1
|
Zhang L, Wang LY, Han YJ, Liu YX, Li YL, Hu JH, Tian ZJ, Liu ZY. Analysis of the improved mechanism of Rhodobacter sphaeroides VK-2-3 coenzyme Q10 by reverse metabolic engineering. Front Microbiol 2024; 15:1410505. [PMID: 39027092 PMCID: PMC11254814 DOI: 10.3389/fmicb.2024.1410505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential medicinal ingredient. In this study, we obtained a high-yielding mutant strain of CoQ10, VK-2-3, by subjecting R. sphaeroides V-0 (V-0) to a 12C6+ heavy ion beam and high-voltage prick electric field treatment. To investigate the mutation mechanism, the complete genomes of VK-2-3 and V-0 were sequenced. Collinearity analysis revealed that the nicotinamide adenine dinucleotide-dependent dehydrogenase (NAD) gene underwent rearrangement in the VK-2-3 genome. The NAD gene was overexpressed and silenced in V-0, and this construct was named RS.NAD and RS.ΔNAD. The results showed that the titers of CoQ10 in the RS.NAD and RS.ΔNAD increased and decreased by 16.00 and 33.92%, respectively, compared to those in V-0, and these differences were significant. Our results revealed the mechanism by which the VK-2-3 CoQ10 yield increases through reverse metabolic engineering, providing insights for genetic breeding and mechanistic analysis.
Collapse
Affiliation(s)
- Long Zhang
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Biofermentation Industry, Hohhot, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Le-yi Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Yi-jun Han
- Shenzhou Biotechnology Co., Ltd., Hohhot, China
| | - Yan-xin Liu
- Shenzhou Biotechnology Co., Ltd., Hohhot, China
| | - Yong-li Li
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Biofermentation Industry, Hohhot, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Jian-hua Hu
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Biofermentation Industry, Hohhot, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| | | | - Zhan-ying Liu
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Biofermentation Industry, Hohhot, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
2
|
Ivanova A, Smirnikhina S, Lavrov A. Dysferlinopathies: clinical and genetic variability. Clin Genet 2022; 102:465-473. [PMID: 36029111 DOI: 10.1111/cge.14216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
Dysferlinopathies are a clinically heterogeneous group of diseases caused by mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is mostly expressed in muscle tissues and is localized in the sarcolemma, where it performs its main function of resealing and maintaining of the integrity of the cell membrane. At least four forms of dysferlinopathies have been described: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, distal myopathy with anterior tibial onset, and isolated hyperCKemia. Here we review the clinical features of different forms of dysferlinopathies and attempt to identify genotype-phenotype correlations. Because of the great clinical variability and rarety of the disease and mutations little is known, how different phenotypes develop as a result of different mutations. However missense mutations seem to induce more severe disease than LoF, which is typical for many muscle dystrophies. The role of several specific mutations and possible gene modifiers is also discussed in the paper.
Collapse
Affiliation(s)
- Alisa Ivanova
- Research Centre for Medical Genetics, Moskvorechye 1, Moscow, Russia
| | | | - Alexander Lavrov
- Research Centre for Medical Genetics, Moskvorechye 1, Moscow, Russia
| |
Collapse
|
3
|
Bharadwaj A, Kempster E, Waisman DM. The Annexin A2/S100A10 Complex: The Mutualistic Symbiosis of Two Distinct Proteins. Biomolecules 2021; 11:biom11121849. [PMID: 34944495 PMCID: PMC8699243 DOI: 10.3390/biom11121849] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Mutualistic symbiosis refers to the symbiotic relationship between individuals of different species in which both individuals benefit from the association. S100A10, a member of the S100 family of Ca2+-binding proteins, exists as a tight dimer and binds two annexin A2 molecules. This association forms the annexin A2/S100A10 complex known as AIIt, and modifies the distinct functions of both proteins. Annexin A2 is a Ca2+-binding protein that binds F-actin, phospholipid, RNA, and specific polysaccharides such as heparin. S100A10 does not bind Ca2+, but binds tPA, plasminogen, certain plasma membrane ion channels, neurotransmitter receptors, and the structural scaffold protein, AHNAK. S100A10 relies on annexin A2 for its intracellular survival: in the absence of annexin A2, it is rapidly destroyed by ubiquitin-dependent and independent proteasomal degradation. Annexin A2 requires S100A10 to increase its affinity for Ca2+, facilitating its participation in Ca2+-dependent processes such as membrane binding. S100A10 binds tissue plasminogen activator and plasminogen, and promotes plasminogen activation to plasmin, which is a process stimulated by annexin A2. In contrast, annexin A2 acts as a plasmin reductase and facilitates the autoproteolytic destruction of plasmin. This review examines the relationship between annexin A2 and S100A10, and how their mutualistic symbiosis affects the function of both proteins.
Collapse
Affiliation(s)
- Alamelu Bharadwaj
- Department of Pathology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS B3H 1X5, Canada; (A.B.); (E.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Department of Pathology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS B3H 1X5, Canada; (A.B.); (E.K.)
| | - David Morton Waisman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS B3H 1X5, Canada; (A.B.); (E.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
4
|
Yan X, Kumar K, Miclette Lamarche R, Youssef H, Shaw GS, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. Interactions between the Cell Membrane Repair Protein S100A10 and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9652-9663. [PMID: 34339205 DOI: 10.1021/acs.langmuir.1c00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein S100A10 participates in different cellular mechanisms and has different functions, especially at the membrane. Among those, it forms a ternary complex with annexin A2 and the C-terminal of AHNAK and then joins the dysferlin membrane repair complex. Together, they act as a platform enabling membrane repair. Both AHNAK and annexin A2 have been shown to have membrane binding properties. However, the membrane binding abilities of S100A10 are not clear. In this paper, we aimed to study the membrane binding of S100A10 in order to better understand its role in the cell membrane repair process. S100A10 was overexpressed by E. coli and purified by affinity chromatography. Using a Langmuir monolayer as a model membrane, the binding parameters and ellipsometric angles of the purified S100A10 were measured using surface tensiometry and ellipsometry, respectively. Phosphorus-31 solid-state nuclear magnetic resonance spectroscopy was also used to study the interaction of S100A10 with lipid bilayers. In the presence of a lipid monolayer, S100A10 preferentially interacts with unsaturated phospholipids. In addition, its behavior in the presence of a bilayer model suggests that S100A10 interacts more with the negatively charged polar head groups than the zwitterionic ones. This work offers new insights on the binding of S100A10 to different phospholipids and advances our understanding of the parameters influencing its membrane behavior.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| | - Kiran Kumar
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Gary S Shaw
- Departement of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| | - Isabelle Marcotte
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Dror E Warschawski
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, 75 005 France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| |
Collapse
|
5
|
Wang H, Marrosu E, Brayson D, Wasala NB, Johnson EK, Scott CS, Yue Y, Hau KL, Trask AJ, Froehner SC, Adams ME, Zhang L, Duan D, Montanaro F. Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Hum Mol Genet 2021; 30:1321-1336. [PMID: 33949649 PMCID: PMC8255133 DOI: 10.1093/hmg/ddab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
ΔR4-R23/ΔCT micro-dystrophin (μDys) is a miniaturized version of dystrophin currently evaluated in a Duchenne muscular dystrophy (DMD) gene therapy trial to treat skeletal and cardiac muscle disease. In pre-clinical studies, μDys efficiently rescues cardiac histopathology, but only partially normalizes cardiac function. To gain insights into factors that may impact the cardiac therapeutic efficacy of μDys, we compared by mass spectrometry the composition of purified dystrophin and μDys protein complexes in the mouse heart. We report that compared to dystrophin, μDys has altered associations with α1- and β2-syntrophins, as well as cavins, a group of caveolae-associated signaling proteins. In particular, we found that membrane localization of cavin-1 and cavin-4 in cardiomyocytes requires dystrophin and is profoundly disrupted in the heart of mdx5cv mice, a model of DMD. Following cardiac stress/damage, membrane-associated cavin-4 recruits the signaling molecule ERK to caveolae, which activates key cardio-protective responses. Evaluation of ERK signaling revealed a profound inhibition, below physiological baseline, in the mdx5cv mouse heart. Expression of μDys in mdx5cv mice prevented the development of cardiac histopathology but did not rescue membrane localization of cavins nor did it normalize ERK signaling. Our study provides the first comparative analysis of purified protein complexes assembled in vivo by full-length dystrophin and a therapeutic micro-dystrophin construct. This has revealed disruptions in cavins and ERK signaling that may contribute to DMD cardiomyopathy. This new knowledge is important for ongoing efforts to prevent and treat heart disease in DMD patients.
Collapse
Affiliation(s)
- Hong Wang
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA.,Department of Pediatric Cardiology, China Medical University, Liaoning 110004, China
| | - Elena Marrosu
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Daniel Brayson
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Eric K Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA
| | - Charlotte S Scott
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kwan-Leong Hau
- Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Aaron J Trask
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stan C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Neurology, School of Medicine, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Bioengineering, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Federica Montanaro
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus OH 43205, USA.,Developmental Neuroscience Research and Teaching Department, Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
6
|
Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. J Am Soc Nephrol 2020; 31:2793-2814. [PMID: 33115917 DOI: 10.1681/asn.2020010052] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meredith P Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| |
Collapse
|
7
|
Yan X, Noël F, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. AHNAK C-Terminal Peptide Membrane Binding-Interactions between the Residues 5654-5673 of AHNAK and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:362-369. [PMID: 31825630 DOI: 10.1021/acs.langmuir.9b02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dysferlin membrane repair complex contains a small complex, S100A10-annexin A2, which initiates membrane repair by recruiting the protein AHNAK to the membrane, where it interacts via binding sites in the C-terminal region. However, no molecular data are available for the membrane binding of the various proteins involved in this complex. Therefore, the present study investigated the membrane binding of AHNAK to elucidate its role in the cell membrane repair process. A chemically synthesized peptide (pAHNAK), comprising the 20 amino acids in the C-terminal domain of AHNAK, was applied to Langmuir monolayer models, and the binding parameters and insertion angles were measured with surface tensiometry and ellipsometry. The interaction of pAHNAK with lipid bilayers was studied using 31P solid-state nuclear magnetic resonance. pAHNAK preferentially and strongly interacted with phospholipids that comprised negatively charged polar head groups with unsaturated lipids. This finding provides a better understanding of AHNAK membrane behavior and the parameters that influence its function in membrane repair.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Francis Noël
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Isabelle Marcotte
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , Montreal , H4B 1R6 , Canada
| | - Dror E Warschawski
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
- UMR 7099, CNRS-Université Paris Diderot, Institut de Biologie Physico-Chimique , Paris 75005 , France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| |
Collapse
|
8
|
Lee JJA, Maruyama R, Duddy W, Sakurai H, Yokota T. Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:596-604. [PMID: 30439648 PMCID: PMC6234522 DOI: 10.1016/j.omtn.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Dysferlinopathy is a progressive myopathy caused by mutations in the dysferlin (DYSF) gene. Dysferlin protein plays a major role in plasma-membrane resealing. Some patients with DYSF deletion mutations exhibit mild symptoms, suggesting some regions of DYSF can be removed without significantly impacting protein function. Antisense-mediated exon-skipping therapy uses synthetic molecules called antisense oligonucleotides to modulate splicing, allowing exons harboring or near genetic mutations to be removed and the open reading frame corrected. Previous studies have focused on DYSF exon 32 skipping as a potential therapeutic approach, based on the association of a mild phenotype with the in-frame deletion of exon 32. To date, no other DYSF exon-skipping targets have been identified, and the relationship between DYSF exon deletion pattern and protein function remains largely uncharacterized. In this study, we utilized a membrane-wounding assay to evaluate the ability of plasmid constructs carrying mutant DYSF, as well as antisense oligonucleotides, to rescue membrane resealing in patient cells. We report that multi-exon skipping of DYSF exons 26–27 and 28–29 rescues plasma-membrane resealing. Successful translation of these findings into the development of clinical antisense drugs would establish new therapeutic approaches that would be applicable to ∼5%–7% (exons 26–27 skipping) and ∼8% (exons 28–29 skipping) of dysferlinopathy patients worldwide.
Collapse
Affiliation(s)
- Joshua J A Lee
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, United Kingdom
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada; The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
9
|
Elevated Expression of Moesin in Muscular Dystrophies. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:654-664. [PMID: 28082118 DOI: 10.1016/j.ajpath.2016.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/30/2016] [Accepted: 11/15/2016] [Indexed: 12/27/2022]
Abstract
Fibrosis is the main complication of muscular dystrophies. We identified moesin, a member of the ezrin-radixin-moesin family, in dystrophic muscles of mice representing Duchenne and congenital muscular dystrophies (DMD and CMD, respectively) and dysferlinopathy, but not in the wild type. High levels of moesin were also observed in muscle biopsy specimens from DMD, Ullrich CMD, and merosin-deficient CMD patients, all of which present high levels of fibrosis. The myofibroblasts, responsible for extracellular matrix protein synthesis, and the macrophages infiltrating the dystrophic muscles were the source of moesin. Moesin-positive cells were embedded within the fibrotic areas between the myofibers adjacent to the collagen type I fibers. Radixin was also synthesized by the myofibroblasts, whereas ezrin colocalized with the myofiber membranes. In animal models and patients' muscles, part of the moesin was in its active phosphorylated form. Inhibition of fibrosis by halofuginone, an antifibrotic agent, resulted in a major decrease in moesin levels in the muscles of DMD and CMD mice. In summary, the results of this study may pave the way for exploiting moesin as a novel target for intervention in MDs, and as part of a battery of biomarkers to evaluate treatment success in preclinical studies and clinical trials.
Collapse
|
10
|
Blazek AD, Paleo BJ, Weisleder N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda) 2016; 30:438-48. [PMID: 26525343 DOI: 10.1152/physiol.00019.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane repair is a conserved cellular response mediating active resealing of membrane disruptions to maintain homeostasis and prevent cell death and progression of multiple diseases. Cell membrane repair repurposes mechanisms from various cellular functions, including vesicle trafficking, exocytosis, and endocytosis, to mend the broken membrane. Recent studies increased our understanding of membrane repair by establishing the molecular machinery contributing to membrane resealing. Here, we review some of the key proteins linked to cell membrane repair.
Collapse
Affiliation(s)
- Alisa D Blazek
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brian J Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
11
|
Kirov A, Kacer D, Conley BA, Vary CPH, Prudovsky I. AHNAK2 Participates in the Stress-Induced Nonclassical FGF1 Secretion Pathway. J Cell Biochem 2016; 116:1522-31. [PMID: 25560297 DOI: 10.1002/jcb.25047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
FGF1 is a nonclassically released growth factor that regulates carcinogenesis, angiogenesis, and inflammation. In vitro and in vivo, FGF1 export is stimulated by cell stress. Upon stress, FGF1 is transported to the plasma membrane where it localizes prior to transmembrane translocation. To determine which proteins participate in the submembrane localization of FGF1 and its export, we used immunoprecipitation mass spectrometry to identify novel proteins that associate with FGF1 during heat shock. The heat shock-dependent association of FGF1 with the large protein AHNAK2 was observed. Heat shock induced the translocation of FGF1 and AHNAK2 to the cytoskeletal fraction. In heat-shocked cells, FGF1 and the C-terminal fragment of AHNAK2 colocalized with F-actin in the vicinity of the cell membrane. Depletion of AHNAK2 resulted in a drastic decrease of stress-induced FGF1 export but did not affect spontaneous FGF2 export and FGF1 release induced by the inhibition of Notch signaling. Thus, AHNAK2 is an important element of the FGF1 nonclassical export pathway.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Barbara A Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| |
Collapse
|
12
|
Izumi R, Niihori T, Takahashi T, Suzuki N, Tateyama M, Watanabe C, Sugie K, Nakanishi H, Sobue G, Kato M, Warita H, Aoki Y, Aoki M. Genetic profile for suspected dysferlinopathy identified by targeted next-generation sequencing. NEUROLOGY-GENETICS 2015; 1:e36. [PMID: 27066573 PMCID: PMC4811388 DOI: 10.1212/nxg.0000000000000036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022]
Abstract
Objective: To investigate the genetic causes of suspected dysferlinopathy and to reveal the genetic profile for myopathies with dysferlin deficiency. Methods: Using next-generation sequencing, we analyzed 42 myopathy-associated genes, including DYSF, in 64 patients who were clinically or pathologically suspected of having dysferlinopathy. Putative pathogenic mutations were confirmed by Sanger sequencing. In addition, copy-number variations in DYSF were investigated using multiplex ligation-dependent probe amplification. We also analyzed the genetic profile for 90 patients with myopathy with dysferlin deficiency, as indicated by muscle specimen immunohistochemistry, including patients from a previous cohort. Results: We identified putative pathogenic mutations in 38 patients (59% of all investigated patients). Twenty-three patients had DYSF mutations, including 6 novel mutations. The remaining 16 patients, including a single patient who also carried the DYSF mutation, harbored putative pathogenic mutations in other genes. The genetic profile for 90 patients with dysferlin deficiency revealed that 70% had DYSF mutations (n = 63), 10% had CAPN3 mutations (n = 9), 2% had CAV3 mutations (n = 2), 3% had mutations in other genes (in single patients), and 16% did not have any identified mutations (n = 14). Conclusions: This study clarified the heterogeneous genetic profile for myopathies with dysferlin deficiency. Our results demonstrate the importance of a comprehensive analysis of related genes in improving the genetic diagnosis of dysferlinopathy as one of the most common subtypes of limb-girdle muscular dystrophy. Unresolved diagnoses should be investigated using whole-genome or whole-exome sequencing.
Collapse
Affiliation(s)
- Rumiko Izumi
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Niihori
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiaki Takahashi
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Suzuki
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Tateyama
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chigusa Watanabe
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Sugie
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotaka Nakanishi
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kato
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Warita
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Aoki
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Aoki
- Departments of Neurology (R.I., N.S., M.T., M.K., H.W., M.A.) and Medical Genetics (R.I., T.N., Y.A.), Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology (T.T.), National Hospital Organization Sendai-Nishitaga, National Hospital, Sendai, Japan; Department of Neurology (M.T.), Iwate National Hospital, Ichinoseki, Japan; Department of Neurology (C.W.), Hiroshima-Nishi Medical Center, Hiroshima, Japan; Department of Neurology (K.S.), Nara Medical University, Nara, Japan; and Department of Neurology (H.N.) and Research Division for Neurodegeneration and Dementia (G.S.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Tzeng HP, Evans S, Gao F, Chambers K, Topkara VK, Sivasubramanian N, Barger PM, Mann DL. Dysferlin mediates the cytoprotective effects of TRAF2 following myocardial ischemia reperfusion injury. J Am Heart Assoc 2014; 3:e000662. [PMID: 24572254 PMCID: PMC3959693 DOI: 10.1161/jaha.113.000662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background We have demonstrated that tumor necrosis factor (TNF) receptor‐associated factor 2 (TRAF2), a scaffolding protein common to TNF receptors 1 and 2, confers cytoprotection in the heart. However, the mechanisms for the cytoprotective effects of TRAF2 are not known. Methods/Results Mice with cardiac‐restricted overexpression of low levels of TRAF2 (MHC‐TRAF2LC) and a dominant negative TRAF2 (MHC‐TRAF2DN) were subjected to ischemia (30‐minute) reperfusion (60‐minute) injury (I/R), using a Langendorff apparatus. MHC‐TRAF2LC mice were protected against I/R injury as shown by a significant ≈27% greater left ventricular (LV) developed pressure after I/R, whereas mice with impaired TRAF2 signaling had a significantly ≈38% lower LV developed pressure, a ≈41% greater creatine kinase (CK) release, and ≈52% greater Evans blue dye uptake after I/R, compared to LM. Transcriptional profiling of MHC‐TRAF2LC and MHC‐TRAF2DN mice identified a calcium‐triggered exocytotic membrane repair protein, dysferlin, as a potential cytoprotective gene responsible for the cytoprotective effects of TRAF2. Mice lacking dysferlin had a significant ≈39% lower LV developed pressure, a ≈20% greater CK release, and ≈29% greater Evans blue dye uptake after I/R, compared to wild‐type mice, thus phenocopying the response to tissue injury in the MHC‐TRAF2DN mice. Moreover, breeding MHC‐TRAF2LC onto a dysferlin‐null background significantly attenuated the cytoprotective effects of TRAF2 after I/R injury. Conclusion The study shows that dysferlin, a calcium‐triggered exocytotic membrane repair protein, is required for the cytoprotective effects of TRAF2‐mediated signaling after I/R injury.
Collapse
Affiliation(s)
- Huei-Ping Tzeng
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The aim of this chapter is a step-by-step guide on how to infer gene networks from gene expression profiles. The definition of a gene network is given in Subheading 1, where the different types of networks are discussed. The chapter then guides the readers through a data-gathering process in order to build a compendium of gene expression profiles from a public repository. Gene expression profiles are then discretized and a statistical relationship between genes, called mutual information (MI), is computed. Gene pairs with insignificant MI scores are then discarded by applying one of the described pruning steps. The retained relationships are then used to build up a Boolean adjacency matrix used as input for a clustering algorithm to divide the network into modules (or communities). The gene network can then be used as a hypothesis generator for discovering gene function and analyzing gene signatures. Some case studies are presented, and an online web-tool called Netview is described.
Collapse
Affiliation(s)
- Vincenzo Belcastro
- Faculty of Engineering, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
16
|
Cacciottolo M, Nogalska A, D'Agostino C, Engel WK, Askanas V. Dysferlin is a newly identified binding partner of AβPP and it co-aggregates with amyloid-β42 within sporadic inclusion-body myositis (s-IBM) muscle fibers. Acta Neuropathol 2013; 126:781-3. [PMID: 24091414 DOI: 10.1007/s00401-013-1186-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Mafalda Cacciottolo
- Department of Neurology, USC Neuromuscular Center, Good Samaritan Hospital, University of Southern California Keck School of Medicine, 637 S. Lucas Ave, Los Angeles, CA, 90017-1912, USA
| | | | | | | | | |
Collapse
|
17
|
Flix B, de la Torre C, Castillo J, Casal C, Illa I, Gallardo E. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. Int J Biochem Cell Biol 2013; 45:1927-38. [PMID: 23792176 DOI: 10.1016/j.biocel.2013.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) analysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct interaction of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.
Collapse
Affiliation(s)
- Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 2013; 23:377-87. [DOI: 10.1016/j.nmd.2013.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|
19
|
Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J 2013; 280:4165-76. [PMID: 23527661 DOI: 10.1111/febs.12261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Cells encounter many physical, chemical and biological stresses that perturb plasma membrane integrity, warranting an immediate membrane repair response to regain cell homeostasis. Failure to respond properly to such perturbation leads to individual cell death, which may also produce systemic influence by triggering sterile immunological responses. In this review, we discuss recent progress on understanding the mechanisms underlying muscle cell membrane repair and the potential mediators of innate immune activation when the membrane repair system is defective, specifically focusing on pathology associated with dysferlin deficiency.
Collapse
Affiliation(s)
- Andrew Mariano
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, IL 60153, USA
| | | | | |
Collapse
|
20
|
Blandin G, Marchand S, Charton K, Danièle N, Gicquel E, Boucheteil JB, Bentaib A, Barrault L, Stockholm D, Bartoli M, Richard I. A human skeletal muscle interactome centered on proteins involved in muscular dystrophies: LGMD interactome. Skelet Muscle 2013; 3:3. [PMID: 23414517 PMCID: PMC3610214 DOI: 10.1186/2044-5040-3-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Background The complexity of the skeletal muscle and the identification of numerous human disease-causing mutations in its constitutive proteins make it an interesting tissue for proteomic studies aimed at understanding functional relationships of interacting proteins in both health and diseases. Method We undertook a large-scale study using two-hybrid screens and a human skeletal-muscle cDNA library to establish a proteome-scale map of protein-protein interactions centered on proteins involved in limb-girdle muscular dystrophies (LGMD). LGMD is a group of more than 20 different neuromuscular disorders that principally affect the proximal pelvic and shoulder girdle muscles. Results and conclusion The interaction network we unraveled incorporates 1018 proteins connected by 1492 direct binary interactions and includes 1420 novel protein-protein interactions. Computational, experimental and literature-based analyses were performed to assess the overall quality of this network. Interestingly, LGMD proteins were shown to be highly interconnected, in particular indirectly through sarcomeric proteins. In-depth mining of the LGMD-centered interactome identified new candidate genes for orphan LGMDs and other neuromuscular disorders. The data also suggest the existence of functional links between LGMD2B/dysferlin and gene regulation, between LGMD2C/γ-sarcoglycan and energy control and between LGMD2G/telethonin and maintenance of genome integrity. This dataset represents a valuable resource for future functional investigations.
Collapse
Affiliation(s)
- Gaëlle Blandin
- Généthon CNRS UMR8587, 1, rue de l'Internationale, Evry 91000, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ozorowski G, Milton S, Luecke H. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:92-104. [PMID: 23275167 PMCID: PMC3532133 DOI: 10.1107/s0907444912043429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/18/2012] [Indexed: 01/22/2023]
Abstract
AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2-S100A10 heterotetramer [(p11)(2)(AnxA2)(2))] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11)(2)(AnxA2)(2) is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca(2+)-dependent manner. The binding of AHNAK to (p11)(2)(AnxA2)(2) has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654-5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2-S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11)(2)(AnxA2)(2). Binding of AHNAK to the surface of (p11)(2)(AnxA2)(2) is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11)(2)(AnxA2)(2) most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various stretches of the AHNAK C-terminal domain, comparison with other S100 structures reveals that the sequence has been optimized for binding to S100A10. This model adds new insight to the understanding of the specific interactions that occur in this membrane-repair scaffold.
Collapse
Affiliation(s)
- Gabriel Ozorowski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Saskia Milton
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Abstract
Our understanding of gene expression has changed dramatically over the past decade, largely catalysed by technological developments. High-throughput experiments - microarrays and next-generation sequencing - have generated large amounts of genome-wide gene expression data that are collected in public archives. Added-value databases process, analyse and annotate these data further to make them accessible to every biologist. In this Review, we discuss the utility of the gene expression data that are in the public domain and how researchers are making use of these data. Reuse of public data can be very powerful, but there are many obstacles in data preparation and analysis and in the interpretation of the results. We will discuss these challenges and provide recommendations that we believe can improve the utility of such data.
Collapse
Affiliation(s)
- Johan Rung
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | |
Collapse
|
23
|
Dempsey BR, Rezvanpour A, Lee TW, Barber KR, Junop MS, Shaw GS. Structure of an asymmetric ternary protein complex provides insight for membrane interaction. Structure 2012; 20:1737-45. [PMID: 22940583 DOI: 10.1016/j.str.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
Plasma membrane repair involves the coordinated effort of proteins and the inner phospholipid surface to mend the rupture and return the cell back to homeostasis. Here, we present the three-dimensional structure of a multiprotein complex that includes S100A10, annexin A2, and AHNAK, which along with dysferlin, functions in muscle and cardiac tissue repair. The 3.5 Å resolution X-ray structure shows that a single region from the AHNAK C terminus is recruited by an S100A10-annexin A2 heterotetramer, forming an asymmetric ternary complex. The AHNAK peptide adopts a coil conformation that arches across the heterotetramer contacting both annexin A2 and S100A10 protomers with tight affinity (∼30 nM) and establishing a structural rationale whereby both S100A10 and annexin proteins are needed in AHNAK recruitment. The structure evokes a model whereby AHNAK is targeted to the membrane surface through sandwiching of the binding region between the S100A10/annexin A2 complex and the phospholipid membrane.
Collapse
Affiliation(s)
- Brian R Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Kobayashi K, Izawa T, Kuwamura M, Yamate J. Dysferlin and animal models for dysferlinopathy. J Toxicol Pathol 2012; 25:135-47. [PMID: 22907980 PMCID: PMC3392904 DOI: 10.1293/tox.25.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
Abstract
Dysferlin (DYSF) is involved in the membrane-repair process, in the intracellular vesicle system and in T-tubule development in skeletal muscle. It interacts with mitsugumin 53, annexins, caveolin-3, AHNAK, affixin, S100A10, calpain-3, tubulin and dihydropyridine receptor. Limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy (MM) are muscular dystrophies associated with recessively inherited mutations in the DYSF gene. The diseases are characterized by weakness and muscle atrophy that progress slowly and symmetrically in the proximal muscles of the limb girdles. LGMD2B and MM, which are collectively termed “dysferlinopathy”, both lead to abnormalities in vesicle traffic and membrane repair at the plasma membrane in muscle fibers. SJL/J (SJL) and A/J mice are naturally occurring animal models for dysferlinopathy. Since there has been no an approach to therapy for dysferlinopathy, the immediate development of a therapeutic method for this genetic disorder is desirable. The murine models are useful in verification experiments for new therapies and they are valuable tools for identifying factors that accelerate dystrophic changes in skeletal muscle. It could be possible that the genetic or immunological background in SJL or A/J mice could modify muscle damage in experiments involving these models, because SJL and A/J mice show differences in the progress and prevalent sites of skeletal muscle lesions as well as in the gene-expression profiles of their skeletal muscle. In this review, we provide up-to-date information on the function of dysferlin, the development of possible therapies for muscle dystrophies (including dysferlinopathy) and the detection of new therapeutic targets for dysferlinopathy by means of experiments using animal models for dysferlinopathy.
Collapse
|
25
|
Marg A, Schoewel V, Timmel T, Schulze A, Shah C, Daumke O, Spuler S. Sarcolemmal repair is a slow process and includes EHD2. Traffic 2012; 13:1286-94. [PMID: 22679923 DOI: 10.1111/j.1600-0854.2012.01386.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 11/26/2022]
Abstract
Skeletal muscle is continually subjected to microinjuries that must be repaired to maintain structure and function. Fluorescent dye influx after laser injury of muscle fibers is a commonly used assay to study membrane repair. This approach reveals that initial resealing only takes a few seconds. However, by this method the process of membrane repair can only be studied in part and is therefore poorly understood. We investigated membrane repair by visualizing endogenous and GFP-tagged repair proteins after laser wounding. We demonstrate that membrane repair and remodeling after injury is not a quick event but requires more than 20 min. The endogenous repair protein dysferlin becomes visible at the injury site after 20 seconds but accumulates further for at least 30 min. Annexin A1 and F-actin are also enriched at the wounding area. We identified a new participant in the membrane repair process, the ATPase EHD2. We show, that EHD2, but not EHD1 or mutant EHD2, accumulates at the site of injury in human myotubes and at a peculiar structure that develops during membrane remodeling, the repair dome. In conclusion, we established an approach to visualize membrane repair that allows a new understanding of the spatial and temporal events involved.
Collapse
Affiliation(s)
- Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Lostal W, Bartoli M, Roudaut C, Bourg N, Krahn M, Pryadkina M, Borel P, Suel L, Roche JA, Stockholm D, Bloch RJ, Levy N, Bashir R, Richard I. Lack of correlation between outcomes of membrane repair assay and correction of dystrophic changes in experimental therapeutic strategy in dysferlinopathy. PLoS One 2012; 7:e38036. [PMID: 22666441 PMCID: PMC3362551 DOI: 10.1371/journal.pone.0038036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/30/2012] [Indexed: 01/31/2023] Open
Abstract
Mutations in the dysferlin gene are the cause of Limb-girdle Muscular Dystrophy type 2B and Miyoshi Myopathy. The dysferlin protein has been implicated in sarcolemmal resealing, leading to the idea that the pathophysiology of dysferlin deficiencies is due to a deficit in membrane repair. Here, we show using two different approaches that fullfiling membrane repair as asseyed by laser wounding assay is not sufficient for alleviating the dysferlin deficient pathology. First, we generated a transgenic mouse overexpressing myoferlin to test the hypothesis that myoferlin, which is homologous to dysferlin, can compensate for the absence of dysferlin. The myoferlin overexpressors show no skeletal muscle abnormalities, and crossing them with a dysferlin-deficient model rescues the membrane fusion defect present in dysferlin-deficient mice in vitro. However, myoferlin overexpression does not correct muscle histology in vivo. Second, we report that AAV-mediated transfer of a minidysferlin, previously shown to correct the membrane repair deficit in vitro, also fails to improve muscle histology. Furthermore, neither myoferlin nor the minidysferlin prevented myofiber degeneration following eccentric exercise. Our data suggest that the pathogenicity of dysferlin deficiency is not solely related to impairment in sarcolemmal repair and highlight the care needed in selecting assays to assess potential therapies for dysferlinopathies.
Collapse
Affiliation(s)
| | - Marc Bartoli
- Département de Génétique Médicale, Hôpital d’Enfants de la Timone, AP-HM, and Inserm UMR_S 910, Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France
| | | | | | - Martin Krahn
- Département de Génétique Médicale, Hôpital d’Enfants de la Timone, AP-HM, and Inserm UMR_S 910, Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France
| | | | | | | | - Joseph A. Roche
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | | | - Robert J. Bloch
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Nicolas Levy
- Département de Génétique Médicale, Hôpital d’Enfants de la Timone, AP-HM, and Inserm UMR_S 910, Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France
| | - Rumaisa Bashir
- School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
| | | |
Collapse
|
27
|
Rezvanpour A, Santamaria-Kisiel L, Shaw GS. The S100A10-annexin A2 complex provides a novel asymmetric platform for membrane repair. J Biol Chem 2011; 286:40174-83. [PMID: 21949189 PMCID: PMC3220529 DOI: 10.1074/jbc.m111.244038] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Membrane repair is mediated by multiprotein complexes, such as that formed between the dimeric EF-hand protein S100A10, the calcium- and phospholipid-binding protein annexin A2, the enlargeosome protein AHNAK, and members of the transmembrane ferlin family. Although interactions between these proteins have been shown, little is known about their structural arrangement and mechanisms of formation. In this work, we used a non-covalent complex between S100A10 and the N terminus of annexin A2 (residues 1-15) and a designed hybrid protein (A10A2), where S100A10 is linked in tandem to the N-terminal region of annexin A2, to explore the binding region, stoichiometry, and affinity with a synthetic peptide from the C terminus of AHNAK. Using multiple biophysical methods, we identified a novel asymmetric arrangement between a single AHNAK peptide and the A10A2 dimer. The AHNAK peptide was shown to require the annexin A2 N terminus, indicating that the AHNAK binding site comprises regions on both S100A10 and annexin proteins. NMR spectroscopy was used to show that the AHNAK binding surface comprised residues from helix IV in S100A10 and the C-terminal portion from the annexin A2 peptide. This novel surface maps to the exposed side of helices IV and IV' of the S100 dimeric structure, a region not identified in any previous S100 target protein structures. The results provide the first structural details of the ternary S100A10 protein complex required for membrane repair.
Collapse
Affiliation(s)
- Atoosa Rezvanpour
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|