1
|
Saha R, Bhattacharje G, De S, Das AK. Deciphering the conformational stability of MazE7 antitoxin in Mycobacterium tuberculosis from molecular dynamics simulation study. J Biomol Struct Dyn 2025; 43:127-143. [PMID: 37965715 DOI: 10.1080/07391102.2023.2280675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
MazEF Toxin-antitoxin (TA) systems are associated with the persistent phenotype of the pathogen, Mycobacterium tuberculosis (Mtb), aiding their survival. Though extensively studied, the mode of action between the antitoxin-toxin and DNA of this family remains largely unclear. Here, the important interactions between MazF7 toxin and MazE7 antitoxin, and how MazE7 binds its promoter/operator region have been studied. To elucidate this, molecular dynamics (MD) simulation has been performed on MazE7, MazF7, MazEF7, MazEF7-DNA, and MazE7-DNA complexes to investigate how MazF7 and DNA affect the conformational change and dynamics of MazE7 antitoxin. This study demonstrated that the MazE7 dimer is disordered and one monomer (Chain C) attains stability after binding to the MazF7 toxin. Both the monomers (Chain C and Chain D) however are stabilized when MazE7 binds to DNA. MazE7 is also observed to sterically inhibit tRNA from binding to MazF7, thus suppressing its toxic activity. Comparative structural analysis performed on all the available antitoxins/antitoxin-toxin-DNA structures revealed MazEF7-DNA mechanism was similar to another TA system, AtaRT_E.coli. Simulation performed on the crystal structures of AtaR, AtaT, AtaRT, AtaRT-DNA, and AtaR-DNA showed that the disordered AtaR antitoxin attains stability by AtaT and DNA binding similar to MazE7. Based on these analyses it can thus be hypothesized that the disordered antitoxins enable tighter toxin and DNA binding thus preventing accidental toxin activation. Overall, this study provides crucial structural and dynamic insights into the MazEF7 toxin-antitoxin system and should provide a basis for targeting this TA system in combating Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rituparna Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
2
|
Sanchez-Torres V, Kirigo J, Wood TK. Implications of lytic phage infections inducing persistence. Curr Opin Microbiol 2024; 79:102482. [PMID: 38714140 DOI: 10.1016/j.mib.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Phage therapy holds much promise as an alternative to antibiotics for fighting infection. However, this approach is no panacea as recent results show that a small fraction of cells survives lytic phage infection due to both dormancy (i.e. formation of persister cells) and resistance (genetic change). In this brief review, we summarize evidence suggesting phages induce the persister state. Therefore, it is predicted that phage cocktails should be combined with antipersister compounds to eradicate bacterial infections.
Collapse
Affiliation(s)
- Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Fernández-García L, Gao X, Kirigo J, Song S, Battisti ME, Garcia-Contreras R, Tomas M, Guo Y, Wang X, Wood TK. Single-cell analysis reveals that cryptic prophage protease LfgB protects Escherichia coli during oxidative stress by cleaving antitoxin MqsA. Microbiol Spectr 2024; 12:e0347123. [PMID: 38206055 PMCID: PMC10846083 DOI: 10.1128/spectrum.03471-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage inhibition and mobile element stabilization, their role in host metabolism is obscure. One of the best-characterized TA systems is MqsR/MqsA of Escherichia coli, which has been linked previously to protecting gastrointestinal species during the stress it encounters from the bile salt deoxycholate as it colonizes humans. However, some recent whole-population studies have challenged the role of toxins such as MqsR in bacterial physiology since the mqsRA locus is induced over a hundred-fold during stress, but a phenotype was not found upon its deletion. Here, we investigate further the role of MqsR/MqsA by utilizing single cells and demonstrate that upon oxidative stress, the TA system MqsR/MqsA has a heterogeneous effect on the transcriptome of single cells. Furthermore, we discovered that MqsR activation leads to induction of the poorly characterized yfjXY ypjJ yfjZF operon of cryptic prophage CP4-57. Moreover, deletion of yfjY makes the cells sensitive to H2O2, acid, and heat stress, and this phenotype was complemented. Hence, we recommend yfjY be renamed to lfgB (less fatality gene B). Critically, MqsA represses lfgB by binding the operon promoter, and LfgB is a protease that degrades MqsA to derepress rpoS and facilitate the stress response. Therefore, the MqsR/MqsA TA system facilitates the stress response through cryptic phage protease LfgB.IMPORTANCEThe roles of toxin/antitoxin systems in cell physiology are few and include phage inhibition and stabilization of genetic elements; yet, to date, there are no single-transcriptome studies for toxin/antitoxin systems and few insights for prokaryotes from this novel technique. Therefore, our results with this technique are important since we discover and characterize a cryptic prophage protease that is regulated by the MqsR/MqsA toxin/antitoxin system in order to regulate the host response to oxidative stress.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department, Hospital A Coruña (HUAC), A Coruña, Spain
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology, University of A Coruña (UDC), A Coruña, Spain
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea, Chinese Academy of Sciences, China, Nansha,, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rodolfo Garcia-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Maria Tomas
- Microbiology Department, Hospital A Coruña (HUAC), A Coruña, Spain
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology, University of A Coruña (UDC), A Coruña, Spain
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea, Chinese Academy of Sciences, China, Nansha,, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Ernits K, Saha CK, Brodiazhenko T, Chouhan B, Shenoy A, Buttress JA, Duque-Pedraza JJ, Bojar V, Nakamoto JA, Kurata T, Egorov AA, Shyrokova L, Johansson MJO, Mets T, Rustamova A, Džigurski J, Tenson T, Garcia-Pino A, Strahl H, Elofsson A, Hauryliuk V, Atkinson GC. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems. Proc Natl Acad Sci U S A 2023; 120:e2305393120. [PMID: 37556498 PMCID: PMC10440598 DOI: 10.1073/pnas.2305393120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.
Collapse
Affiliation(s)
- Karin Ernits
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Chayan Kumar Saha
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Bhanu Chouhan
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Department of Molecular Biology, Umeå University, Umeå901 87, Sweden
| | - Aditi Shenoy
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Jessica A. Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | | | - Veda Bojar
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Jose A. Nakamoto
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Artyom A. Egorov
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Lena Shyrokova
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Toomas Mets
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Aytan Rustamova
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Brussels1050, Belgium
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
- Science for Life Laboratory, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| | - Gemma C. Atkinson
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| |
Collapse
|
5
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li M, Chen Q, Wu C, Li Y, Wang S, Chen X, Qiu B, Li Y, Mao D, Lin H, Yu D, Cao Y, Huang Z, Cui C, Zhong Z. A Novel Module Promotes Horizontal Gene Transfer in Azorhizobium caulinodans ORS571. Genes (Basel) 2022; 13:genes13101895. [PMID: 36292780 PMCID: PMC9601964 DOI: 10.3390/genes13101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Azorhizobium caulinodans ORS571 contains an 87.6 kb integrative and conjugative element (ICEAc) that conjugatively transfers symbiosis genes to other rhizobia. Many hypothetical redundant gene fragments (rgfs) are abundant in ICEAc, but their potential function in horizontal gene transfer (HGT) is unknown. Molecular biological methods were employed to delete hypothetical rgfs, expecting to acquire a minimal ICEAc and consider non-functional rgfs as editable regions for inserting genes related to new symbiotic functions. We determined the significance of rgf4 in HGT and identified the physiological function of genes designated rihF1a (AZC_3879), rihF1b (AZC_RS26200), and rihR (AZC_3881). In-frame deletion and complementation assays revealed that rihF1a and rihF1b work as a unit (rihF1) that positively affects HGT frequency. The EMSA assay and lacZ-based reporter system showed that the XRE-family protein RihR is not a regulator of rihF1 but promotes the expression of the integrase (intC) that has been reported to be upregulated by the LysR-family protein, AhaR, through sensing host’s flavonoid. Overall, a conservative module containing rihF1 and rihR was characterized, eliminating the size of ICEAc by 18.5%. We propose the feasibility of constructing a minimal ICEAc element to facilitate the exchange of new genetic components essential for symbiosis or other metabolic functions between soil bacteria.
Collapse
Affiliation(s)
- Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanhui Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyang Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sanle Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuelian Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Lin
- Animal, Plant and Food Inspection Center, Nanjing Customs, No. 39, Chuangzhi Road, Nanjing 210019, China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou 571737, China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.H.); (C.C.); Tel.: +86-25-84396645 (Z.H.)
| | - Chunhong Cui
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.H.); (C.C.); Tel.: +86-25-84396645 (Z.H.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Yu V, Ronzone E, Lord D, Peti W, Page R. MqsR is a noncanonical microbial RNase toxin that is inhibited by antitoxin MqsA via steric blockage of substrate binding. J Biol Chem 2022; 298:102535. [PMID: 36162504 PMCID: PMC9636575 DOI: 10.1016/j.jbc.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
The MqsRA toxin-antitoxin system is a component of the Escherichia coli stress response. Free MqsR, a ribonuclease, cleaves mRNAs containing a 5′-GC-3′ sequence causing a global shutdown of translation and the cell to enter a state of dormancy. Despite a general understanding of MqsR function, the molecular mechanism(s) by which MqsR binds and cleaves RNA and how one or more of these activities is inhibited by its cognate antitoxin MqsA is still poorly understood. Here, we used NMR spectroscopy coupled with mRNA cleavage assays to identify the molecular mechanism of MqsR substrate recognition and the MqsR residues that are essential for its catalytic activity. We show that MqsR preferentially binds substrates that contain purines in the −2 and −1 position relative to the MqsR consensus cleavage sequence and that two residues of MqsR, Tyr81, and Lys56 are strictly required for mRNA cleavage. We also show that MqsA inhibits MqsR activity by sterically blocking mRNA substrates from binding while leaving the active site fully accessible to mononucleotides. Together, these data identify the residues of MqsR that mediate RNA cleavage and reveal a novel mechanism that regulates MqsR substrate specificity.
Collapse
Affiliation(s)
- Victor Yu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Erik Ronzone
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Dana Lord
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
8
|
Yusof TY, Ong EBB, Teh AH. RelEB3 toxin-antitoxin system of Salmonella Typhimurium with a ribosome-independent toxin and a mutated non-neutralising antitoxin. Int J Biol Macromol 2022; 219:1080-1086. [PMID: 36029963 DOI: 10.1016/j.ijbiomac.2022.08.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The RelEB3 toxin-antitoxin (TA) system of Salmonella enterica subsp. enterica serovar Typhimurium consists of a RelE3 toxin which suppresses bacterial growth, but its RelB3 antitoxin does not neutralise the toxin. The relEB3 operon is widespread in Proteobacteria and is related to higBA2 from Vibrio cholerae. In contrast to the ribosome-dependent HigB2 toxin, however, the RelE3 toxin degraded free RNA independently of the ribosome. A basic loop possibly involved in HigB2's binding to the ribosome is shortened in RelE3, which instead contains a uniquely conserved R51 important for RelE3's toxicity. The RelB3 antitoxin, meanwhile, specifically recognised the CACCTGGTG palindromic motif in the promoter site. RelB3 contains P14 which is conserved as Ala in most homologues, and mutating P14 to Ala enabled the antitoxin to bind to RelE3 and restored bacterial growth. The P14 RelB3 variant, which most likely arose by a point mutation in a recent ancestor of S. Typhimurium and closely related serovars, could have possibly provided the bacteria with a faster response to stress, and might have spread to other serovars through homologous recombination.
Collapse
Affiliation(s)
- Tengku Yasmin Yusof
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia; University Hospital Development Centre, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
9
|
Lee SY, Birkholz N, Fineran PC, Park HH. Molecular basis of anti-CRISPR operon repression by Aca10. Nucleic Acids Res 2022; 50:8919-8928. [PMID: 35920325 PMCID: PMC9410881 DOI: 10.1093/nar/gkac656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
CRISPR-Cas systems are bacterial defense systems for fighting against invaders such as bacteriophages and mobile genetic elements. To escape destruction by these bacterial immune systems, phages have co-evolved multiple anti-CRISPR (Acr) proteins, which inhibit CRISPR-Cas function. Many acr genes form an operon with genes encoding transcriptional regulators, called anti-CRISPR-associated (Aca) proteins. Aca10 is the most recently discovered Aca family that is encoded within an operon containing acrIC7 and acrIC6 in Pseudomonas citronellolis. Here, we report the high-resolution crystal structure of an Aca10 protein to unveil the molecular basis of transcriptional repressor role of Aca10 in the acrIC7-acrIC6-aca10 operon. We identified that Aca10 forms a dimer in solution, which is critical for binding specific DNA. We also showed that Aca10 directly recognizes a 21 bp palindromic sequence in the promoter of the acr operon. Finally, we revealed that R44 of Aca10 is a critical residue involved in the DNA binding, which likely results in a high degree of DNA bending.
Collapse
Affiliation(s)
- So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Lee SY, Kim GE, Park HH. Molecular basis of transcriptional repression of anti-CRISPR by anti-CRISPR-associated 2. Acta Crystallogr D Struct Biol 2022; 78:59-68. [PMID: 34981762 DOI: 10.1107/s2059798321011670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
CRISPR-Cas systems are well known host defense mechanisms that are conserved in bacteria and archaea. To counteract CRISPR-Cas systems, phages and viruses have evolved to possess multiple anti-CRISPR (Acr) proteins that can inhibit the host CRISPR-Cas system via different strategies. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins that bind to an upstream promoter and regulate the expression of acr genes during transcription. Although the role of Aca as a transcriptional repressor has been demonstrated, the mechanism of action of Aca has not been determined. Here, the molecular mechanism underlying the Aca2-mediated transcriptional control of acr genes was elucidated by determining the crystal structure of Aca2 from Oceanimonas smirnovii at a high resolution of 1.92 Å. Aca2 forms a dimer in solution, and dimerization of Aca2 is critical for specific promoter binding. The promoter-binding strategy of dimeric Aca2 was also revealed by performing mutagenesis studies. The atomic structure of the Aca family shown in this study provides insights into the fine regulation of host defense and immune-escape mechanisms and also demonstrates the conserved working mechanism of the Aca family.
Collapse
Affiliation(s)
- So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gi Eob Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Vos MR, Piraino B, LaBreck CJ, Rahmani N, Trebino CE, Schoenle M, Peti W, Camberg JL, Page R. Degradation of the E. coli antitoxin MqsA by the proteolytic complex ClpXP is regulated by zinc occupancy and oxidation. J Biol Chem 2021; 298:101557. [PMID: 34974059 PMCID: PMC8808172 DOI: 10.1016/j.jbc.2021.101557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remains unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent, zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP mediated degradation.
Collapse
Affiliation(s)
- Margaret R Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA; Graduate Program in Molecular Biology and Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Benjamin Piraino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher J LaBreck
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Negar Rahmani
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Catherine E Trebino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Marta Schoenle
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jodi L Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
12
|
Wood TK, Song S. Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm 2020; 2:100018. [PMID: 33447804 PMCID: PMC7798447 DOI: 10.1016/j.bioflm.2019.100018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Procaryotes starve and face myriad stresses. The bulk population actively resists the stress, but a small population weathers the stress by entering a resting stage known as persistence. No mutations occur, and so persisters behave like wild-type cells upon removal of the stress and regrowth; hence, persisters are phenotypic variants. In contrast, resistant bacteria have mutations that allow cells to grow in the presence of antibiotics, and tolerant cells survive antibiotics better than actively-growing cells due to their slow growth (such as that of the stationary phase). In this review, we focus on the latest developments in studies related to the formation and resuscitation of persister cells and propose the guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) ribosome dimerization persister (PRDP) model for entering and exiting the persister state.
Collapse
Affiliation(s)
- Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
13
|
Xue L, Yue J, Ke J, Khan MH, Wen W, Sun B, Zhu Z, Niu L. Distinct oligomeric structures of the YoeB-YefM complex provide insights into the conditional cooperativity of type II toxin-antitoxin system. Nucleic Acids Res 2020; 48:10527-10541. [PMID: 32845304 PMCID: PMC7544224 DOI: 10.1093/nar/gkaa706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
YoeB-YefM, the widespread type II toxin-antitoxin (TA) module, binds to its own promoter to autoregulate its transcription: repress or induce transcription under normal or stress conditions, respectively. It remains unclear how YoeB-YefM regulates its transcription depending on the YoeB to YefM TA ratio. We find that YoeB-YefM complex from S.aureus exists as two distinct oligomeric assemblies: heterotetramer (YoeB-YefM2-YoeB) and heterohexamer (YoeB-YefM2-YefM2-YoeB) with low and high DNA-binding affinities, respectively. Structures of the heterotetramer alone and heterohexamer bound to promoter DNA reveals that YefM C-terminal domain undergoes disorder to order transition upon YoeB binding, which allosterically affects the conformation of N-terminal DNA-binding domain. At TA ratio of 1:2, unsaturated binding of YoeB to the C-terminal regions of YefM dimer forms an optimal heterohexamer for DNA binding, and two YefM dimers with N-terminal domains dock into the adjacent major grooves of DNA to specifically recognize the 5'-TTGTACAN6AGTACAA-3' palindromic sequence, resulting in transcriptional repression. In contrast, at TA ratio of 1:1, binding of two additional YoeB molecules onto the heterohexamer induces the completely ordered conformation of YefM and disassembles the heterohexamer into two heterotetramers, which are unable to bind the promoter DNA optimally due to steric clashes, hence derepresses TA operon transcription.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyuan Ke
- Lead Discovery Department, H3 Biomedicine Inc, 300 Technology Square FL 5, Cambridge, MA 02139, USA
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT. Stress Can Induce Transcription of Toxin-Antitoxin Systems without Activating Toxin. Mol Cell 2020; 79:280-292.e8. [PMID: 32533919 PMCID: PMC7368831 DOI: 10.1016/j.molcel.2020.05.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/02/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacterial genomes, but their functions are controversial. Although they are frequently postulated to regulate cell growth following stress, few null phenotypes for TA systems have been reported. Here, we show that TA transcript levels can increase substantially in response to stress, but toxin is not liberated. We find that the growth of an Escherichia coli strain lacking ten TA systems encoding endoribonuclease toxins is not affected following exposure to six stresses that each trigger TA transcription. Additionally, using RNA sequencing, we find no evidence of mRNA cleavage following stress. Stress-induced transcription arises from antitoxin degradation and relief of transcriptional autoregulation. Importantly, although free antitoxin is readily degraded in vivo, antitoxin bound to toxin is protected from proteolysis, preventing release of active toxin. Thus, transcription is not a reliable marker of TA activity, and TA systems do not strongly promote survival following individual stresses.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yue J Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Zhang SP, Wang Q, Quan SW, Yu XQ, Wang Y, Guo DD, Peng L, Feng HY, He YX. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Liu Y, Gao Z, Liu G, Geng Z, Dong Y, Zhang H. Structural Insights Into the Transcriptional Regulation of HigBA Toxin-Antitoxin System by Antitoxin HigA in Pseudomonas aeruginosa. Front Microbiol 2020; 10:3158. [PMID: 32038588 PMCID: PMC6987408 DOI: 10.3389/fmicb.2019.03158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
HigB-HigA is a bacterial toxin-antitoxin (TA) system in which the antitoxin HigA can mask the endoribonuclease activity of toxin HigB and repress the transcription of the TA operon by binding to its own promoter region. The opportunistic pathogen Pseudomonas aeruginosa HigBA (PaHigBA) is closely associated with the pathogenicity by reducing the production of multiple virulence factors and biofilm formation. However, the molecular mechanism underlying HigBA TA operon transcription by PaHigA remains elusive. Here, we report the crystal structure of PaHigA binding to the promoter region of higBA operon containing two identical palindromic sequences at 3.14 Å resolution. The promoter DNA is bound by two cooperative dimers to essentially encircle the intact palindrome region. The helix-turn-helix (HTH) motifs from the two dimers insert into the major grooves of the DNA at the opposite sides. The DNA adopts a canonical B-DNA conformation and all the hydrogen bonds between protein and DNA are mediated by the DNA phosphate backbone. A higher resolution structure of PaHigA-DNA complex at 2.50 Å further revealed three water molecules bridged the DNA-binding interface and mediated the interactions between the bases of palindromic sequences and PaHigA (Thr40, Asp43, and Arg49). Structure-based mutagenesis confirmed these residues are essential for the specific DNA-binding ability of PaHigA. Our structure-function studies therefore elucidated the cooperative dimer-dimer transcription repression mechanism, and may help to understand the regulation of multiple virulence factors by PaHigA in P. aeruginosa.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Birkholz N, Fagerlund RD, Smith LM, Jackson SA, Fineran PC. The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Res 2019; 47:9658-9665. [PMID: 31428783 PMCID: PMC6765145 DOI: 10.1093/nar/gkz721] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas systems are widespread bacterial adaptive defence mechanisms that provide protection against bacteriophages. In response, phages have evolved anti-CRISPR proteins that inactivate CRISPR-Cas systems of their hosts, enabling successful infection. Anti-CRISPR genes are frequently found in operons with genes encoding putative transcriptional regulators. The role, if any, of these anti-CRISPR-associated (aca) genes in anti-CRISPR regulation is unclear. Here, we show that Aca2, encoded by the Pectobacterium carotovorum temperate phage ZF40, is an autoregulator that represses the anti-CRISPR–aca2 operon. Aca2 is a helix-turn-helix domain protein that forms a homodimer and interacts with two inverted repeats in the anti-CRISPR promoter. The inverted repeats are similar in sequence but differ in their Aca2 affinity, and we propose that they have evolved to fine-tune, and downregulate, anti-CRISPR production at different stages of the phage life cycle. Specific, high-affinity binding of Aca2 to the first inverted repeat blocks the promoter and induces DNA bending. The second inverted repeat only contributes to repression at high Aca2 concentrations in vivo, and no DNA binding was detectable in vitro. Our investigation reveals the mechanism by which an Aca protein regulates expression of its associated anti-CRISPR.
Collapse
Affiliation(s)
- Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bio-Protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- To whom correspondence should be addressed. Tel: +64 3 479 7735;
| |
Collapse
|
18
|
Lu H, Wang L, Li S, Pan C, Cheng K, Luo Y, Xu H, Tian B, Zhao Y, Hua Y. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO. Nucleic Acids Res 2019; 47:9925-9933. [PMID: 31410466 PMCID: PMC6765133 DOI: 10.1093/nar/gkz720] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
DdrO is an XRE family transcription repressor that, in coordination with the metalloprotease PprI, is critical in the DNA damage response of Deinococcus species. Here, we report the crystal structure of Deinococcus geothermalis DdrO. Biochemical and structural studies revealed the conserved recognizing α-helix and extended dimeric interaction of the DdrO protein, which are essential for promoter DNA binding. Two conserved oppositely charged residues in the HTH motif of XRE family proteins form salt bridge interactions that are essential for promoter DNA binding. Notably, the C-terminal domain is stabilized by hydrophobic interactions of leucine/isoleucine-rich helices, which is critical for DdrO dimerization. Our findings suggest that DdrO is a novel XRE family transcriptional regulator that forms a distinctive dimer. The structure also provides insight into the mechanism of DdrO-PprI-mediated DNA damage response in Deinococcus.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Shengjie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Chaoming Pan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Kaiying Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Yuxia Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| |
Collapse
|
19
|
Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. mBio 2019; 10:mBio.00715-19. [PMID: 31064832 PMCID: PMC6509191 DOI: 10.1128/mbio.00715-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diverse and highly variable systems involved in biological conflicts and self-versus-nonself discrimination are ubiquitous in bacteria but much less studied in archaea. We performed comprehensive comparative genomic analyses of the archaeal systems that share components with analogous bacterial systems and propose an approach to identify new systems that could be involved in these functions. We predict polymorphic toxin systems in 141 archaeal genomes and identify new, archaea-specific toxin and immunity protein families. These systems are widely represented in archaea and are predicted to play major roles in interactions between species and in intermicrobial conflicts. This work is expected to stimulate experimental research to advance the understanding of poorly characterized major aspects of archaeal biology. Numerous, diverse, highly variable defense and offense genetic systems are encoded in most bacterial genomes and are involved in various forms of conflict among competing microbes or their eukaryotic hosts. Here we focus on the offense and self-versus-nonself discrimination systems encoded by archaeal genomes that so far have remained largely uncharacterized and unannotated. Specifically, we analyze archaeal genomic loci encoding polymorphic and related toxin systems and ribosomally synthesized antimicrobial peptides. Using sensitive methods for sequence comparison and the “guilt by association” approach, we identified such systems in 141 archaeal genomes. These toxins can be classified into four major groups based on the structure of the components involved in the toxin delivery. The toxin domains are often shared between and within each system. We revisit halocin families and substantially expand the halocin C8 family, which was identified in diverse archaeal genomes and also certain bacteria. Finally, we employ features of protein sequences and genomic locus organization characteristic of archaeocins and polymorphic toxins to identify candidates for analogous but not necessarily homologous systems among uncharacterized protein families. This work confidently predicts that more than 1,600 archaeal proteins, currently annotated as “hypothetical” in public databases, are components of conflict and self-versus-nonself discrimination systems.
Collapse
|
20
|
Guo Y, Sun C, Li Y, Tang K, Ni S, Wang X. Antitoxin HigA inhibits virulence gene mvfR expression in Pseudomonas aeruginosa. Environ Microbiol 2019; 21:2707-2723. [PMID: 30882983 DOI: 10.1111/1462-2920.14595] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 01/14/2023]
Abstract
Toxin/antitoxin (TA) systems are ubiquitous in bacteria and archaea and participate in biofilm formation and stress responses. The higBA locus of the opportunistic pathogen Pseudomonas aeruginosa encodes a type II TA system. Previous work found that the higBA operon is cotranscribed and that HigB toxin regulates biofilm formation and virulence expression. In this study, we demonstrate that HigA antitoxin is produced at a higher level than HigB and that higA mRNA is expressed separately from a promoter inside higB during the late stationary phase. Critically, HigA represses the expression of mvfR, which is an important virulence-related regulator, by binding to a conserved HigA palindrome (5'-TTAAC GTTAA-3') in the mvfR promoter, and the binding of HigB to HigA derepresses this process. During the late stationary phase, excess HigA represses the expression of mvfR and higBA. However, in the presence of aminoglycoside antibiotics where Lon protease is activated, the degradation of HigA by Lon increases P. aeruginosa virulence by simultaneously derepressing mvfR and higB transcription. Therefore, this study reveals that the antitoxin of the P. aeruginosa TA system is integrated into the key virulence regulatory network of the host and functions as a transcriptional repressor to control the production of virulence factors.
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chenglong Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Basic Medical School of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zavyalova E, Kopylov A. Energy Transfer as A Driving Force in Nucleic Acid⁻Protein Interactions. Molecules 2019; 24:molecules24071443. [PMID: 30979095 PMCID: PMC6480146 DOI: 10.3390/molecules24071443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Many nucleic acid–protein structures have been resolved, though quantitative structure-activity relationship remains unclear in many cases. Thrombin complexes with G-quadruplex aptamers are striking examples of a lack of any correlation between affinity, interface organization, and other common parameters. Here, we tested the hypothesis that affinity of the aptamer–protein complex is determined with the capacity of the interface to dissipate energy of binding. Description and detailed analysis of 63 nucleic acid–protein structures discriminated peculiarities of high-affinity nucleic acid–protein complexes. The size of the amino acid sidechain in the interface was demonstrated to be the most significant parameter that correlates with affinity of aptamers. This observation could be explained in terms of need of efficient energy transfer from interacting residues. Application of energy dissipation theory provided an illustrative tool for estimation of efficiency of aptamer–protein complexes. These results are of great importance for a design of efficient aptamers.
Collapse
Affiliation(s)
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
22
|
Zhan W, Yao J, Tang K, Li Y, Guo Y, Wang X. Characterization of Two Toxin-Antitoxin Systems in Deep-Sea Streptomyces sp. SCSIO 02999. Mar Drugs 2019; 17:md17040211. [PMID: 30987346 PMCID: PMC6521030 DOI: 10.3390/md17040211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous and abundant genetic elements in bacteria and archaea. Most previous TA studies have focused on commensal and pathogenic bacteria, but have rarely focused on marine bacteria, especially those isolated from the deep sea. Here, we identified and characterized three putative TA pairs in the deep-sea-derived Streptomyces sp. strain SCSIO 02999. Our results showed that Orf5461/Orf5462 and Orf2769/Orf2770 are bona fide TA pairs. We provide several lines of evidence to demonstrate that Orf5461 and Orf5462 constitute a type-II TA pair that are homologous to the YoeB/YefM TA pair from Escherichia coli. Although YoeB from SCSIO 02999 was toxic to an E. coli host, the homologous YefM antitoxin from SCSIO 02999 did not neutralize the toxic effect of YoeB from E. coli. For the Orf2769/Orf2770 TA pair, Orf2769 overexpression caused significant cell elongation and could lead to cell death in E. coli, and the neighboring Orf2770 could neutralize the toxic effect of Orf2769. However, no homologous toxin or antitoxin was found for this pair, and no direct interaction was found between Orf2769 and Orf2770. These results suggest that Orf2769 and Orf2770 may constitute a novel TA pair. Thus, deep-sea bacteria harbor typical and novel TA pairs. The biochemical and physiological functions of different TAs in deep-sea bacteria warrant further investigation.
Collapse
Affiliation(s)
- Waner Zhan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Wang Y, Zhang SP, Zhang MY, Kempher ML, Guo DD, Han JT, Tao X, Wu Y, Zhang LQ, He YX. The antitoxin MqsA homologue in Pseudomonas fluorescens 2P24 has a rewired regulatory circuit through evolution. Environ Microbiol 2019; 21:1740-1756. [PMID: 30680880 DOI: 10.1111/1462-2920.14538] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/22/2019] [Indexed: 12/01/2022]
Abstract
The mqsRA operon encodes a toxin-antitoxin pair that was characterized to participate in biofilm and persister cell formation in Escherichia coli. Notably, the antitoxin MqsA possesses a C-terminal DNA-binding domain that recognizes the [5'-AACCT(N)2-4 AGGTT-3'] motif and acts as a transcriptional regulator controlling multiple genes including the general stress response regulator RpoS. However, it is unknown how the transcriptional circuits of MqsA homologues have changed in bacteria over evolutionary time. Here, we found mqsA in Pseudomonas fluorescens (PfmqsA) is acquired through horizontal gene transfer and binds to a slightly different motif [5'-TACCCT(N)3 AGGGTA-3'], which exists upstream of the PfmqsRA operon. Interestingly, an adjacent GntR-type transcriptional regulator, which was termed AgtR, is under negative control of PfMqsA. It was further demonstrated that PfMqsA reduces production of biofilm components through AgtR, which directly regulates the pga and fap operons involved in the synthesis of extracellular polymeric substances. Moreover, through quantitative proteomics analysis, we showed AgtR is a highly pleiotropic regulator that influences up to 252 genes related to diverse processes including chemotaxis, oxidative phosphorylation and carbon and nitrogen metabolism. Taken together, our findings suggest the rewired regulatory circuit of PfMqsA influences diverse physiological aspects of P. fluorescens 2P24 via the newly characterized AgtR.
Collapse
Affiliation(s)
- Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Meng-Yuan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Ding-Ding Guo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jian-Ting Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Yi Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
24
|
Talavera A, Tamman H, Ainelo A, Konijnenberg A, Hadži S, Sobott F, Garcia-Pino A, Hõrak R, Loris R. A dual role in regulation and toxicity for the disordered N-terminus of the toxin GraT. Nat Commun 2019; 10:972. [PMID: 30814507 PMCID: PMC6393540 DOI: 10.1038/s41467-019-08865-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) modules are tightly regulated to maintain growth in favorable conditions or growth arrest during stress. A typical regulatory strategy involves the antitoxin binding and repressing its own promoter while the toxin often acts as a co-repressor. Here we show that Pseudomonas putida graTA-encoded antitoxin GraA and toxin GraT differ from other TA proteins in the sense that not the antitoxin but the toxin possesses a flexible region. GraA auto-represses the graTA promoter: two GraA dimers bind cooperatively at opposite sides of the operator sequence. Contrary to other TA modules, GraT is a de-repressor of the graTA promoter as its N-terminal disordered segment prevents the binding of the GraT2A2 complex to the operator. Removal of this region restores operator binding and abrogates Gr aT toxicity. GraTA represents a TA module where a flexible region in the toxin rather than in the antitoxin controls operon expression and toxin activity. The Pseudomonas putida toxin GraT and antitoxin GraA form a type II toxin-antoxin module. Here the authors present the crystal structures of the GraA dimer, GraTA and GraA-DNA complexes and show that GraT contains a functionally important N-terminal intrinsic disordered region that prevents the binding of the GraTA complex to the operator.
Collapse
Affiliation(s)
- Ariel Talavera
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050, Brussel, Belgium. .,Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050, Brussel, Belgium.
| | - Hedvig Tamman
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Andres Ainelo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050, Brussel, Belgium.,Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050, Brussel, Belgium.,Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerpen, Belgium
| | - San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050, Brussel, Belgium.,Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerpen, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Abel Garcia-Pino
- Biologie Structurale et Biophysique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, B-6041, Gosselies, Belgium
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050, Brussel, Belgium. .,Molecular Recognition Unit, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050, Brussel, Belgium.
| |
Collapse
|
25
|
Martins PMM, Merfa MV, Takita MA, De Souza AA. Persistence in Phytopathogenic Bacteria: Do We Know Enough? Front Microbiol 2018; 9:1099. [PMID: 29887856 PMCID: PMC5981161 DOI: 10.3389/fmicb.2018.01099] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria affect a wide range of crops worldwide and have a negative impact in agriculture due to their associated economic losses and environmental impacts. Together with other biotic and abiotic stress factors, they pose a threat to global food production. Therefore, understanding bacterial survival strategies is an essential step toward the development of new strategies to control plant diseases. One mechanism used by bacteria to survive under stress conditions is the formation of persister cells. Persisters are a small fraction of phenotypic variants within an isogenic population that exhibits multidrug tolerance without undergoing genetic changes. They are dormant cells that survive treatment with antimicrobials by inactivating the metabolic functions that are disrupted by these compounds. They are thus responsible for the recalcitrance of many human diseases, and in the same way, they are thought to contribute to the survival of bacterial phytopathogens under a range of stresses they face in the environment. It is believed that persister cells of bacterial phytopathogens may lead to the reoccurrence of disease by recovering growth and recolonizing the host plant after the end of stress. However, compared to human pathogens, little is known about persister cells in phytopathogens, especially about their genetic regulation. In this review, we describe the overall knowledge on persister cells and their regulation in bacterial phytopathogens, focusing on their ability to survive stress conditions, to recover from dormancy and to maintain virulence.
Collapse
Affiliation(s)
- Paula M. M. Martins
- Laboratório de Biotecnologia, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeiropolis, Brazil
| | - Marcus V. Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Marco A. Takita
- Laboratório de Biotecnologia, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeiropolis, Brazil
| | - Alessandra A. De Souza
- Laboratório de Biotecnologia, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeiropolis, Brazil
| |
Collapse
|
26
|
Sun C, Guo Y, Tang K, Wen Z, Li B, Zeng Z, Wang X. MqsR/MqsA Toxin/Antitoxin System Regulates Persistence and Biofilm Formation in Pseudomonas putida KT2440. Front Microbiol 2017; 8:840. [PMID: 28536573 PMCID: PMC5422877 DOI: 10.3389/fmicb.2017.00840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial toxin/antitoxin (TA) systems have received increasing attention due to their prevalence, diverse structures, and important physiological functions. In this study, we identified and characterized a type II TA system in a soil bacterium Pseudomonas putida KT2440. This TA system belongs to the MqsR/MqsA family. We found that PP_4205 (MqsR) greatly inhibits cell growth in P. putida KT2440 and Escherichia coli, the antitoxin PP_4204 (MqsA) neutralizes the toxicity of the toxin MqsR, and the two genes encoding them are co-transcribed. MqsR and MqsA interact with each other directly in vivo and MqsA is a negative regulator of the TA operon through binding to the promoter. Consistent with the MqsR/MqsA pair in E. coli, the binding of the toxin MqsR to MqsA inhibits the DNA binding ability of MqsA in P. putida KT2440. Disruption of the mqsA gene which induces mqsR expression increases persister cell formation 53-fold, while overexpressing mqsA which represses mqsR expression reduces persister cell formation 220-fold, suggesting an important role of MqsR in persistence in P. putida KT2440. Furthermore, both MqsR and MqsA promote biofilm formation. As a DNA binding protein, MqsA can also negatively regulate an ECF sigma factor AlgU and a universal stress protein PP_3288. Thus, we revealed an important regulatory role of MqsR/MqsA in persistence and biofilm formation in P. putida KT2440.
Collapse
Affiliation(s)
- Chenglong Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Zhongling Wen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China.,University of Chinese Academy of SciencesBeijing, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
27
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
28
|
Santiago ADS, Mendes JS, Dos Santos CA, de Toledo MAS, Beloti LL, Crucello A, Horta MAC, Favaro MTDP, Munar DMM, de Souza AA, Cotta MA, de Souza AP. The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles. Front Microbiol 2016; 7:2030. [PMID: 28066356 PMCID: PMC5167779 DOI: 10.3389/fmicb.2016.02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022] Open
Abstract
The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible influence of wild-type XfYgiT in the cell.
Collapse
Affiliation(s)
- André da Silva Santiago
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Clelton A Dos Santos
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Marcelo A S de Toledo
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Maria A C Horta
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Marianna T de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Duber M M Munar
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas Campinas, Brazil
| | | | - Mônica A Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas Campinas, Brazil
| | - Anete P de Souza
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
29
|
Kang H, Gan J, Zhao J, Kong W, Zhang J, Zhu M, Li F, Song Y, Qin J, Liang H. Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing. Nucleic Acids Res 2016; 45:699-710. [PMID: 27924027 PMCID: PMC5314801 DOI: 10.1093/nar/gkw954] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa possesses at least three well-defined quorum-sensing (QS) (las, rhl and pqs) systems that control a variety of important functions including virulence. RsaL is a QS repressor that reduces QS signal production and ensures homeostasis by functioning in opposition to LasR. However, its regulatory role in signal homeostasis remains elusive. Here, we conducted a ChIP-seq assay and revealed that RsaL bound to two new targets, the intergenic regions of PA2228/PA2229 and pqsH/cdpR, which are required for PQS synthesis. Deletion of rsaL reduced transcription of pqsH and cdpR, thus decreasing PQS signal production. The ΔrsaL strain exhibited increased pyocyanin production and reduced biofilm formation, which are dependent on CdpR or PqsH activity. In addition, we solved the structure of the RsaL–DNA complex at a 2.4 Å resolution. Although the overall sequence similarity is quite low, RsaL folds into a HTH-like structure, which is conserved among many transcriptional regulators. Complementation results of the rsaL knockout cells with different rsaL mutants further confirmed the critical role of the DNA-binding residues (including Arg20, Gln27, Gln38, Gly35, Ser37 and Ser42) that are essential for DNA binding. Our findings reveal new targets of RsaL and provide insight into the detailed characterization of the RsaL–DNA interaction.
Collapse
Affiliation(s)
- Huaping Kang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhang
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Miao Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Fan Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yaqin Song
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jin Qin
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
30
|
Toxin-Antitoxin Systems in Clinical Pathogens. Toxins (Basel) 2016; 8:toxins8070227. [PMID: 27447671 PMCID: PMC4963858 DOI: 10.3390/toxins8070227] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens.
Collapse
|
31
|
Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli. Toxins (Basel) 2016; 8:toxins8070195. [PMID: 27376329 PMCID: PMC4963828 DOI: 10.3390/toxins8070195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements that are ubiquitous in prokaryotes. Most studies on TA systems have focused on commensal and pathogenic bacteria; yet very few studies have focused on TAs in marine bacteria, especially those isolated from a deep sea environment. Here, we characterized a type II VapC/VapB TA system from the deep-sea derived Streptomyces sp. SCSIO 02999. The VapC (virulence-associated protein) protein belongs to the PIN (PilT N-terminal) superfamily. Overproduction of VapC strongly inhibited cell growth and resulted in a bleb-containing morphology in E. coli. The toxicity of VapC was neutralized through direct protein-protein interaction by a small protein antitoxin VapB encoded by a neighboring gene. Antitoxin VapB alone or the VapB/VapC complex negatively regulated the vapBC promoter activity. We further revealed that three conserved Asp residues in the PIN domain were essential for the toxic effect of VapC. Additionally, the VapC/VapB TA system stabilized plasmid in E. coli. Furthermore, VapC cross-activated transcription of several TA operons via a partially Lon-dependent mechanism in E. coli, and the activated toxins accumulated more preferentially than their antitoxin partners. Collectively, we identified and characterized a new deep sea TA system in the deep sea Streptomyces sp. and demonstrated that the VapC toxin in this system can cross-activate TA operons in E. coli.
Collapse
|
32
|
Merfa MV, Niza B, Takita MA, De Souza AA. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation. Front Microbiol 2016; 7:904. [PMID: 27375608 PMCID: PMC4901048 DOI: 10.3389/fmicb.2016.00904] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.
Collapse
Affiliation(s)
- Marcus V. Merfa
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Bárbara Niza
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Marco A. Takita
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
| | | |
Collapse
|
33
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
34
|
Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 2016; 12:208-14. [DOI: 10.1038/nchembio.2044] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023]
|
35
|
Chowdhury N, Kwan BW, McGibbon LC, Babitzke P, Wood TK. Toxin MqsR cleaves single-stranded mRNA with various 5' ends. Microbiologyopen 2016; 5:370-7. [PMID: 26846703 PMCID: PMC4905990 DOI: 10.1002/mbo3.335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/29/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
Abstract
Toxin/antitoxin (TA) systems are the means by which bacterial cells become persistent; that is, those cells that are tolerant to multiple environmental stresses such as antibiotics by becoming metabolically dormant. These persister cells are responsible for recalcitrant infections. Once toxins are activated by the inactivation of antitoxins (e.g., stress-triggered Lon degradation of the antitoxin), many toxins reduce metabolism by inhibiting translation (e.g., cleaving mRNA, reducing ATP). The MqsR/MqsA TA system of Escherichia coli cleaves mRNA to help the cell withstand oxidative and bile acid stress. Here, we investigated the role of secondary structure and 5' mRNA processing on MqsR degradation of mRNA and found that MqsR cleaves only single-stranded RNA at 5'-GCU sites and that MqsR is equally active against RNA with 5'-triphosphate, 5'-monophosphate, and 5'-hydroxyl groups.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400
| | - Brian W Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400
| | - Louise C McGibbon
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802-4400
| |
Collapse
|
36
|
Yang C, Chang CH. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli. Sci Rep 2015; 5:17021. [PMID: 26592556 PMCID: PMC4655474 DOI: 10.1038/srep17021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/16/2015] [Indexed: 01/18/2023] Open
Abstract
Modeling the binding of transcription factors helps to decipher the control logic behind transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding motif but assumes statistical independence between positions. Although current approaches take within-motif dependence into account for better predictive performance, these models usually rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. The inability to take complex within-motif dependence into account may result in an incomplete representation of binding motifs. In this work, we applied association rule mining techniques and constructed models to explore within-motif dependence for transcription factors in Escherichia coli. Our models can reflect transcription factor-DNA recognition where the explored dependence correlates with the binding specificity. We also propose a graphical representation of the explored within-motif dependence to illustrate the final binding configurations. Understanding the binding configurations also enables us to fine-tune or design transcription factor binding sites, and we attempt to present the configurations through exploring within-motif dependence.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 11221, Taiwan
| | - Chuan-Hsiung Chang
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 11221, Taiwan.,Center for Systems and Synthetic Biology, National Yang Ming University, Taipei, 11221, Taiwan
| |
Collapse
|
37
|
The Ku–Mar zinc finger: A segment-swapped zinc ribbon in MarR-like transcription regulators related to the Ku bridge. J Struct Biol 2015. [DOI: 10.1016/j.jsb.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Yao J, Guo Y, Zeng Z, Liu X, Shi F, Wang X. Identification and characterization of a HEPN-MNT family type II toxin-antitoxin in Shewanella oneidensis. Microb Biotechnol 2015; 8:961-73. [PMID: 26112399 PMCID: PMC4621449 DOI: 10.1111/1751-7915.12294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/20/2015] [Accepted: 05/02/2015] [Indexed: 11/30/2022] Open
Abstract
Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. However, related studies in the ecologically and bioelectrochemically important strain Shewanella oneidensis are limited. Here, we show that SO_3166, a member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) superfamily, strongly inhibited cell growth in S. oneidensis and Escherichia coli. SO_3165, a putative minimal nucleotidyltransferase (MNT), neutralized the toxicity of SO_3166. Gene SO_3165 lies upstream of SO_3166, and they are co-transcribed. Moreover, the SO_3165 and SO_3166 proteins interact with each other directly in vivo, and antitoxin SO_3165 bound to the promoter of the TA operon and repressed its activity. Finally, the conserved Rx4-6H domain in HEPN family was identified in SO_3166. Mutating either the R or H abolished SO_3166 toxicity, confirming that Rx4-6H domain is critical for SO_3166 activity. Taken together, these results demonstrate that SO_3166 and SO_3165 in S. oneidensis form a typical type II TA pair. This TA pair plays a critical role in regulating bacterial functions because its disruption led to impaired cell motility in S. oneidensis. Thus, we demonstrated for the first time that HEPN-MNT can function as a TA system, thereby providing important insights into the understanding of the function and regulation of HEPNs and MNTs in prokaryotes.
Collapse
Affiliation(s)
- Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fei Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
39
|
Kwan BW, Lord DM, Peti W, Page R, Benedik MJ, Wood TK. The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol 2015; 17:3168-81. [PMID: 25534751 DOI: 10.1111/1462-2920.12749] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
Toxin/antitoxin (TA) systems are ubiquitous within bacterial genomes, and the mechanisms of many TA systems are well characterized. As such, several roles for TA systems have been proposed, such as phage inhibition, gene regulation and persister cell formation. However, the significance of these roles is nebulous due to the subtle influence from individual TA systems. For example, a single TA system has only a minor contribution to persister cell formation. Hence, there is a lack of defining physiological roles for individual TA systems. In this study, phenotype assays were used to determine that the MqsR/MqsA type II TA system of Escherichia coli is important for cell growth and tolerance during stress from the bile salt deoxycholate. Using transcriptomics and purified MqsR, we determined that endoribonuclease toxin MqsR degrades YgiS mRNA, which encodes a periplasmic protein that promotes deoxycholate uptake and reduces tolerance to deoxycholate exposure. The importance of reducing YgiS mRNA by MqsR is evidenced by improved growth, reduced cell death and reduced membrane damage when cells without ygiS are stressed with deoxycholate. Therefore, we propose that MqsR/MqsA is physiologically important for E. coli to thrive in the gallbladder and upper intestinal tract, where high bile concentrations are prominent.
Collapse
Affiliation(s)
- Brian W Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Dana M Lord
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA.,Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Michael J Benedik
- Department of Biology, Texas A & M University, College Station, TX, 77845, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
40
|
Guglielmini J, Van Melderen L. Bacterial toxin-antitoxin systems: Translation inhibitors everywhere. Mob Genet Elements 2014; 1:283-290. [PMID: 22545240 PMCID: PMC3337138 DOI: 10.4161/mge.18477] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Toxin-antitoxin (TA) systems are composed of two elements: a toxic protein and an antitoxin which is either an RNA (type I and III) or a protein (type II). Type II systems are abundant in bacterial genomes in which they move via horizontal gene transfer. They are generally composed of two genes organized in an operon, encoding a toxin and a labile antitoxin. When carried by mobile genetic elements, these small modules contribute to their stability by a phenomenon denoted as addiction. Recently, we developed a bioinformatics procedure that, along with experimental validation, allowed the identification of nine novel toxin super-families. Here, considering that some toxin super-families exhibit dramatic sequence diversity but similar structure, bioinformatics tools were used to predict tertiary structures of novel toxins. Seven of the nine novel super-families did not show any structural homology with known toxins, indicating that combination of sequence similarity and three-dimensional structure prediction allows a consistent classification. Interestingly, the novel super-families are translation inhibitors similar to the majority of known toxins indicating that this activity might have been selected rather than more detrimental traits such as DNA-gyrase inhibitors, which are very toxic for cells.
Collapse
|
41
|
Chopra N, Saumitra, Pathak A, Bhatnagar R, Bhatnagar S. Linkage, mobility, and selfishness in the MazF family of bacterial toxins: a snapshot of bacterial evolution. Genome Biol Evol 2014; 5:2268-84. [PMID: 24265503 PMCID: PMC3879964 DOI: 10.1093/gbe/evt175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prokaryotic MazF family toxins cooccur with cognate antitoxins having divergent
DNA-binding folds and can be of chromosomal or plasmid origin. Sequence similarity search
was carried out to identify the Toxin–Antitoxin (TA) operons of MazF family followed
by sequence analysis and phylogenetic studies. The genomic DNA upstream of the TA operons
was searched for the presence of regulatory motifs. The MazF family toxins showed a
conserved hydrophobic pocket in a multibinding site and are present in pathogenic
bacteria. The toxins of the MazF family are associated with four main types of cognate
antitoxin partners and cluster as a subfamily on the branches of the phylogenetic tree.
This indicates that transmission of the entire operon is the dominant mode of inheritance.
The plasmid borne TA modules were interspersed between the chromosomal TA modules of the
same subfamily, compatible with a frequent interchange of TA genes between the chromosome
and the plasmid akin to that observed for antibiotic resistance gens. The split network of
the MazF family toxins showed the AbrB-linked toxins as a hub of horizontal gene transfer.
Distinct motifs are present in the upstream region of each subfamily. The presence of MazF
family TA modules in pathogenic bacteria and identification of a conserved binding pocket
are significant for the development of novel antibacterials to disrupt the TA interaction.
However, the role of TAs in stress resistance needs to be established. Phylogenetic
studies provide insight into the evolution of MazF family TAs and effect on the bacterial
genome.
Collapse
Affiliation(s)
- Nikita Chopra
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | | | | | | | | |
Collapse
|
42
|
Soo VWC, Cheng HY, Kwan BW, Wood TK. de novo synthesis of a bacterial toxin/antitoxin system. Sci Rep 2014; 4:4807. [PMID: 24797297 PMCID: PMC4010927 DOI: 10.1038/srep04807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022] Open
Abstract
The prevalence of toxin/antitoxin (TA) systems in almost all genomes suggests they evolve rapidly. Here we show that an antitoxin from a type V system (GhoS, an endoribonuclease specific for the mRNA of the toxin GhoT) can be converted into a novel toxin (ArT) simply by adding two mutations. In contrast to GhoS, which increases growth, the new toxin ArT decreases growth dramatically in Escherichia coli. Transmission electron microscopy analysis revealed that the nucleoid in ArT-producing cells is concentrated and appears hollow. Whole-transcriptome profiling revealed ArT cleaves 50 additional transcripts, which shows that the endoribonuclease activity of GhoS has been broadened as it was converted to ArT. Furthermore, we evolved an antitoxin for the new toxin ArT from two unrelated antitoxin templates, the protein-based antitoxin MqsA and RNA-based antitoxin ToxI, and showed that the evolved MqsA and ToxI variants are able to counteract the toxicity of ArT. In addition, the de novo TA system was found to increase persistence, a phenotype commonly associated with TA systems. Therefore, toxins and antitoxins from disparate systems can be interconverted.
Collapse
Affiliation(s)
- Valerie W. C. Soo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Hsin-Yao Cheng
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Brian W. Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
43
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
44
|
Soo VWC, Wood TK. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD. Sci Rep 2013; 3:3186. [PMID: 24212724 PMCID: PMC4894380 DOI: 10.1038/srep03186] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/28/2013] [Indexed: 11/08/2022] Open
Abstract
MqsA, the antitoxin of the MqsR/MqsA toxin/antitoxin (TA) system, is a global regulator that reduces expression of several stress response genes (e.g., mqsRA, cspD, and rpoS) by binding to the promoter palindromic motif [5'-AACCT (N)₃ AGGTT-3']. We identified a similar mqsRA-like palindrome [5'-AACCT TA AGGTT-3'] 78 bp upstream of the transcription initiation site in the csgD promoter (p-csgD). CsgD is a master regulator for biofilm formation via its control of curli and cellulose production. We show here that MqsA binds to this palindrome in p-csgD to repress csgD transcription. As expected, p-csgD repression by MqsA resulted in reduced transcription from CsgD-regulated curli genes csgA and csgB (encoding the major and minor curlin subunits, respectively). Curli production was reduced in colonies and in planktonic cells upon MqsA production. Hence, MqsA directly represses p-csgD, and thereby influences curli formation. This demonstrates that TA systems can impact overall cell physiology by fine-tuning cellular stress responses.
Collapse
Affiliation(s)
| | - Thomas K. Wood
- Department of Chemical Engineering
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
45
|
Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol Cell 2013; 52:447-58. [PMID: 24120662 DOI: 10.1016/j.molcel.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/30/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
MazF is an mRNA interferase, which, upon activation during stress conditions, cleaves mRNAs in a sequence-specific manner, resulting in cellular growth arrest. During normal growth conditions, the MazF toxin is inactivated through binding to its cognate antitoxin, MazE. How MazF specifically recognizes its mRNA target and carries out cleavage and how the formation of the MazE-MazF complex inactivates MazF remain unclear. We present crystal structures of MazF in complex with mRNA substrate and antitoxin MazE in Bacillus subtilis. The structure of MazF in complex with uncleavable UUdUACAUAA RNA substrate defines the molecular basis underlying the sequence-specific recognition of UACAU and the role of residues involved in the cleavage through site-specific mutational studies. The structure of the heterohexameric (MazF)2-(MazE)2-(MazF)2 complex in Bacillus subtilis, supplemented by mutational data, demonstrates that the positioning of the C-terminal helical segment of MazE within the RNA-binding channel of the MazF dimer prevents mRNA binding and cleavage by MazF.
Collapse
|
46
|
Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 2013; 57:1468-73. [PMID: 23295927 DOI: 10.1128/aac.02135-12] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilms are associated with a wide variety of bacterial infections and pose a serious problem in clinical medicine due to their inherent resilience to antibiotic treatment. Within biofilms, persister cells comprise a small bacterial subpopulation that exhibits multidrug tolerance to antibiotics without undergoing genetic change. The low frequency of persister cell formation makes it difficult to isolate and study persisters, and bacterial persistence is often attributed to a quiescent metabolic state induced by toxins that are regulated through toxin-antitoxin systems. Here we mimic toxins via chemical pretreatments to induce high levels of persistence (10 to 100%) from an initial population of 0.01%. Pretreatment of Escherichia coli with (i) rifampin, which halts transcription, (ii) tetracycline, which halts translation, and (iii) carbonyl cyanide m-chlorophenylhydrazone, which halts ATP synthesis, all increased persistence dramatically. Using these compounds, we demonstrate that bacterial persistence results from halted protein synthesis and from environmental cues.
Collapse
|
47
|
Wang X, Lord DM, Hong SH, Peti W, Benedik MJ, Page R, Wood TK. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ Microbiol 2013; 15:1734-44. [PMID: 23289863 DOI: 10.1111/1462-2920.12063] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022]
Abstract
Toxin endoribonucleases of toxin/antitoxin (TA) systems regulate protein production by selectively degrading mRNAs but have never been shown to control other TA systems. Here we demonstrate that toxin MqsR of the MqsR/MqsA system enriches toxin ghoT mRNA in vivo and in vitro, since this transcript lacks the primary MqsR cleavage site 5'-GCU. GhoT is a membrane toxin that causes the ghost cell phenotype, and is part of a type V TA system with antitoxin GhoS that cleaves specifically ghoT mRNA. Introduction of MqsR primary 5'-GCU cleavage sites into ghoT mRNA reduces ghost cell production and cell death likely due to increased degradation of the altered ghoT mRNA by MqsR. GhoT also prevents cell elongation upon the addition of low levels of ampicillin. Therefore, during stress, antitoxin GhoS mRNA is degraded by toxin MqsR allowing ghoT mRNA translation to yield another free toxin that forms ghost cells and increases persistence. Hence, we show that GhoT/GhoS is the first TA system regulated by another TA system.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Solution structure and biophysical properties of MqsA, a Zn-containing antitoxin from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1401-8. [DOI: 10.1016/j.bbapap.2012.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
|
49
|
Brown BL, Lord DM, Grigoriu S, Peti W, Page R. The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J Biol Chem 2012; 288:1286-94. [PMID: 23172222 DOI: 10.1074/jbc.m112.421008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacterial biofilms are complex communities of cells containing an increased prevalence of dormant cells known as persisters, which are characterized by an up-regulation of genes known as toxin-antitoxin (TA) modules. The association of toxins with their cognate antitoxins neutralizes toxin activity, allowing for normal cell growth. Additionally, protein antitoxins bind their own promoters and repress transcription, whereas the toxins serve as co-repressors. Recently, TA pairs have been shown to regulate their own transcription through a phenomenon known as conditional cooperativity, where the TA complexes bind operator DNA and repress transcription only when present in the proper stoichiometric amounts. The most differentially up-regulated gene in persister cells is mqsR, a gene that, with the antitoxin mqsA, constitutes a TA module. Here, we reveal that, unlike other TA systems, MqsR is not a transcription co-repressor but instead functions to destabilize the MqsA-DNA complex. We further show that DNA binding is not regulated by conditional cooperativity. Finally, using biophysical studies, we show that complex formation between MqsR and MqsA results in an exceptionally stable interaction, resulting in a subnanomolar dissociation constant that is similar to that observed between MqsA and DNA. In combination with crystallographic studies, this work reveals that MqsA binding to DNA and MqsR is mutually exclusive. To our knowledge, this is the first TA system in which the toxin does not function as a transcriptional co-repressor, but instead functions to destabilize the antitoxin-operator complex under all conditions, and thus defines another unique feature of the mqsRA TA module.
Collapse
Affiliation(s)
- Breann L Brown
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
50
|
Huang Q, Gong C, Li J, Zhuo Z, Chen Y, Wang J, Hua ZC. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module. PLoS One 2012; 7:e31198. [PMID: 22299056 PMCID: PMC3267773 DOI: 10.1371/journal.pone.0031198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/03/2012] [Indexed: 01/21/2023] Open
Abstract
Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been commonly believed that two activators will activate transcription most effectively when they are bound on the same face of DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to aid the development of predictive models for the identification of cis-regulatory elements.
Collapse
Affiliation(s)
- Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
| | - Chenguang Gong
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Zhu Zhuo
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (JW); (ZH)
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
- * E-mail: (JW); (ZH)
| |
Collapse
|