected SW480 and SW620 colon cancer cell lines with miR-92a-3p mimics and then quantified the expression of DPYD, TYMS, MTHFR, ERCC1, ERCC2, and XRCC1, the expression of EMT markers and transcription factors, and activation of β-catenin. Results and discussion: Our results reveal that miR-92a-3p does not affect the expression of DPYD, TYMS, MTHFR, and ERCC1. Furthermore, even though miR-92a-3p affects ERCC2, XRCC1, E-cadherin, and β-catenin mRNA levels, it has no influence on their protein expression. Conclusion: We found that miR-92a-3p does not upregulate the expression of proteins of DNA-repair pathways and other genes involved in FOLFOX chemotherapy resistance.
Collapse
Affiliation(s)
- Paula I. Escalante
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Laboratory of Cellular and Molecular Oncology (LOCYM), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A. Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF), Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Héctor R. Contreras
- Laboratory of Cellular and Molecular Oncology (LOCYM), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Cancer Prevention and Control (CECAN), Santiago, Chile
| |
Collapse
|
4
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
6
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
7
|
Shahverdi M, Darvish M. Exosomal microRNAs: A Diagnostic and Therapeutic Small Bio-molecule in Esophageal Cancer. Curr Mol Med 2023; 23:312-323. [PMID: 35319366 DOI: 10.2174/1566524022666220321125134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Esophageal cancer (EC) is one of the major causes of cancer-related death worldwide. EC is usually diagnosed at a late stage, and despite aggressive therapy, the five-year survival rate of patients remains poor. Exosomes play important roles in cancer biology. Indeed, exosomes are implicated in tumor proliferation, angiogenesis, and invasion. They contain bioactive molecules such as lipids, proteins, and non-coding RNAs. Exosome research has recently concentrated on microRNAs, which are tiny noncoding endogenous RNAs that can alter gene expression and are linked to nearly all physiological and pathological processes, including cancer. It is suggested that deregulation of miRNAs results in cancer progression and directly induces tumor initiation. In esophageal cancer, miRNA dysregulation plays an important role in cancer prognosis and patients' responsiveness to therapy, indicating that miRNAs are important in tumorigenesis. In this review, we summarize the impact of exosomal miRNAs on esophageal cancer pathogenesis and their potential applications for EC diagnosis and therapy.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
8
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
9
|
Li X, Ai H, Li B, Zhang C, Meng F, Ai Y. MIMRDA: A Method Incorporating the miRNA and mRNA Expression Profiles for Predicting miRNA-Disease Associations to Identify Key miRNAs (microRNAs). Front Genet 2022; 13:825318. [PMID: 35154284 PMCID: PMC8829120 DOI: 10.3389/fgene.2022.825318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 01/22/2023] Open
Abstract
Identifying cancer-related miRNAs (or microRNAs) that precisely target mRNAs is important for diagnosis and treatment of cancer. Creating novel methods to identify candidate miRNAs becomes an imminent Frontier of researches in the field. One major obstacle lies in the integration of the state-of-the-art databases. Here, we introduce a novel method, MIMRDA, which incorporates the miRNA and mRNA expression profiles for predicting miRNA-disease associations to identify key miRNAs. As a proof-of-principle study, we use the MIMRDA method to analyze TCGA datasets of 20 types (BLCA, BRCA, CESE, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, READ, SKCM, STAD, THCA and UCEC) of cancer, which identified hundreds of top-ranked miRNAs. Some (as Category 1) of them are endorsed by public databases including TCGA, miRTarBase, miR2Disease, HMDD, MISIM, ncDR and mTD; others (as Category 2) are supported by literature evidences. miR-21 (representing Category 1) and miR-1258 (representing Category 2) display the excellent characteristics of biomarkers in multi-dimensional assessments focusing on the function similarity analysis, overall survival analysis, and anti-cancer drugs’ sensitivity or resistance analysis. We compare the performance of the MIMRDA method over the Limma and SPIA packages, and estimate the accuracy of the MIMRDA method in classifying top-ranked miRNAs via the Random Forest simulation test. Our results indicate the superiority and effectiveness of the MIMRDA method, and recommend some top-ranked key miRNAs be potential biomarkers that warrant experimental validations.
Collapse
Affiliation(s)
- Xianbin Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hannan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Quality Supervision and Inspection of Automatic Equipment, National Center for Testing and Evaluation of Robots (Guangzhou), CRAT, SINOMACH-IT, Guangzhou, China
- *Correspondence: Yuncan Ai, ; Hannan Ai,
| | - Bizhou Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chaohui Zhang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fanmei Meng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuncan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yuncan Ai, ; Hannan Ai,
| |
Collapse
|
10
|
Min Q, Wang Y, Wu Q, Li X, Teng H, Fan J, Cao Y, Fan P, Zhan Q. Genomic and epigenomic evolution of acquired resistance to combination therapy in esophageal squamous cell carcinoma. JCI Insight 2021; 6:150203. [PMID: 34494553 PMCID: PMC8492345 DOI: 10.1172/jci.insight.150203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDTargeted arterial infusion of verapamil combined with chemotherapy (TVCC) is an effective clinical interventional therapy for esophageal squamous cell carcinoma (ESCC), but multidrug resistance (MDR) remains the major cause of relapse or poor prognosis, and the underlying molecular mechanisms of MDR, temporal intratumoral heterogeneity, and clonal evolutionary processes of resistance have not been determined.METHODSTo elucidate the roles of genetic and epigenetic alterations in the evolution of acquired resistance during therapies, we performed whole-exome sequencing on 16 serial specimens from 7 patients with ESCC at every cycle of therapeutic intervention from 3 groups, complete response, partial response, and progressive disease, and we performed whole-genome bisulfite sequencing for 3 of these 7 patients, 1 patient from each group.RESULTSPatients with progressive disease exhibited a substantially higher genomic and epigenomic temporal heterogeneity. Subclonal expansions driven by the beneficial new mutations were observed during combined therapies, which explained the emergence of MDR. Notably, SLC7A8 was identified as a potentially novel MDR gene, and functional assays demonstrated that mutant SLC7A8 promoted the resistance phenotypes of ESCC cell lines. Promoter methylation dynamics during treatments revealed 8 drug resistance protein-coding genes characterized by hypomethylation in promoter regions. Intriguingly, promoter hypomethylation of SLC8A3 and mutant SLC7A8 were enriched in an identical pathway, protein digestion and absorption, indicating a potentially novel MDR mechanism during treatments.CONCLUSIONOur integrated multiomics investigations revealed the dynamics of temporal genetic and epigenetic inter- and intratumoral heterogeneity, clonal evolutionary processes, and epigenomic changes, providing potential MDR therapeutic targets in treatment-resistant patients with ESCC during combined therapies.FUNDINGNational Natural Science Foundation of China, Science Foundation of Peking University Cancer Hospital, CAMS Innovation Fund for Medical Sciences, Major Program of Shenzhen Bay Laboratory, Guangdong Basic and Applied Basic Research Foundation, and the third round of public welfare development and reform pilot projects of Beijing Municipal Medical Research Institutes.
Collapse
Affiliation(s)
- Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianfeng Li
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Pingsheng Fan
- Department of Medical Oncology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Cui D, Cheung ALM. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:609-622. [PMID: 34513596 PMCID: PMC8394161 DOI: 10.5306/wjco.v12.i8.609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer that is prevalent in Eastern Asia. Despite recent advances in therapy, the outcome of ESCC patients is still dismal. MicroRNAs (miRNAs) are non-coding RNAs which can negatively modulate gene expression at the post-transcriptional level. The involvement and roles of miRNAs have become one of the hot topics of cancer research in recent years. In ESCC, genetic variations within miRNA coding genes were found to have distinct epidemiological significance in different populations. Dysregulated expression of several miRNAs was reported to be associated with therapeutic response. Functionally, miRNAs can act either in an oncogenic or a tumor-suppressive manner during tumorigenesis of ESCC by interrupting signaling pathways associated with cell proliferation, metabolism, cancer stemness, and resistance to chemo- or radiotherapy. Moreover, miRNAs modulate metastasis of ESCC by targeting genes that regulate cytoskeleton dynamics, extracellular matrix remodeling, epithelial-mesenchymal transition, and tumor microenvironment. Most importantly, mounting evidence suggests that inhibiting oncogenic miRNAs or restoring the loss of tumor-suppressive miRNAs has therapeutic potential in the treatment of ESCC. Here, we review and discuss recent studies on the significance, biological functions, and therapeutic potential of miRNAs in tumorigenesis and metastasis of ESCC.
Collapse
Affiliation(s)
- Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Annie LM Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
12
|
Zarrilli G, Galuppini F, Angerilli V, Munari G, Sabbadin M, Lazzarin V, Nicolè L, Biancotti R, Fassan M. miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma. Int J Mol Sci 2021; 22:3640. [PMID: 33807389 PMCID: PMC8037581 DOI: 10.3390/ijms22073640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a pivotal role in many aspects of cell biology, including cancer development. Within esophageal cancer, miRNAs have been proved to be involved in all phases of carcinogenesis, from initiation to metastatic spread. Several miRNAs have been found to be dysregulated in esophageal premalignant lesions, namely Barrett's esophagus, Barrett's dysplasia, and squamous dysplasia. Furthermore, numerous studies have investigated the alteration in the expression levels of many oncomiRNAs and tumor suppressor miRNAs in esophageal squamous cell carcinoma and esophageal adenocarcinoma, thus proving how miRNAs are able modulate crucial regulatory pathways of cancer development. Considering these findings, miRNAs may have a role not only as a diagnostic and prognostic tool, but also as predictive biomarker of response to anti-cancer therapies and as potential therapeutic targets. This review aims to summarize several studies on the matter, focusing on the possible diagnostic-therapeutic implications.
Collapse
Affiliation(s)
- Giovanni Zarrilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Francesca Galuppini
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Valentina Angerilli
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Giada Munari
- Veneto Institute of Oncology-IOV-IRCCS, 35128 Padua, Italy;
| | - Marianna Sabbadin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Vanni Lazzarin
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Lorenzo Nicolè
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Rachele Biancotti
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.Z.); (F.G.); (V.A.); (M.S.); (V.L.); (L.N.); (R.B.)
- Veneto Institute of Oncology-IOV-IRCCS, 35128 Padua, Italy;
| |
Collapse
|
13
|
Li K, Chen J, Lou X, Li Y, Qian B, Xu D, Wu Y, Ma S, Zhang D, Cui W. HNRNPA2B1 Affects the Prognosis of Esophageal Cancer by Regulating the miR-17-92 Cluster. Front Cell Dev Biol 2021; 9:658642. [PMID: 34277606 PMCID: PMC8278577 DOI: 10.3389/fcell.2021.658642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes. Accumulating evidence suggests that dysregulation of m6A modification significantly correlates with tumorigenesis and progression. In this study, we observed an increased expression and positive correlations of all 25 m6A regulators in esophageal cancer (ESCA) data obtained from the TCGA database. Through expression profiling of these regulators, a prognostic score model containing HNRNPA2B1, ALKBH5, and HNRNPG was established, and the high-risk subgroup exhibited strong positive correlations with ESCA progression and outcome. The risk score obtained from this model may represent an independent predictor of ESCA prognosis. Notably, the gene most frequently associated with increased risk was HNRNPA2B1; in ESCA, the increased expression of this gene alone predicted poor prognosis by affecting tumor-promoting signaling pathways through miR-17-92 cluster. An experimental study demonstrated that elevated HNRNPA2B1 expression was positively associated with distant metastasis and lymph node stage, and predicted the poor outcomes of ESCA patients. Knockdown of HNRNPA2B1 significantly decreased the expression of miR-17, miR-18a, miR-20a, miR-93, and miR-106b and inhibited the proliferation of ESCA cells. Therefore, our study indicated that the dynamic changes in 25 m6A regulators were associated with the clinical features and prognosis of patients with ESCA. Importantly, HNRNPA2B1 alone may affect the prognosis of patients with ESCA by regulating the miR-17-92 cluster.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiling Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Benheng Qian
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaohui Ma
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wei Cui,
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Donghong Zhang,
| |
Collapse
|
14
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
15
|
Fukada M, Matsuhashi N, Takahashi T, Sugito N, Heishima K, Akao Y, Yoshida K. Tumor Tissue MIR92a and Plasma MIRs21 and 29a as Predictive Biomarkers Associated with Clinicopathological Features and Surgical Resection in a Prospective Study on Colorectal Cancer Patients. J Clin Med 2020; 9:jcm9082509. [PMID: 32759718 PMCID: PMC7465950 DOI: 10.3390/jcm9082509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer-related microRNAs (miRNAs) are emerging as non-invasive biomarkers for colorectal cancer (CRC). This study aimed to analyze the correlation between the levels of tissue and plasma miRNAs and clinicopathological characteristics and surgical resection. This study was a prospective study of CRC patients who underwent surgery. Forty-four sample pairs of tissue and plasma were analyzed. The miRNA levels were evaluated by RT-qPCR. The level of tumor tissue MIR92a showed a significant difference in CRC with lymph node metastasis, stage ≥ III, and high lymphatic invasion. In preoperative plasma, there were significant differences in CRC with stage ≥ III (MIR29a) and perineural invasion (MIR21). In multivariate analysis of lymphatic invasion, the levels of both preoperative plasma MIR29a and tumor tissue MIR92a showed significant differences. Furthermore, in cases with higher plasma miRNA level, the levels of plasma MIRs21 and 29a were significantly decreased after the operation. In this study, there were significant differences in miRNAs levels with respect to the sample type, clinicopathological features, and surgical resection. The levels of tumor tissue MIR92a and preoperative plasma MIR29a may have the potential as a biomarker for prognosis. The plasma MIRs21 and 29a level has the potential to be a predictive biomarker for treatment efficacy.
Collapse
Affiliation(s)
- Masahiro Fukada
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
| | - Takao Takahashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (N.S.); (K.H.); (Y.A.)
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (N.S.); (K.H.); (Y.A.)
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (N.S.); (K.H.); (Y.A.)
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City 501-1194, Japan; (M.F.); (N.M.); (T.T.)
- Correspondence: ; Tel.: +81-058-230-6235
| |
Collapse
|
16
|
Ni D, Teng J, Cheng Y, Zhu Z, Zhuang B, Yang Z. MicroRNA‑92a promotes non‑small cell lung cancer cell growth by targeting tumor suppressor gene FBXW7. Mol Med Rep 2020; 22:2817-2825. [PMID: 32945381 PMCID: PMC7453619 DOI: 10.3892/mmr.2020.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA/miR)‑92a has been identified as being significantly downregulated in non‑small cell lung cancer (NSCLC) tissues using a miRNA array. However, its biological function and molecular mechanisms in NSCLC have not been fully elucidated. The aim of the present study was to determine the role of miR‑92a in NSCLC and the mechanisms by which it affects NSCLC cells. The expression levels of miR‑92a in NSCLC tissues and cell lines were analyzed using reverse transcription‑quantitative PCR. Cell viability and cell apoptosis were determined using an MTT assay and flow cytometry, respectively. It was observed that miR‑92a was significantly upregulated in NSCLC tissues and cell lines. Inhibition of miR‑92a significantly suppressed viability of NSCLC cells, with concomitant downregulation of key proliferative genes, such as proliferating cell nuclear antigen and Ki‑67. miR‑92a downregulation induced apoptosis of NSCLC cells, as evidenced by flow cytometry and apoptosis‑related protein detection. Luciferase assays confirmed that miR‑92a could directly bind to the 3'‑untranslated region of tumor suppressor F‑box/WD repeat‑containing protein 7 (FBXW7) and suppress its translation. Furthermore, small interfering RNA‑mediated FBXW7 inhibition partially attenuated the tumor suppressive effect of an miR‑92a inhibitor on NSCLC cells. Collectively, these findings demonstrated that miR‑92a might function as an oncogene in NSCLC by regulating FBXW7. In conclusion, miR‑92a could serve as a potential therapeutic target in NSCLC treatment.
Collapse
Affiliation(s)
- Da Ni
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Jiping Teng
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Youshuang Cheng
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Zhijun Zhu
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Bufeng Zhuang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Zhiyin Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
17
|
Elevated miRNA Inversely Correlates with E-cadherin Gene Expression in Tissue Biopsies from Crohn Disease Patients in contrast to Ulcerative Colitis Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4250329. [PMID: 32775420 PMCID: PMC7396102 DOI: 10.1155/2020/4250329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) comprises ulcerative colitis (UC) and Crohn disease (CD). Similar symptoms, but different treatment procedures for both diseases require precise diagnosis. MicroRNAs (miRNAs) are major posttranscriptional players that regulate the expression of genes during the inflammation and thus could be appropriate biomarkers for differentiation between UC and CD. For this purpose, we analyzed the expression of miR-21-3p, miR-31-3p, miR-125b-1-3p, miR-146a-3p, miR-155-5p, and E-cadherin (CDH1) genes associated with IBD, in 67 tissue samples: 28 inflamed mucosa samples (n = 16 UC, n = 12 CD), 28 adjacent normal colonic mucosa (n = 16 UC, n = 12 CD), and 11 normal mucosa from healthy patients using reverse transcription real-time RT-PCR. We found all analyzed miRNAs were significantly overexpressed in UC tissue as compared to adjacent normal tissue of patients with UC, as well as to normal mucosa from healthy controls. Four miRNAs (except miR-125b-1-3p) were significantly upregulated in CD lesions as compared to adjacent normal tissue of patients with CD, and four miRNAs, except miR-146a-3p, were significantly higher in CD samples compared to normal mucosa from healthy individuals. In the CD group, we found an inverse correlation between miR-155-5p or miR-146a-3p expressions and CDH1expression in inflamed mucosa. This type of correlation was also detected for miR-213p in adjacent normal tissue and CDH1 in inflamed mucosa, as well as between miR-155-5p and CDH1 in adjacent normal tissue. Elevated miRNA expression is characteristic for IBD-mediated inflammation process and inversely correlated with CDH1 gene expression, which suggest involvement of epithelial to mesenchymal transition (EMT) in IBD development.
Collapse
|
18
|
Feng S, Sun H, Zhu W. MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol 2020; 23:450-458. [PMID: 32654106 DOI: 10.1007/s12094-020-02439-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Increasing evidence suggested that microRNA plays an important role in ovarian cancer. In this study, the role of miR-92 in ovarian cancer was investigated. METHODS In this study, miR-92 expression in clinical sample was evaluated, role of miR-92 was investigated in vitro, and underlying mechanism was investigated using Chip, co-IP, and western blot. RESULTS In this study, we show that miR-92 is overexpressed in ovarian cancer tissue compared with normal cancer tissue. Transfection of miR-92 increased proliferation of ovarian cancer cell, and increased migration capacity and colony formation were observed after miR-92 transfection; we found that expression of LATS2 was decreased by miR-92, and this was further confirmed by luciferase assay, which proved that miR-92 is targeting 3' of the endogenous LATS2 gene. Downregulation of LATS2 resulted in increased translocation of YAP1 and upregulation of PD-L1, which subsequently suppressed NK cell function and promoted T cell apoptosis. Moreover, co-transfection of YAP1-targeted shRNA could relieve miR-92-induced immune suppression effect. Mechanically, immunoprecipitation (IP) was used to show that LATS2 interacted with YAP1 and subsequently limited nuclear translocation of YAP1; chromatin immunoprecipitation (ChIP) was used to confirm that YAP1 could bind to enhancer region of PD-L1 to enhance transcription activity of PD-L1. CONCLUSIONS Our data revealed a novel mechanism which finally resulted in immune suppression in ovarian cancer.
Collapse
Affiliation(s)
- S Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - H Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - W Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Zhao B, Ke K, Wang Y, Wang F, Shi Y, Zheng X, Yang X, Liu X, Liu J. HIF-1α and HDAC1 mediated regulation of FAM99A-miR92a signaling contributes to hypoxia induced HCC metastasis. Signal Transduct Target Ther 2020; 5:118. [PMID: 32636357 PMCID: PMC7341733 DOI: 10.1038/s41392-020-00223-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 06/13/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Kun Ke
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyu Yang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
20
|
Zhou SN. Role of non-coding RNAs in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:453-459. [DOI: 10.11569/wcjd.v28.i12.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the research on the role of non-coding RNAs (ncRNAs) in tumors has received more and more attention. Although research on the role of ncRNAs in the early diagnosis, disease monitoring, treatment guidance, and prognosis prediction of esophageal carcinoma has been gradually carried out, there are still many problems that need to be addressed. In the current paper, I review the progress in the research of ncRNAs in esophageal carcinoma, with an aim to help provide new strategies for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
21
|
Li T, Xu L, Teng J, Ma Y, Liu W, Wang Y, Chi X, Shao S, Dong Y, Zhan Q, Liu X. GADD45G Interacts with E-cadherin to Suppress the Migration and Invasion of Esophageal Squamous Cell Carcinoma. Dig Dis Sci 2020; 65:1032-1041. [PMID: 31562612 DOI: 10.1007/s10620-019-05836-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers with poor prognosis. Metastasis is the leading cause of cancer-related deaths. The growth arrest and DNA damage-inducible 45 gamma (GADD45G) has been reported to correlate with survival, invasion, and metastasis of ESCC. This study was aimed to investigate the role and mechanism of GADD45G in ESCC cell migration and invasion. METHODS Both the effects of GADD45G and its need for E-cadherin to function on ESCC cell migration and invasion were determined through loss- and gain-of-function approaches via Transwell assays. The interaction between GADD45G and E-cadherin was detected by GST-pull down and IP assays. The expression of E-cadherin upon GADD45G overexpression was evaluated by RT-qPCR and western blot. The level of E-cadherin in cytoplasmic, nuclear, and membrane fractions was examined by western blot following subcellular fractionation. RESULTS Knockdown of GADD45G increased the migration and invasion abilities of KYSE150 cells, while overexpression of GADD45G showed the opposite effects on YES2 and KYSE30 cells. GADD45G could interact with E-cadherin and enhanced its membrane level. Knockdown of E-cadherin abolished the inhibitory effects of GADD45G on ESCC cell migration and invasion. Intriguingly, dimer-dissociating mutant of GADD45G could not interact with E-cadherin and almost lost its ability to suppress the ESCC cell migration and invasion. CONCLUSIONS This study reveals a novel role for GADD45G in inhibiting the ESCC cell migration and invasion, which will provide a new insight in understanding the ESCC metastatic mechanism.
Collapse
Affiliation(s)
- Tongtong Li
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Lele Xu
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Jinglei Teng
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yunping Ma
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Wenzhong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xinming Chi
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Shujuan Shao
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yan Dong
- College of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qimin Zhan
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
22
|
Zeng R, Huang J, Sun Y, Luo J. Cell proliferation is induced in renal cell carcinoma through miR-92a-3p upregulation by targeting FBXW7. Oncol Lett 2020; 19:3258-3268. [PMID: 32256821 PMCID: PMC7074420 DOI: 10.3892/ol.2020.11443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/06/2019] [Indexed: 01/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer whose incidence has gradually increased worldwide. MicroRNAs (miRNAs) represent a type of short endogenous non-coding RNA containing approximately 22 nucleotides, which are capable of regulating mRNAs at the post-transcriptional level in human cells. miRNAs have been demonstrated to mediate gene expression by influencing important regulatory genes. Accumulating evidence indicates that certain miRNAs are involved in RCC development. The present study investigated the underlying mechanism and functional role of miR-92a-3p in RCC cells using reverse transcription-quantitative polymerase chain reaction, western blotting, 3′ UTR luciferase assay, cell proliferation assay and soft agar assay. The results demonstrated that miR-92a-3p expression level is significantly upregulated in RCC tissues and cell lines; however, F-box and WD repeat domain containing 7 (FBXW7) expression level was significantly downregulated in RCC tissues and cell lines. Subsequently, whether FBXW7 could be considered as a direct target of miR-92a-3p in RCC cells was investigated. The results demonstrated that miR-92a-3p overexpression significantly promoted RCC cell proliferation and colony formation. Conversely, miR-92a-3p downregulation significantly inhibited RCC cell proliferation and colony formation. In addition, FBXW7 knockdown significantly enhanced RCC cell proliferation and colony formation. Conversely, FBXW7 overexpression significantly inhibited RCC cell proliferation and colony formation. Collectively, these results demonstrated that miR-92a-3p/FBXW7 pathway may represent a novel strategy and therapeutic target for RCC.
Collapse
Affiliation(s)
- Rong Zeng
- Teaching Experimental Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jing Huang
- Teaching Experimental Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yujie Sun
- Teaching Experimental Center, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Juan Luo
- Department of Internal Medicine, The Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei 430085, P.R. China
| |
Collapse
|
23
|
Wang Y, Wang H, Zhang C, Zhang C, Yang H, Gao R, Tong Z. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy. BMC Infect Dis 2020; 20:155. [PMID: 32075600 PMCID: PMC7031893 DOI: 10.1186/s12879-020-4853-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening situation, and it can be rendered more severe by coagulopathy. We here examine a novel plasma biomarker for sepsis-induced coagulopathy. METHODS A total of 116 patients diagnosed with sepsis were recruited and divided into two groups by whether they also had coagulopathy. Plasma samples were collected on arrival at the intensive care unit. Fifteen sepsis-alone and 15 sepsis-induced coagulopathy plasma samples were mixed and sent for microRNA sequencing. Differently expressed microRNAs were then validated by quantitative reverse transcriptase polymerase chain reaction in 52 sepsis-alone and 34 sepsis-induced coagulopathy patients; plasma lipocalin-2 was measured as well. RESULTS Four microRNAs were selected from microRNA sequencing. Only hsa-mir-92a-3p was differently expressed in the validation set. Its level of expression was significantly lower in sepsis-induced coagulopathy group. Hsa-mir-92a-3p had an area under a receiver operating characteristic curve of 0.660 (95% confidence interval, 0.537, 0.782). The plasma Hsa-mir-92a-3p level was related to activated partial thromboplastin time, prothrombin activity, and plasma lipocalin-2 level. A binary logistic model showed an association between hsa-mir-92a-3p and fibrinogen with SIC. CONCLUSIONS The utility of hsa-mir-92a-3p as a biomarker for sepsis-induced coagulopathy needs more verification, and the regulatory mechanism of hsa-mir-92a-3p in coagulation disorder and its potency as a therapeutic target must be confirmed.
Collapse
Affiliation(s)
- Yishan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Chunfang Zhang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, 100012, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Ruiyue Gao
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
24
|
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long single-stranded noncoding RNAs. They regulate gene expression posttranscriptionally by base pairing with the complementary sequences in the 3'-untranslated region of their targeted mRNA. Aberrant expression of miRNAs leads to alterations in the expression of oncogenes and tumor suppressors, thereby affecting cellular growth, proliferation, apoptosis, motility, and invasion capacity of gastrointestinal cells, including cells of esophageal squamous cell carcinoma (ESCC). Thus, alterations in miRNAs expression associated with the pathogenesis and progression of ESCC. In addition, expression profiles of miRNAs correlated with various clinicopathological factors, including pathological stages, histological differentiation, invasion, metastasis of cancer, as well as survival rates and therapy response of patients with ESCC. Consequently, expression profiles of miRNAs could be useful as diagnostic, prognostic, and prediction biomarkers in ESCC. Herein, we describe the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and microarray methods for detection and quantitate miRNAs in ESCC. In addition, we summarize the roles of miRNAs in ESCC pathogenesis, progression, and prognosis.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
25
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
26
|
Li Z, Nie R, You Z, Zhao Y, Ge X, Wang Y. LRMDA: Using Logistic Regression and Random Walk with Restart for MiRNA-Disease Association Prediction. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-26969-2_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
27
|
Peng Y, Huang D, Qing X, Tang L, Shao Z. Investigation of MiR-92a as a Prognostic Indicator in Cancer Patients: a Meta-Analysis. J Cancer 2019; 10:4430-4441. [PMID: 31413763 PMCID: PMC6691717 DOI: 10.7150/jca.30313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background: MiR-92a has been discovered to be involved in the malignant behavior of various types of cancers. However, the particular clinical and prognostic roles of miR-92a in tumors still need to be identified more precisely. The current meta-analysis assessed the prognostic value of miR-92a in various carcinomas. Methods: Systematic literature searches of PubMed, PMC, Web of Science (WOS), Embase in English and Wanfang, SinoMed and the China National Knowledge Infrastructure (CNKI) in Chinese up to Jan 15th 2019 were conducted for eligible studies. Twenty studies involving a total of 2573 patients were included in the analysis. Pooled hazard ratios (HR) for overall survival (OS) and disease-free survival (DFS), progression-free survival (PFS) and recurrence-free survival (RFS) were assessed using fixed-effects and random-effects models. Meta-regression and subgroup analyses were carried out to explore the source of heterogeneity. Odds ratio (OR) and 95%CIs were applied to evaluate the relationship between miR-92a expression levels and clinicopathological characteristics. Results: A significant association between miR-92a levels and OS (HR=2.18) was identified. The random pooling model also revealed significance of consistency (HR=2.14), indicating that the stability of the results. Subgroup analyses were performed and the corresponding significance was recognized in Chinese cancer patients (HR=2.35), studies of specimen derived from tissues (HR=2.43), non-hematological cancer (HR=2.35), osteosarcoma (HR=2.54), non-small cell lung cancer (HR=2.33), hepatocellular carcinoma (HR=2.40) and so on. There were significant relations observed of the expression level of miR-92a to tumor size (≥5 vs <5 cm) (OR=2.13), lymph node metastasis (present vs. absent) (OR=1.87), distant metastasis (present vs. absent) (OR=2.99) and so on. Conclusions: the over expression of miR-92a is associated with unfavorable prognosis of Chinese cancer patients. In addition, patients of elevated miR-92a expression level are likely to develop the cancers of more malignant behaviors.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
28
|
Transcriptional consequences of impaired immune cell responses induced by cystic fibrosis plasma characterized via dual RNA sequencing. BMC Med Genomics 2019; 12:66. [PMID: 31118097 PMCID: PMC6532208 DOI: 10.1186/s12920-019-0529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background In cystic fibrosis (CF), impaired immune cell responses, driven by the dysfunctional CF transmembrane conductance regulator (CFTR) gene, may determine the disease severity but clinical heterogeneity remains a major therapeutic challenge. The characterization of molecular mechanisms underlying impaired immune responses in CF may reveal novel targets with therapeutic potential. Therefore, we utilized simultaneous RNA sequencing targeted at identifying differentially expressed genes, transcripts, and miRNAs that characterize impaired immune responses triggered by CF and its phenotypes. Methods Peripheral blood mononuclear cells (PBMCs) extracted from a healthy donor were stimulated with plasma from CF patients (n = 9) and healthy controls (n = 3). The PBMCs were cultured (1 × 105 cells/well) for 9 h at 37 ° C in 5% CO2. After culture, total RNA was extracted from each sample and used for simultaneous total RNA and miRNA sequencing. Results Analysis of expression signatures from peripheral blood mononuclear cells induced by plasma of CF patients and healthy controls identified 151 genes, 154 individual transcripts, and 41 miRNAs differentially expressed in CF compared to HC while the expression signatures of 285 genes, 241 individual transcripts, and seven miRNAs differed due to CF phenotypes. Top immune pathways influenced by CF included agranulocyte adhesion, diapedesis signaling, and IL17 signaling, while those influenced by CF phenotypes included natural killer cell signaling and PI3K signaling in B lymphocytes. Upstream regulator analysis indicated dysregulation of CCL5, NF-κB and IL1A due to CF while dysregulation of TREM1 and TP53 regulators were associated with CF phenotype. Five miRNAs showed inverse expression patterns with three target genes relevant in CF-associated impaired immune pathways while two miRNAs showed inverse expression patterns with two target genes relevant to a dysregulated immune pathway associated with CF phenotypes. Conclusions Our results indicate that miRNAs and individual transcript variants are relevant molecular targets contributing to impaired immune cell responses in CF. Electronic supplementary material The online version of this article (10.1186/s12920-019-0529-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Up-regulation of miRNA-148a inhibits proliferation, invasion, and migration while promoting apoptosis of cervical cancer cells by down-regulating RRS1. Biosci Rep 2019; 39:BSR20181815. [PMID: 30910849 PMCID: PMC6505193 DOI: 10.1042/bsr20181815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present study is to figure out the role of miRNA-148a (miR-148a) in growth, apoptosis, invasion, and migration of cervical cancer cells by binding to regulator of ribosome synthesis 1 (RRS1). Cervical cancer and adjacent normal tissues, as well as cervical cancer cell line Caski, HeLa, C-33A, and normal cervical epithelial cell line H8 were obtained to detect the expression of miR-148a and RRS1. Relationship between miR-148a and RRS1 expression with clinicopathological characteristics was assessed. The selected Caski and HeLa cells were then transfected with miR-148a mimics, miR-148a inhibitors or RRS1 siRNA to investigate the role of miR-148a and RRS1 on proliferation, apoptosis, colony formation, invasion, and migration abilities of cervical cancer cells. Bioinformatics information and dual luciferase reporter gene assay was for used to detect the targetting relationship between miR-148a and RRS1. Down-regulated miR-148a and up-regulated RRS1 were found in cervical cancer tissues and cells. Down-regulated miR-148a and up-regulated RRS1 are closely related with prognostic factors of cervical cancer. RRS1 was determined as a target gene of miR-148a and miR-148a inhibited RRS1 expression in cervical cancer cells. Up-regulation of miR-148a inhibited cell proliferation, migration, and invasion while promoting apoptosis in Caski and HeLa cells. Our study suggests that miR-148a down-regulates RRS1 expression, thereby inhibiting the proliferation, migration, and invasion while promoting cell apoptosis of cervical cancer cells.
Collapse
|
30
|
Shen Y, Ding Y, Ma Q, Zhao L, Guo X, Shao Y, Niu C, He Y, Zhang F, Zheng D, Wei W, Liu F. Identification of Novel Circulating miRNA Biomarkers for the Diagnosis of Esophageal Squamous Cell Carcinoma and Squamous Dysplasia. Cancer Epidemiol Biomarkers Prev 2019; 28:1212-1220. [PMID: 30988139 DOI: 10.1158/1055-9965.epi-18-1199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/25/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Circulating miRNAs have been identified as diagnostic biomarkers for esophageal squamous cell carcinoma (ESCC), but their efficacy in discovering early-stage ESCC is still unsatisfying. Esophageal squamous dysplasia (ESD) is the precursor lesion of ESCC. Notably, little is known about the role(s) of circulating miRNAs in identifying ESD. In this study, we, therefore, aimed to identify serum miRNAs as novel diagnostic markers for detecting ESD and ESCC. METHODS The genome-wide miRNA expression was profiled in 104 (52 ESCC and 52 controls) serum samples using microarray. Seven candidate miRNAs from the microarray assay were evaluated for their diagnostic performance in another cohort of 266 participants (96 ESCC, 92 ESD, and 78 healthy controls). RESULTS The serum levels of miR-16-5p, miR-197-5p, miR-451a, and miR-92a-3p were associated with ESCC; the biomarker based on the panel of these four miRNAs could efficiently distinguish patients with ESCC from the controls [AUC = 0.856; 95% confidence interval (CI), 0.794-0.905; P < 0.001]. The serum levels of miR-16-5p, miR-320c, miR-638, and miR-92a-3p were significantly higher in patients with ESD than in controls, and this four-miRNA signature could efficiently differentiate patients with ESD from the controls (AUC = 0.842; 95% CI, 0.778-0.893; P < 0.001). In addition, compared with serum carcinoembryonic antigen and carbohydrate antigen 199, miRNA-based panels had a better diagnostic performance in distinguishing patients with ESCC and ESD from healthy controls. CONCLUSIONS Our study identified two novel panels of circulating miRNAs with high efficiency in detecting ESCC and ESD, suggesting that circulating miRNAs, in particular the combination of them, might serve as noninvasive biomarkers for the early detection of ESCC. IMPACT This study suggests the feasibility of using circular miRNA-based blood tests to aid in the detection of ESD and ESCC.
Collapse
Affiliation(s)
- Yi Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yuanjie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Qing Ma
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Xudong Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yi Shao
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Chen Niu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Wenqiang Wei
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Sun L, Jin X, Xie L, Xu G, Cui Y, Chen Z. Swainsonine represses glioma cell proliferation, migration and invasion by reduction of miR-92a expression. BMC Cancer 2019; 19:247. [PMID: 30890138 PMCID: PMC6425678 DOI: 10.1186/s12885-019-5425-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Swainsonine is a natural indolizidine alkaloid, its anti-tumor activity has been widely reported in varied cancers. This study aimed to investigate whether Swainsonine exerted anti-tumor impact on glioma cells, likewise uncovered the relative molecular mechanisms. METHODS After administration with diverse concentrations of Swainsonine, cell growth, migration and invasion in U251 and LN444 cells were appraised by the common-used CCK-8, BrdU, flow cytometry and Transwell assays. MiR-92a mimic, inhibitor and the correlative NC were transfected into U251 and LN444 cells, and assessment of miR-92a expression was by utilizing qRT-PCR. Functions of miR-92a in above-mentioned cell biological processes were analyzed again in Swainsonine-treated cells. The momentous proteins of cell cycle, apoptosis and PI3K/AKT/mTOR pathway were ultimately examined by western blot. RESULTS Swainsonine significantly hindered cell proliferation through decreasing cell viability, declining the percentage of BrdU cells, down-regulating CyclinD1 and up-regulating p16 expression. Enhancement of percentage of apoptotic cells was presented in Swainsonine-treated cells via activating cleaved-Caspase-3 and cleaved-Caspase-9. Additionally, Swainsonine impeded the abilities of migration and invasion by decreasing MMP-2, MMP-9, Vimentin and E-cadherin. Repression of miR-92a was observed in Swainsonine-treated cells, and miR-92a overexpression overturned the anti-tumor activity of Swainsonine in glioma cells. Finally, western blot assay displayed that Swainsonine hindered PI3K/AKT/mTOR pathway via regulating miR-92a. CONCLUSIONS These discoveries corroborated that Swainsonine exerted anti-tumor impacts on glioma cells via repression of miR-92a, and inactivation of PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Libo Sun
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033 Jilin Province China
| | - Xingyi Jin
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033 Jilin Province China
| | - Lijuan Xie
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China
| | - Guangjun Xu
- Department of Science and Education, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China
| | - Yunxia Cui
- Department of Science and Education, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033 Jilin Province China
| |
Collapse
|
32
|
Dong M, Xie Y, Xu Y. miR-7-5p regulates the proliferation and migration of colorectal cancer cells by negatively regulating the expression of Krüppel-like factor 4. Oncol Lett 2019; 17:3241-3246. [PMID: 30867755 PMCID: PMC6396112 DOI: 10.3892/ol.2019.10001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that microRNA-7-5p (miR-7-5p) functions as a tumor suppressor in certain types of human cancer. However, the role of miR-7-5p in colorectal cancer (CRC) remains to be investigated. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the present study demonstrated that miR-7-5p was downregulated in CRC tissues and cell lines. In addition, low miR-7-5p expression is able to predict a poor 5-year overall survival rate for patients with CRC. In vitro studies revealed that miR-7-5p overexpression inhibits cell proliferation and migration. Furthermore, Krüppel-like factor 4 (KLF4), an oncogene in CRC, was validated as a direct target of miR-7-5p. KLF4 expression was negatively correlated with miR-7-5p expression in CRC tissues. Notably, KLF4 overexpression rescued the suppressive effects of miR-7-5p on CRC cell proliferation and migration. In summary, the results of this study demonstrated that miR-7-5p inhibits CRC proliferation and migration by targeting KLF4, which suggests that miR-7-5p is a potential molecular target for the treatment of human CRC.
Collapse
Affiliation(s)
- Mingjun Dong
- Department of Anorectal Surgery, The No. 2 Hospital of Ningbo, Ningbo, Zhejiang 315010, P.R. China
| | - Yangyang Xie
- Department of Anorectal Surgery, The No. 2 Hospital of Ningbo, Ningbo, Zhejiang 315010, P.R. China
| | - Yidong Xu
- Department of Anorectal Surgery, The No. 2 Hospital of Ningbo, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
33
|
Xu H, Jiang J, Zhang J, Cheng L, Pan S, Li Y. MicroRNA-375 inhibits esophageal squamous cell carcinoma proliferation through direct targeting of SP1. Exp Ther Med 2018; 17:1509-1516. [PMID: 30867685 PMCID: PMC6396021 DOI: 10.3892/etm.2018.7106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have shown that microRNA-375 (miR-375) is frequently downregulated in several types of human cancer including gastric cancer, colorectal cancer and oral squamous cell carcinoma. However, the role of miR-375 in human esophageal cancer remains unknown. In the current study, the expression level of miR-375 was analyzed in 43 esophageal squamous cell carcinoma (ESCC) tissue and matched adjacent normal tissue samples from patients with ESCC by reverse transcription-quantitative polymerase chain reaction. In addition, the expression level of miR-375 was analyzed in ESCC cell lines (KYSE450 and KYSE150) and the human esophageal epithelial cell line Het-1A by the same method. The expression level of miR-375 was significantly downregulated in ESCC tissue samples and cell lines compared with adjacent normal tissue samples and the human esophageal epithelial cell line, respectively. The effect of miR-375 on ESCC cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assays. miR-375 overexpression significantly decreased ESCC cell proliferation and colony formation. Bioinformatics analysis was used to predict specificity protein 1 (SP1) as a target gene of miR-375 in ESCC, and this was verified by dual-luciferase assay. The present study demonstrated that SP1 regulates ESCC cell proliferation and colony formation through direct interaction with miR-375. In addition, the overall survival of patients with ESCC was analyzed using the Kaplan-Meier method and log-rank test. The results indicated that patients with ESCC with high miR-375 expression had a better survival rate compared with patients with ESCC with low miR-375 expression. Taken together, these results suggest that downregulated miR-375 promotes ESCC cell proliferation and colony formation via direct targeting of SP1, and this association may contribute to ESCC progression.
Collapse
Affiliation(s)
- Hui Xu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Jialong Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jingjun Zhang
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Song Pan
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Yuanhai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
34
|
Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta-Analysis. Clin Transl Gastroenterol 2018; 9:203. [PMID: 30420592 PMCID: PMC6232177 DOI: 10.1038/s41424-018-0070-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Numerous articles have reported that abnormal expression levels of microRNAs (miRNAs) are related to the survival times of esophageal carcinoma (EC) patients, which contains esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Nevertheless, there has not been a comprehensive meta-analysis to assess the accurate prognostic value of miRNAs in EC. Methods Studies published in English up to April 12, 2018 that evaluated the correlation of the expression levels of miRNAs with overall survival (OS) in EC were identified by online searches in PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews performed by two independent authors. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate the correlation between OS and miRNA expression. HR ≥ 2 was considered cutoff for considering the miRNA as prognostic candidate. Results Forty-four pertinent articles with 22 miRNAs and 4310 EC patients were ultimately included. EC patients with tissue expression levels of high miR-21 or low miR-133a (HR = 2.48, 95% CI = 1.50–4.12), miR-133b (HR = 2.15, 95% CI = 1.27–3.62), miR-138 (HR = 2.27, 95% CI = 1.68–3.08), miR-203 (HR = 2.83, 95% CI = 1.35–5.95), miR-375 and miR-655 (HR = 2.66, 95% CI = 1.16–6.12) had significantly poorer OS (P < 0.05). In addition, EC patients with blood expression levels of high miR-21 (HR = 2.19, 95% CI = 1.31–3.68) and miR-223 had significantly shorter OS (P < 0.05). Conclusions In conclusion, tissue expression levels of miR-21, miR-133a, miR-133b, miR-138, miR-203, miR-375, and miR-655 and blood expression levels of miR-21 and miR-223 demonstrate significant prognostic value. Among them, the expression levels of miR-133a, miR-133b, miR-138, miR-203, and miR-655 in tissue and the expression level of miR-21 in blood are potential prognostic candidates for predicting OS in EC.
Collapse
|
35
|
Yang Y, Alderman C, Sehlaoui A, Xiao Y, Wang W. MicroRNAs as Immunotherapy Targets for Treating Gastroenterological Cancers. Can J Gastroenterol Hepatol 2018; 2018:9740357. [PMID: 30046565 PMCID: PMC6038585 DOI: 10.1155/2018/9740357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Gastroenterological cancers are the most common cancers categorized by systems and are estimated to comprise 18.4% of all cancers in the United States in 2017. Gastroenterological cancers are estimated to contribute 26.2% of cancer-related death in 2017. Gastroenterological cancers are characterized by late diagnosis, metastasis, high recurrence, and being refractory to current therapies. Since the current targeted therapies provide limited benefit to the overall response and survival, there is an urgent need for developing novel therapeutic strategy to improve the outcome of gastroenterological cancers. Immunotherapy has been developed and underwent clinical trials, but displayed limited therapeutic benefit. Since aberrant expressions of miRNAs are found in gastroenterological cancers and miRNAs have been shown to regulate antitumor immunity, the combination therapy combining the traditional antibody-based immunotherapy and novel miRNA-based immunotherapy is promising for achieving clinical success. This review summarizes the current knowledge about the miRNAs and long noncoding RNAs that exhibit immunoregulatory roles in gastroenterological cancers and precancerous diseases of digestive system, as well as the miRNA-based clinical trials for gastroenterological cancers. This review also analyzes the ongoing challenge of identifying appropriate therapy candidates for complex and dynamic tumor microenvironment, ensuring efficient and targeted delivery to specific cancer tissues, and developing strategy for avoiding off-target effect.
Collapse
Affiliation(s)
- Yixin Yang
- College of Natural, Applied and Health Sciences, Kean University, 100 Morris Avenue, Union, NJ 07083, USA
| | - Christopher Alderman
- School of Medicine, University of Colorado, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Ayoub Sehlaoui
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Yuan Xiao
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Wei Wang
- Department of Thoracic Surgery III, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
36
|
Shin VY, Siu MT, Liu X, Ng EKO, Kwong A, Chu KM. MiR-92 suppresses proliferation and induces apoptosis by targeting EP4/Notch1 axis in gastric cancer. Oncotarget 2018; 9:24209-24220. [PMID: 29849934 PMCID: PMC5966267 DOI: 10.18632/oncotarget.24819] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
MiR-92a has been shown to be dysregulated in various cancers and exhibited differential role in carcinogenesis. In this study, we sought to delineate the functional role of miR-92a and its regulatory pathway in gastric cancer. MiR-92a expression were underexpressed in tissues of gastric cancer patients with the area under curve (AUC) of 0.78. Low expression in plasma was due to the increased promoter DNA methylation of miR-92a. Overexpression of miR-92a inhibited cell proliferation and invasion, and induced apoptosis. Furthermore, miR-92a reduced tumor growth in xenograft model. EP4 and Notch 1 were identified to be negatively regulated by miR-92a, and involved in cell growth. Moreover, NF-κB expression was inversely correlated with miR-92a in gastric cancer tissues and suppressed the expression of miR-92. This study unravels the tumor suppressive role of miR-92a involving EP4/Notch 1 signaling regulated by NF-κB in gastric cancer. Further studies on miR-92a and EP4/Notch1 may provide a new treatment strategy for gastric cancer.
Collapse
Affiliation(s)
| | - Man-Ting Siu
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| | - Xin Liu
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| | - Enders K O Ng
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong SAR.,Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong SAR.,Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR
| | - Kent-Man Chu
- Department of Surgery, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
37
|
Zaleski M, Kobilay M, Schroeder L, Debald M, Semaan A, Hettwer K, Uhlig S, Kuhn W, Hartmann G, Holdenrieder S. Improved sensitivity for detection of breast cancer by combination of miR-34a and tumor markers CA 15-3 or CEA. Oncotarget 2018; 9:22523-22536. [PMID: 29854296 PMCID: PMC5976482 DOI: 10.18632/oncotarget.25077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs biomarkers have shown value for diagnosis and prognosis of various cancers. Combination with established tumor markers has rarely been done. Results Breast cancer patients had significantly higher serum RNA loads (AUC 0.665), lower miR-34a (AUC 0.772), higher CEA and CA 15-3 levels (AUCs 0.717 and 0.721) than healthy controls. miR-34a correlated with tumor stage and hormone receptor status. There was no significant difference between groups for all other miRNAs. Combination of miR-34a with CEA or CA 15-3 led to improved AUCs of 0.844 and 0.800, respectively. Sensitivity of miR-34a and CA 15-3 reached 56.1% at 95% specificity. When compared with benign breast diseases, combination of miR-34a (AUC 0.719) and CEA (0.623) or CA 15-3 (0.619) resulted in improved performances (0.794 and 0.741). Sensitivity of miR-34a and CA 15-3 reached 53.7% at 95% specificity. Conclusion While miR-34a provides valuable information for diagnosis and staging, combination with tumor markers CA15-3 or CEA improves the sensitivity for breast cancer detection. Patients and Methods The diagnostic relevance of the miR-21, miR-34a, miR-92a, miR-155, miR-222 and miR-let-7c was tested in sera of 103 individuals (55 breast cancer, 20 benign breast diseases, 28 healthy controls). MiRNAs were detected by quantitative rt-PCR after extraction and reverse transcription. Cel-miR-39 and miR-16 were used for normalization. Established tumor markers CEA, CA 15-3, CA 19-9 and CA 125 were measured by automatized immunoassays. Diagnostic performance was tested by areas under the curve (AUC) of receiver operating characteristic (ROC) curves and sensitivities at 90% and 95% specificity.
Collapse
Affiliation(s)
- Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Lars Schroeder
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Manuel Debald
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | | | - Karina Hettwer
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Steffen Uhlig
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Walther Kuhn
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| |
Collapse
|
38
|
Liu L, Lai X, Yuan C, Lv X, Yu T, He W, Liu J, Zhang H. Aberrant expression of miR-153 is associated with the poor prognosis of cervical cancer. Oncol Lett 2018; 15:9183-9187. [PMID: 29805649 PMCID: PMC5958641 DOI: 10.3892/ol.2018.8475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs) are frequently dysregulated in tumors and are associated with the initiation and progression of various types of cancer. miR-153 has been previously shown to have an anti-tumor effect in the majority of cancer types. However, to date, the expression status and function of miR-153 in cervical cancer (CC) remains unclear. In the present study, the expression of miR-153 in CC tissues and cell lines was examined, revealing that the expression of miR-153 was markedly downregulated in the CC tissues and cell lines investigated, when compared with matched noncancerous tissues and normal cervical epithelial cell line. Furthermore, ectopic expression of miR-153 by miR-153 mimic inhibited cell proliferation; however, transfection with the miR-153 inhibitor promoted the cell proliferation in CC cell lines. Finally, the results showed that the downregulation of miR-153 was associated with poor 5-year over survival in CC patients and it could be regarded as an independent biomarker to predict the prognosis of CC patients. Collectively, these results indicated that miR-153 may function as a tumor suppressor in CC, and it may be a potential novel therapeutic target for CC.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Xiaojing Lai
- Applied Biotechnology Research Center, Hubei Engineering Research Center of Viral Vector, Wuhan Institute of Bioengineering, Economic Development Zone of Yangluo, Wuhan, Hubei 430415, P.R. China
| | - Changjin Yuan
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Xiuwei Lv
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Tao Yu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Wenyu He
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Jiaoping Liu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| |
Collapse
|
39
|
Yang XH, Guo F. miR‑3147 serves as an oncomiR in vulvar squamous cell cancer via Smad4 suppression. Mol Med Rep 2018; 17:6397-6404. [PMID: 29512734 PMCID: PMC5928616 DOI: 10.3892/mmr.2018.8697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of vulvar squamous cell carcinoma (VSCC) has increased annually over the last decade. MicroRNAs (miRNAs/miRs) serve an important role in tumor progression and development. Our previous microarray studies have revealed that miR-3147 was overexpressed in VSCC. However, its function and underlying mechanism in VSCC remain unknown. In the present study, it was confirmed by reverse transcription-quantitative polymerase chain reaction that the expression of miR-3147 was markedly upregulated in VSCC tissues. The increased expression of miR-3147 was positively associated with the depth of invasion. The overexpression of miR-3147 resulted in the promotion of vulvar cancer cell proliferation, migration, invasion, G1/S progression and invasion-associated gene expression. miR-3147 may participate in the process of epithelial-mesenchymal transition and reduce the expressions of downstream target genes in the transforming growth factor-β/Smad signaling pathway in A431 cells. The knockdown of Smad4 by small interfering RNA promoted malignant behaviours in A431 cells. In addition, miR-3147 regulated Smad4 by directly binding to its 3′ untranslated region. In conclusion, the results indicated that miR-3147 may serve an oncogenic role in VSCC by targeting Smad4. miR-3147 may represent a novel potential therapeutic target marker for VSCC.
Collapse
Affiliation(s)
- Xiu-Hua Yang
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Guo
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
40
|
Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 2018; 41:269-283. [PMID: 28762013 DOI: 10.1007/s40618-017-0735-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies. It has been proved that miRNA expression is dysregulated in different types of tumors, like thyroid cancers, and can be the cause of tumor initiation and progression. In this paper, we have reviewed the available data on miRNA dysregulation in different thyroid tumors including papillary, follicular, anaplastic, and medullary thyroid carcinomas aiming to introduce the last updates in miRNAs-thyroid cancer relation.
Collapse
Affiliation(s)
- S Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - M Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - M Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - E Baldini
- Department of Surgical Sciences, University of Rome, Rome, Italy.
| | - S Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Mei LL, Qiu YT, Zhang B, Shi ZZ. MicroRNAs in esophageal squamous cell carcinoma: Potential biomarkers and therapeutic targets. Cancer Biomark 2018; 19:1-9. [PMID: 28269750 DOI: 10.3233/cbm-160240] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal cancer is a common cause of cancer-related deaths worldwide. Squamous cell carcinoma (SCC) is the major histological type of esophageal cancer in developing countries including China, and the prognosis is very poor. Many microRNAs are involved in several important biological and pathologic processes, and promote tumorigenesis. To better understand the prognostic and therapeutic roles of microRNAs in ESCC, we reviewed the diagnosis and prognosis associated oncogenic microRNAs (e.g. miR-21 and miR-17-92 cluster) and tumor suppressor microRNAs (e.g. miR-375, miR-133a and miR-133b), and diagnosis and prognosis associated oncogenic target genes (e.g. PDCD4 and CCND1) and tumor suppressor target genes (e.g. EZH2 and PDK1). We also summarized the prognostic microRNA and target gene pairs (e.g. miR-296 and CCND1, miR214 and EZH2). Taken together, our review highlights the opportunities and challenges for microRNAs in the molecular diagnosis and target therapy of ESCC.
Collapse
|
42
|
Lin CH, Tsai CH, Yeh CT, Liang JL, Hung WC, Lin FC, Chang WL, Li HY, Yao YC, Hsu TI, Lee YC, Wang YC, Sheu BS, Lai WW, Calkins MJ, Hsiao M, Lu PJ. MiR-193a-5p/ERBB2 act as concurrent chemoradiation therapy response indicator of esophageal squamous cell carcinoma. Oncotarget 2018; 7:39680-39693. [PMID: 27203740 PMCID: PMC5129962 DOI: 10.18632/oncotarget.9444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Concurrent chemoradiation therapy (CCRT) is the predominant treatment in esophageal cancer, however resistance to therapy and tumor recurrence are exceedingly common. Elevated ERBB2/Her2 may be at least partially responsible for both the high rates of recurrence and resistance to CCRT. This receptor tyrosine kinase is upregulated in 10–20% of esophageal squamous cell carcinoma (ESCC) tissues, and amplification of ERBB2 has been correlated with poor prognosis in esophageal cancer. Tissues from 131 ESCC patients, along with cell and animal models of the disease were used to probe the underlying mechanisms by which ERBB2 upregulation occurs and causes negative outcomes in ESCC. We found that overexpression of ERBB2 inhibited radiosensitivity in vitro. Furthermore, miR-193a-5p reduced ERBB2 expression by directly targeting the 3′UTR. Increased miR-193a-5p enhanced radiosensitivity and inhibited tumorigenesis in vitro and in vivo. Additionally, low miR-193a-5p expression correlated with poor prognosis in ESCC patients, and ESCC patients with good CCRT response exhibited higher miR-193a-5p expression. Our data suggest that patients with high miR-193a-5p will likely benefit from CCRT treatment alone, however a combination of CCRT with Herceptin may be beneficial for patients with low miR-193a-5p expression.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Hsun Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ching-Tung Yeh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jui-Lin Liang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.,Department of General Surgery, Chi-Mei Medical Center, Liouying, Tainan 736, Taiwan
| | - Wan-Chun Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Forn-Chia Lin
- Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wei-Lun Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Hao-Yi Li
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yun-Chin Yao
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Tai-I Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Cheng Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Bor-Shyang Sheu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wu-Wei Lai
- Department of Surgery Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
43
|
Zhang X, Li Y, Qi P, Ma Z. Biology of MiR-17-92 Cluster and Its Progress in Lung Cancer. Int J Med Sci 2018; 15:1443-1448. [PMID: 30443163 PMCID: PMC6216058 DOI: 10.7150/ijms.27341] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, a class of short endogenous RNAs, acting as post-transcriptional regulators of gene expression, mostly silence gene expression via binding imperfectly matched sequences in the 3'UTR of target mRNA. MiR-17-92, a highly conserved gene cluster, has 6 members including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a. The miR-17-92 cluster, regarded as oncogene, is overexpressed in human cancers. Lung cancer is the leading cause of death all over the world. The molecular mechanism of lung cancer has been partly known at the levels of genes and proteins in last decade. However, new prognosis biomarkers and more target drugs should be developed in future. Therefore, noncoding RNAs, especially miRNAs, make them as new potentially clinical biomarkers for diagnosis and prognosis. In this review, we focus the current progress of miR-17-92 cluster in lung cancer.
Collapse
Affiliation(s)
- Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Pengfei Qi
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| |
Collapse
|
44
|
Cui M, Li Z. Downregulation of YAP inhibits proliferation and induces apoptosis in Eca-109 cells. Exp Ther Med 2017; 15:1048-1052. [PMID: 29403552 DOI: 10.3892/etm.2017.5492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
A previous study reported that Yes-associated protein (YAP) gene was overexpressed in esophageal squamous cell carcinoma (ESCC); however, the exact role of YAP in ESCC remains largely unclear. The present study aimed to investigate the effects of YAP inhibition on ESCC. In order to investigate the exact role of YAP in ESCC cells, a stable YAP low-expression ESCC cell line was established using YAP-small interfering RNA. MTT assay was performed to examine the cell proliferation ability, while flow cytometry were used to detect the cell apoptosis and cell cycle distribution. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were applied for mRNA and protein level detection, respectively. The results suggested that YAP gene inhibition significantly repressed the ECA-109 cell proliferation and induced cell apoptosis, whereas this inhibition had no significant effects on cell cycle. Furthermore, the expression levels of cell apoptosis-associated proteins were determined in the current study, and the data demonstrated that the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein ratio and phosphorylated extracellular signal-regulated kinase expression were significantly reduced, while the p53 and caspase 3 levels were notably increased in YAP gene-inhibited ECA-109 cells. In conclusion, the current study revealed that YAP gene inhibition suppresses the proliferation and induces apoptosis in ECA-109 cells, indicating that the YAP gene serves as an oncogene in ESCC.
Collapse
Affiliation(s)
- Mu Cui
- School of Nursing, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Zhen Li
- School of Nursing, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
45
|
Lv M, Chen H, Shao Y, Li C, Zhang W, Zhao X, Jin C, Xiong J. miR-92a regulates coelomocytes apoptosis in sea cucumber Apostichopus japonicus via targeting Aj14-3-3ζ in vivo. FISH & SHELLFISH IMMUNOLOGY 2017; 69:211-217. [PMID: 28860073 DOI: 10.1016/j.fsi.2017.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
miR-92a, a well-documented oncogene, was previously found to be differentially expressed in diseased sea cucumber Apostichopus japonicus by high-throughput sequencing. In this study, we identified Aj14-3-3ζ as a novel target of miR-92a in this species and investigated their regulatory roles in vivo. The negative expression profiles between miR-92a and Aj14-3-3ζ protein were detected in both LPS-exposed primary coelomocytes and Vibrio splendidus-challenged sea cucumbers. Over-expression of miR-92a by injection of miR-92a agomir significantly depressed the mRNA and protein expression of Aj14-3-3ζ and promoted coelomocytes apoptosis with 5.04-fold increase in vivo, which was consistent with those from siRNA-mediated Aj14-3-3ζ knockdown assay. In contrast, miR-92a antagomir significantly elevated the mRNA and protein expression of Aj14-3-3ζ and decreased coelomocytes apoptosis. Taken together, our result confirmed that miR-92a is involved in apoptotic signaling pathway regulation perhaps via targeting Aj14-3-3ζ in sea cucumbers, which will enhance our understanding of miR-92a regulatory roles in sea cucumber pathogenesis.
Collapse
Affiliation(s)
- Miao Lv
- School of Marine Sciences, Ningbo University, PR China
| | - Huahui Chen
- School of Marine Sciences, Ningbo University, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, PR China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, PR China
| |
Collapse
|
46
|
Fang LL, Wang XH, Sun BF, Zhang XD, Zhu XH, Yu ZJ, Luo H. Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells (Review). Int J Mol Med 2017; 40:1624-1630. [PMID: 29039606 PMCID: PMC5716450 DOI: 10.3892/ijmm.2017.3164] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of short, single-stranded non-coding RNAs, regulate and control gene expression in eukaryotes by degrading mRNA at the post-transcriptional level. Regulation by miRNAs involves a plethora of biological processes, such as cell differentiation, proliferation, metastasis, metabolism, apoptosis, tumorigenesis and others. miRNAs also represent a powerful tool in disease diagnosis and prognosis. The miR-17-92 cluster, one of the most extensively investigated microRNA clusters, comprises six mature miRNA members, including miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a. Originally identified as being involved in tumorigenesis, it is currently evident that the expression of the miR-17-92 cluster is upregulated in a wide range of tumor cells and cancer types; thus, this cluster has been identified as a potential oncogene. Considering the growing interest in the field of miR-17-92 research, we herein review recent advances in the expression and regulation of this cluster in various cancer cells, discuss the proposed mechanism of action for tumorigenesis and tumor development, and propose clinical and therapeutic applications for miR-17-92 cluster members, such as potential cancer biomarkers.
Collapse
Affiliation(s)
- Li-Li Fang
- Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xing-Hui Wang
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550004, P.R. China
| | - Bao-Fei Sun
- Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiao-Dong Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xu-Hui Zhu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zi-Jiang Yu
- Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Heng Luo
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
47
|
Zhang K, Zhang L, Zhang M, Zhang Y, Fan D, Jiang J, Ye L, Fang X, Chen X, Fan S, Chao M, Liang C. Prognostic value of high-expression of miR-17-92 cluster in various tumors: evidence from a meta-analysis. Sci Rep 2017; 7:8375. [PMID: 28827775 PMCID: PMC5567103 DOI: 10.1038/s41598-017-08349-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
The prognostic value of miR-17-92 cluster high-expression in various tumors remains controversial. Therefore, we conducted this meta-analysis by searching literatures in PubMed, Embase, Cochrane Library, China Biology Medicine disc, China National Knowledge Infrastructure to identify eligible studies. Eventually, we analyzed 36 articles that examined 17 tumor types from 4965 patients. Consequently, high-expression of miR-17-92 cluster in various tumors was associated with unfavorable overall survival in both univariate (HR = 2.05, 95%CI: 1.58-2.65, P<0.001) and multivariate (HR = 2.14, 95%CI: 1.75-2.61, P<0.001) analyses. Likewise, similar results were found in different subgroups of country, test method, miR-17-92 cluster component, sample source and size. Additionally, high-expression of miR-17-92 cluster was linked with poor disease-free survival (Univariate: HR = 1.96, 95%CI: 1.55-2.48, P<0.001; Multivariate: HR = 2.18, 95%CI: 1.63-2.91, P<0.001), favorable progression-free survival (Univariate: HR = 0.36, 95%CI: 0.16-0.80, P = 0.012; Multivariate: HR = 1.55, 95%CI: 0.79-3.05, P = 0.201) and poor cancer specific survival in univariate rather than multivariate analyses (Univariate: HR = 1.77, 95%CI: 1.21-2.60, P = 0.004; Multivariate: HR = 1.77, 95%CI: 0.80-3.92, P = 0.160). However, no association of miR-17-92 cluster high-expression was detected with recurrence or relapse-free survival. In summary, this meta-analysis towards high-expression of miR-17-92 cluster has indicated poor prognosis of various cancers. Notably, future studies comprising large cohort size from multicenter are required to confirm our conclusions.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Dengxin Fan
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jiabin Jiang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Liqin Ye
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China.
| |
Collapse
|
48
|
Gu Y, Si J, Xiao X, Tian Y, Yang S. miR-92a Inhibits Proliferation and Induces Apoptosis by Regulating Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) Expression in Acute Myeloid Leukemia. Oncol Res 2017; 25:1069-1079. [PMID: 28059050 PMCID: PMC7841081 DOI: 10.3727/096504016x14829256525028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aberrant expression of microRNA-92a (miR-92a) has been investigated in various cancers. However, the function and mechanism of miR-92a in acute myeloid leukemia (AML) remain to be elucidated. Our data showed that miR-92a was evidently downregulated and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was remarkably upregulated in AML cell lines HL-60 and THP-1. Dual luciferase reporter assay revealed that MTHFD2 was a direct target of miR-92a. Gain- and loss-of-function analysis demonstrated that MTHFD2 knockdown or miR-92a overexpression notably inhibited proliferation and promoted apoptosis of AML cell lines. Restoration of MTHFD2 expression reversed proliferation inhibition and apoptosis induction of AML cells triggered by miR-92a. Moreover, an implanted tumor model in mice indicated that miR-92a overexpression dramatically decreased tumor growth and MTHFD2 expression in vivo. Taken together, our results suggest that miR-92a inhibits proliferation and induces apoptosis by directly regulating MTHFD2 expression in AML. miR-92a may act as a tumor suppressor in AML, providing a promising therapeutic target for AML patients.
Collapse
Affiliation(s)
- Yueli Gu
- *Department of Hematology, Shangqiu First People’s Hospital, Shangqiu, P.R. China
| | - Jinchun Si
- †Department of Surgery Teaching and Research Section, Shangqiu Medical College, Shangqiu, P.R. China
| | - Xichun Xiao
- *Department of Hematology, Shangqiu First People’s Hospital, Shangqiu, P.R. China
| | - Ying Tian
- *Department of Hematology, Shangqiu First People’s Hospital, Shangqiu, P.R. China
| | - Shuo Yang
- *Department of Hematology, Shangqiu First People’s Hospital, Shangqiu, P.R. China
| |
Collapse
|
49
|
Du J, Zhang L. Analysis of salivary microRNA expression profiles and identification of novel biomarkers in esophageal cancer. Oncol Lett 2017; 14:1387-1394. [PMID: 28789354 PMCID: PMC5529882 DOI: 10.3892/ol.2017.6328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/04/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) regulate the expression of target genes and are considered to be associated with human cancer. The aim of the present study was to screen novel miRNA biomarkers in esophageal cancer (EC). The miRNA expression profile GSE41268 was extracted from Gene Expression Omnibus database, and differentially expressed miRNAs between whole saliva samples from patients with EC and healthy controls were identified using the Linear Models for Microarray Data package. Then, the targets of these miRNAs were screened using the miRecords database and used to construct the regulatory network. Gene ontology and pathway enrichment analyses were performed for the target genes of differentially expressed miRNAs to predict their potential functions. A total of 18 differentially expressed miRNAs were identified in saliva samples from patients with EC, and 43 validated target genes corresponding to 7 upregulated miRNAs were identified. Then, 6 miRNAs (miR-144, miR-451, miR-98, miR-10b, miR-486-5p and miR-363) and their target genes were used to construct a regulatory network. Within the network, miR-144 may target Notch homolog 1, fibrinogen α chain and fibrinogen β chain; miR-451 may regulate murine thymoma viral oncogene homolog 1, matrix metalloproteinase (MMP)9 and MMP2; miR-98 may directly target E2F transcription factor (E2F) 1, E2F2 and v-myc avian myelocytomatosis viral oncogene homolog (MYC); miR-10b may modulate peroxisome proliferator-activated receptor α and Kruppel-like factor 4; miR-485-5p and miR-363 may regulate TNF receptor superfamily member 5 and cyclin-dependent kinase inhibitor 1A. In addition, E2F1, E2F2 and MYC were associated with the cell cycle, which was the most significantly enriched function and pathway in EC. The results of the present study suggested that miR-144, miR-451, miR-98, miR-10b and miR-363 may be involved in EC by regulating their target genes, and may be used as biomarkers for EC.
Collapse
Affiliation(s)
- Jiang Du
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| | - Lin Zhang
- Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
50
|
Deng X, Luo M. Expression of miR-944 in esophageal squamous cell carcinoma and its role in cell proliferation and invasion in human esophageal carcinoma cell line Eca109. Shijie Huaren Xiaohua Zazhi 2017; 25:684-690. [DOI: 10.11569/wcjd.v25.i8.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of miRNA-944 in esophageal squamous cell carcinoma (ESCC), and to explore its role in cell proliferation and migration in human esophageal cancer cell line Eca109.
METHODS ESCC and matched tumor adjacent noncancerous tissue samples were obtained from 36 patients who underwent surgical treatment and were pathologically diagnosed with ESCC. Real-time quantitative PCR (qRT-PCR) was used to detect the expression levels of miRNA-944, and the relationship between miRNA-944 and clinical and pathological parameters were then analyzed. Eca109 cells were transfected with miR-944 mimic, inhibitor and negative control using LipofectamineTM2000, and then the expression level of miR-944 was detected by qRT-PCR. Cell proliferation and invasion were assessed by MTT assay and transwell assay, respectively.
RESULTS The expression level of miR-944 in ESCC tissues was significantly higher than that in tumor adjacent non-cancerous tissues (P < 0.01).The up-regulation of miR-944 expression in ESCC was correlated with advanced TNM stage (P < 0.01) and lymph node metastasis (P < 0.01). Compared to control cells, transfection of miR-944 mimic and inhibitor up- and down-regulated miR-944 expression in Eca109 cells, respectively (P < 0.01). Furthermore, transfection of miR-944 mimic enhanced cell proliferation and invasion, while transfection of miR-944 inhibitor inhibited cell proliferation and invasion (P < 0.01).
CONCLUSION The expression of miR-944 is up-regulated in ESCC and associated with TNM stage and lymph node metastasis, indicating that miR-944 may facilitate ESCC occurrence possibly by promoting the proliferation and invasion of ESCC cells.
Collapse
|