1
|
Banos A, Thomas K, Garantziotis P, Filia A, Malissovas N, Pieta A, Nikolakis D, Panagiotopoulos AG, Chalkia A, Petras D, Bertsias G, Boumpas DT, Vassilopoulos D. The genomic landscape of ANCA-associated vasculitis: Distinct transcriptional signatures, molecular endotypes and comparison with systemic lupus erythematosus. Front Immunol 2023; 14:1072598. [PMID: 37051253 PMCID: PMC10083368 DOI: 10.3389/fimmu.2023.1072598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionAnti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) present with a complex phenotype and are associated with high mortality and multi-organ involvement. We sought to define the transcriptional landscape and molecular endotypes of AAVs and compare it to systemic lupus erythematosus (SLE).MethodsWe performed whole blood mRNA sequencing from 30 patients with AAV (granulomatosis with polyangiitis/GPA and microscopic polyangiitis/MPA) combined with functional enrichment and network analysis for aberrant pathways. Key genes and pathways were validated in an independent cohort of 18 AAV patients. Co-expression network and hierarchical clustering analysis, identified molecular endotypes. Multi-level transcriptional overlap analysis to SLE was based on our published data from 142 patients.ResultsWe report here that “Pan-vasculitis” signature contained 1,982 differentially expressed genes, enriched in leukocyte differentiation, cytokine signaling, type I and type II IFN signaling and aberrant B-T cell immunity. Active disease was characterized by signatures linked to cell cycle checkpoints and metabolism pathways, whereas ANCA-positive patients exhibited a humoral immunity transcriptional fingerprint. Differential expression analysis of GPA and MPA yielded an IFN-g pathway (in addition to a type I IFN) in the former and aberrant expression of genes related to autophagy and mRNA splicing in the latter. Unsupervised molecular taxonomy analysis revealed four endotypes with neutrophil degranulation, aberrant metabolism and B-cell responses as potential mechanistic drivers. Transcriptional perturbations and molecular heterogeneity were more pronounced in SLE. Molecular analysis and data-driven clustering of AAV uncovered distinct transcriptional pathways that could be exploited for targeted therapy.DiscussionWe conclude that transcriptomic analysis of AAV reveals distinct endotypes and molecular pathways that could be targeted for therapy. The AAV transcriptome is more homogenous and less fragmented compared to the SLE which may account for its superior rates of response to therapy.
Collapse
Affiliation(s)
- Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Konstantinos Thomas
- Clinical Immunology- Rheumatology Unit, 2nd Department of Medicine and Laboratory, General Hospital of Athens Ippokrateio, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Malissovas
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antigone Pieta
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Dimitrios Nikolakis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Department of Gastroenterology, Academic Medical Center, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Alexandros G. Panagiotopoulos
- Clinical Immunology- Rheumatology Unit, 2nd Department of Medicine and Laboratory, General Hospital of Athens Ippokrateio, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aglaia Chalkia
- Nephrology Department, General Hospital of Athens Ippokrateio, Athens, Greece
| | - Dimitrios Petras
- Nephrology Department, General Hospital of Athens Ippokrateio, Athens, Greece
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Greece
- Department of Immunity, Institute of Molecular Biology and Biotechnology-Foundation of Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, Athens, Greece
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Vassilopoulos
- Clinical Immunology- Rheumatology Unit, 2nd Department of Medicine and Laboratory, General Hospital of Athens Ippokrateio, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Dimitrios Vassilopoulos,
| |
Collapse
|
2
|
Cheng D, Semmens K, McManus E, Chen Q, Meerzaman D, Wang X, Hafner M, Lewis BA, Takahashi H, Devaiah BN, Gegonne A, Singer DS. The nuclear transcription factor, TAF7, is a cytoplasmic regulator of protein synthesis. SCIENCE ADVANCES 2021; 7:eabi5751. [PMID: 34890234 PMCID: PMC8664259 DOI: 10.1126/sciadv.abi5751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The TFIID component, TAF7, has been extensively characterized as essential for transcription and is critical for cell proliferation and differentiation. Here, we report that TAF7 is a previously unknown RNA chaperone that contributes to the regulation of protein synthesis. Mechanistically, TAF7 binds RNAs in the nucleus and delivers them to cytoplasmic polysomes. A broad spectrum of target RNA species, including the HIV-1 transactivation response element, binds TAF7 through consensus CUG motifs within the 3′ untranslated region. Export to the cytoplasm depends on a TAF7 nuclear export signal and occurs by an exportin 1–dependent pathway. Notably, disrupting either TAF7’s RNA binding or its export from the nucleus results in retention of target messenger RNAs in the nucleus and reduced levels of the protein products of TAF7-target RNAs. Thus, TAF7, an essential transcription factor, plays a key role in the regulation of RNA translation, thereby potentially connecting these processes.
Collapse
Affiliation(s)
- Dan Cheng
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kevin Semmens
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Elizabeth McManus
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Brian A. Lewis
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | | | - Anne Gegonne
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Yamazaki T, Liu L, Manley JL. Oxidative stress induces Ser 2 dephosphorylation of the RNA polymerase II CTD and premature transcription termination. Transcription 2021; 12:277-293. [PMID: 34874799 DOI: 10.1080/21541264.2021.2009421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of YSPTSPS heptapeptide repeats, and the phosphorylation status of the repeats controls multiple transcriptional steps and co-transcriptional events. However, how CTD phosphorylation status responds to distinct environmental stresses is not fully understood. In this study, we found that a drastic reduction in phosphorylation of a subset of Ser2 residues occurs rapidly but transiently following exposure to H2O2. ChIP analysis indicated that Ser2-P, and to a lesser extent Tyr1-P was reduced only at the gene 3' end. Significantly, the levels of polyadenylation factor CstF77, as well as Pol II, were also reduced. However, no increase in uncleaved or readthrough RNA products was observed, suggesting transcribing Pol II prematurely terminates at the gene end in response to H2O2. Further analysis found that the reduction of Ser2-P is, at least in part, regulated by CK2 but independent of FCP1 and other known Ser2 phosphatases. Finally, the H2O2 treatment also affected snRNA 3' processing although surprisingly the U2 processing was not impaired. Together, our data suggest that H2O2 exposure creates a unique CTD phosphorylation state that rapidly alters transcription to deal with acute oxidative stress, perhaps creating a novel "emergency brake" mechanism to transiently dampen gene expression.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY USA
| |
Collapse
|
4
|
Nagashimada M, Ueda T, Ishita Y, Sakurai H. TAF7 is a heat‐inducible unstable protein and is required for sustained expression of heat shock protein genes. FEBS J 2018; 285:3215-3224. [DOI: 10.1111/febs.14604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mayumi Nagashimada
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Takumi Ueda
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Yuichiro Ishita
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Hiroshi Sakurai
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| |
Collapse
|
5
|
Tawamie H, Martianov I, Wohlfahrt N, Buchert R, Mengus G, Uebe S, Janiri L, Hirsch FW, Schumacher J, Ferrazzi F, Sticht H, Reis A, Davidson I, Colombo R, Abou Jamra R. Hypomorphic Pathogenic Variants in TAF13 Are Associated with Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet 2017; 100:555-561. [PMID: 28257693 DOI: 10.1016/j.ajhg.2017.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
In two independent consanguineous families each with two children affected by mild intellectual disability and microcephaly, we identified two homozygous missense variants (c.119T>A [p.Met40Lys] and c.92T>A [p.Leu31His]) in TATA-box-binding-protein-associated factor 13 (TAF13). Molecular modeling suggested a pathogenic effect of both variants through disruption of the interaction between TAF13 and TAF11. These two proteins form a histone-like heterodimer that is essential for their recruitment into the general RNA polymerase II transcription factor IID (TFIID) complex. Co-immunoprecipitation in HeLa cells transfected with plasmids encoding TAF11 and TAF13 revealed that both variants indeed impaired formation of the TAF13-TAF11 heterodimer, thus confirming the protein modeling analysis. To further understand the functional role of TAF13, we performed RNA sequencing of neuroblastoma cell lines upon TAF13 knockdown. The transcriptional profile showed significant deregulation of gene expression patterns with an emphasis on genes related to neuronal and skeletal functions and those containing E-box motives in their promoters. Here, we expand the spectrum of TAF-associated phenotypes and highlight the importance of TAF13 in neuronal functions.
Collapse
|
6
|
Choudhury M, Ramsey SA. Identifying Cell Type-Specific Transcription Factors by Integrating ChIP-seq and eQTL Data-Application to Monocyte Gene Regulation. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:105-110. [PMID: 28008225 PMCID: PMC5156548 DOI: 10.4137/grsb.s40768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 01/22/2023]
Abstract
We describe a novel computational approach to identify transcription factors (TFs) that are candidate regulators in a human cell type of interest. Our approach involves integrating cell type-specific expression quantitative trait locus (eQTL) data and TF data from chromatin immunoprecipitation-to-tag-sequencing (ChIP-seq) experiments in cell lines. To test the method, we used eQTL data from human monocytes in order to screen for TFs. Using a list of known monocyte-regulating TFs, we tested the hypothesis that the binding sites of cell type-specific TF regulators would be concentrated in the vicinity of monocyte eQTLs. For each of 397 ChIP-seq data sets, we obtained an enrichment ratio for the number of ChIP-seq peaks that are located within monocyte eQTLs. We ranked ChIP-seq data sets according to their statistical significances for eQTL overlap, and from this ranking, we observed that monocyte-regulating TFs are more highly ranked than would be expected by chance. We identified 27 TFs that had significant monocyte enrichment scores and mapped them into a protein interaction network. Our analysis uncovered two novel candidate monocyte-regulating TFs, BCLAF1 and SIN3A. Our approach is an efficient method to identify candidate TFs that can be used for any cell/tissue type for which eQTL data are available.
Collapse
Affiliation(s)
- Mudra Choudhury
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
8
|
BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol 2016; 23:540-8. [PMID: 27159561 PMCID: PMC4899182 DOI: 10.1038/nsmb.3228] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Bromodomain protein 4 (BRD4) is a chromatin-binding protein implicated in cancer and autoimmune diseases that functions as a scaffold for transcription factors at promoters and super-enhancers. Whereas chromatin de-compaction and transcriptional activation of target genes are associated with BRD4 binding, the mechanism(s) involved are unknown. We report that BRD4 is a novel histone acetyltransferase (HAT) that acetylates histones H3 and H4 with a pattern distinct from other HAT’s. Both mouse and human BRD4 demonstrate intrinsic HAT activity. Importantly, BRD4 acetylates H3K122, a residue critical for nucleosome stability, resulting in nucleosome eviction and chromatin de-compaction. Nucleosome clearance by BRD4 occurs genome-wide, including at its targets MYC, FOS and AURKB (Aurora B kinase), resulting in increased transcription. Since BRD4 regulates transcription, these findings lead to a model where BRD4 actively links chromatin structure and transcription: It mediates chromatin de-compaction by acetylating and evicting nucleosomes of target genes, thereby activating their transcription.
Collapse
|
9
|
Takahashi H, Takigawa I, Watanabe M, Anwar D, Shibata M, Tomomori-Sato C, Sato S, Ranjan A, Seidel CW, Tsukiyama T, Mizushima W, Hayashi M, Ohkawa Y, Conaway JW, Conaway RC, Hatakeyama S. MED26 regulates the transcription of snRNA genes through the recruitment of little elongation complex. Nat Commun 2015; 6:5941. [PMID: 25575120 DOI: 10.1038/ncomms6941] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023] Open
Abstract
Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)-which contains the transcription elongation factor ELL/EAF-was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Ichigaku Takigawa
- Creative Research Institution, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Delnur Anwar
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Mio Shibata
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Chris W Seidel
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Wataru Mizushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masayasu Hayashi
- Department of Advanced Medical Initiatives, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Joan W Conaway
- 1] Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA [2] Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS 66160, USA
| | - Ronald C Conaway
- 1] Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA [2] Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS 66160, USA
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
10
|
Wang H, Curran EC, Hinds TR, Wang EH, Zheng N. Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Res 2014; 24:1433-44. [PMID: 25412659 PMCID: PMC4260347 DOI: 10.1038/cr.2014.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/07/2023] Open
Abstract
The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest integral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA. Importantly, mutations of these residues not only compromise DNA binding by TAF1, but also abrogate its ability to rescue the ts13 mutant phenotype. Together, our results resolve the structural organization of the TAF1-TAF7 module in TFIID and unveil a critical promoter-binding function of TAF1 in transcription regulation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Curran
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Edith H Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| |
Collapse
|
11
|
Alpern D, Langer D, Ballester B, Le Gras S, Romier C, Mengus G, Davidson I. TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation. eLife 2014; 3:e03613. [PMID: 25209997 PMCID: PMC4359380 DOI: 10.7554/elife.03613] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022] Open
Abstract
The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4–TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A–TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation. DOI:http://dx.doi.org/10.7554/eLife.03613.001 To decode the information contained within a gene, a number of processes need to occur. For example, the DNA sequence that makes up the gene needs to be copied to make a molecule of RNA, which is then translated to build the corresponding protein. The first steps in the manufacture of RNA involve a structure called a ‘pre-initiation complex’ moving an enzyme called RNA polymerase II to the start of the gene that needs to be copied. The pre-initiation complex is made up of many types of protein, including a set of proteins called TAFs. However, the way that these proteins work in mammals is not well understood. There are good reasons for this: proteins are often studied by seeing what happens when the protein is removed, but many TAFs are so important that removing them is lethal. Alpern et al. have now studied the function of TAF4 by removing this protein from mouse liver cells. This causes severe hypoglycemia (that is, a drop in sugar levels in the blood). Moreover, it seems as if these cells start dying before they become fully mature. In liver cells lacking TAF4, some 1408 genes that are normally turned on just after birth are not properly switched on; these genes are necessary for the metabolic functions of the liver. Furthermore, 776 genes that are normally turned off after birth continue to be expressed. It seems that the absence of TAF4 sometimes disrupts the formation of the pre-initiation complex, which would slow down the production of RNA. However, it can also have the opposite effect by increasing the activity of RNA polymerase II, hence making too many copies of RNA from some genes. Alpern et al. also find that TAF4 is needed to allow a protein called HNF4A, which is important in the development of the liver and in controlling metabolism, to interact with over 7000 important DNA sequences. Mutations in HNF4A are responsible for a syndrome known as Maturity Onset of Diabetes in the Young. The next stage in this work will be to explore if these mutations influence the interaction between HNF4A and TAF4, and if they do, whether these changes contribute to this form of diabetes. DOI:http://dx.doi.org/10.7554/eLife.03613.002
Collapse
Affiliation(s)
- Daniil Alpern
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Diana Langer
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Benoit Ballester
- Laboratoire TAGC, Aix-Marseille Université, UMR1090, Marseille, France
| | - Stephanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Christophe Romier
- Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| |
Collapse
|
12
|
Devaiah BN, Singer DS. CIITA and Its Dual Roles in MHC Gene Transcription. Front Immunol 2013; 4:476. [PMID: 24391648 PMCID: PMC3868913 DOI: 10.3389/fimmu.2013.00476] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/07/2013] [Indexed: 01/07/2023] Open
Abstract
Class II transactivator (CIITA) is a transcriptional coactivator that regulates γ-interferon-activated transcription of Major Histocompatibility Complex (MHC) class I and II genes. As such, it plays a critical role in immune responses: CIITA deficiency results in aberrant MHC gene expression and consequently in autoimmune diseases such as Type II bare lymphocyte syndrome. Although CIITA does not bind DNA directly, it regulates MHC transcription in two distinct ways - as a transcriptional activator and as a general transcription factor. As an activator, CIITA nucleates an enhanceosome consisting of the DNA binding transcription factors RFX, cyclic AMP response element binding protein, and NF-Y. As a general transcription factor, CIITA functionally replaces the TFIID component, TAF1. Like TAF1, CIITA possesses acetyltransferase (AT) and kinase activities, both of which contribute to proper transcription of MHC class I and II genes. The substrate specificity and regulation of the CIITA AT and kinase activities also parallel those of TAF1. In addition, CIITA is tightly regulated by its various regulatory domains that undergo phosphorylation and influence its targeted localization. Thus, a complex picture of the mechanisms regulating CIITA function is emerging suggesting that CIITA has dual roles in transcriptional regulation which are summarized in this review.
Collapse
Affiliation(s)
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, NIH , Bethesda, MD , USA
| |
Collapse
|
13
|
Soe KC, Devaiah BN, Singer DS. Transcriptional coactivator CIITA, a functional homolog of TAF1, has kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1184-90. [PMID: 24036077 DOI: 10.1016/j.bbagrm.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/26/2022]
Abstract
The Major Histocompatibility Complex (MHC) class II transactivator (CIITA) mediates activated immune responses and its deficiency results in the Type II Bare Lymphocyte Syndrome. CIITA is a transcriptional co-activator that regulates γ-interferon-activated transcription of MHC class I and class II genes. It is also a functional homolog of TAF1, a component of the general transcription factor complex TFIID. TAF1 and CIITA both possess intrinsic acetyltransferase (AT) activity that is required for transcription initiation. In response to induction by γ-interferon, CIITA and it's AT activity bypass the requirement for TAF1 AT activity. TAF1 also has kinase activity that is essential for its function. However, no similar activity has been identified for CIITA thus far. Here we report that CIITA, like TAF1, is a serine-threonine kinase. Its substrate specificity parallels, but does not duplicate, that of TAF1 in phosphorylating the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF and histone H2B. Like TAF1, CIITA autophosphorylates, affecting its interaction with TAF7. Additionally, CIITA phosphorylates histone H2B at Ser36, a target of TAF1 that is required for transcription during cell cycle progression and stress response. However, unlike TAF1, CIITA also phosphorylates all the other histones. The identification of this novel kinase activity of CIITA further clarifies its role as a functional homolog of TAF1 which may operate during stress and γ-IFN activated MHC gene transcription.
Collapse
Affiliation(s)
- Katherine C Soe
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Gegonne A, Devaiah BN, Singer DS. TAF7: traffic controller in transcription initiation. Transcription 2013; 4:29-33. [PMID: 23340207 DOI: 10.4161/trns.22842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.
Collapse
Affiliation(s)
- Anne Gegonne
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
15
|
Structural bioinformatics of the general transcription factor TFIID. Biochimie 2013; 95:680-91. [DOI: 10.1016/j.biochi.2012.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
|
16
|
Devaiah BN, Singer DS. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J Biol Chem 2012; 287:38755-66. [PMID: 23027873 DOI: 10.1074/jbc.m112.412015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (Pol II) C-terminal domain (CTD) serves as a docking site for numerous proteins, bridging various nuclear processes to transcription. The recruitment of these proteins is mediated by CTD phospho-epitopes generated during transcription. The mechanisms regulating the kinases that establish these phosphorylation patterns on the CTD are not known. We report that three CTD kinases, CDK7, CDK9, and BRD4, engage in cross-talk, modulating their subsequent CTD phosphorylation. BRD4 phosphorylates PTEFb/CDK9 at either Thr-29 or Thr-186, depending on its relative abundance, which represses or activates CDK9 CTD kinase activity, respectively. Conversely, CDK9 phosphorylates BRD4 enhancing its CTD kinase activity. The CTD Ser-5 kinase CDK7 also interacts with and phosphorylates BRD4, potently inhibiting BRD4 kinase activity. Additionally, the three kinases regulate each other indirectly through the general transcription factor TAF7. An inhibitor of CDK9 and CDK7 CTD kinase activities, TAF7 also binds to BRD4 and inhibits its kinase activity. Each of these kinases phosphorylates TAF7, affecting its subsequent ability to inhibit the other two. Thus, a complex regulatory network governs Pol II CTD kinases.
Collapse
Affiliation(s)
- Ballachanda N Devaiah
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
The general transcription factor TAF7 is essential for embryonic development but not essential for the survival or differentiation of mature T cells. Mol Cell Biol 2012; 32:1984-97. [PMID: 22411629 DOI: 10.1128/mcb.06305-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAF7, a component of the TFIID complex that nucleates the assembly of transcription preinitiation complexes, also independently interacts with and regulates the enzymatic activities of other transcription factors, including P-TEFb, TFIIH, and CIITA, ensuring an orderly progression in transcription initiation. Since not all TAFs are required in terminally differentiated cells, we examined the essentiality of TAF7 in cells at different developmental stages in vivo. Germ line disruption of the TAF7 gene is embryonic lethal between 3.5 and 5.5 days postcoitus. Mouse embryonic fibroblasts with TAF7 deleted cease transcription globally and stop proliferating. In contrast, whereas TAF7 is essential for the differentiation and proliferation of immature thymocytes, it is not required for subsequent, proliferation-independent differentiation of lineage committed thymocytes or for their egress into the periphery. TAF7 deletion in peripheral CD4 T cells affects only a small number of transcripts. However, T cells with TAF7 deleted are not able to undergo activation and expansion in response to antigenic stimuli. These findings suggest that TAF7 is essential for proliferation but not for proliferation-independent differentiation.
Collapse
|
18
|
Hogerkorp CM, Nishimura Y, Song K, Martin MA, Roederer M. The simian immunodeficiency virus targets central cell cycle functions through transcriptional repression in vivo. PLoS One 2011; 6:e25684. [PMID: 22043290 PMCID: PMC3197176 DOI: 10.1371/journal.pone.0025684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/07/2011] [Indexed: 02/01/2023] Open
Abstract
A massive and selective loss of CD4+ memory T cells occurs during the acute phase of immunodeficiency virus infections. The mechanism of this depletion is poorly understood but constitutes a key event with implications for progression. We assessed gene expression of purified T cells in Rhesus Macaques during acute SIVmac239 infection in order to define mechanisms of pathogenesis. We observe a general transcriptional program of over 1,600 interferon-stimulated genes induced in all T cells by the infection. Furthermore, we identify 113 transcriptional changes that are specific to virally infected cells. A striking downregulation of several key cell cycle regulator genes was observed and shared promotor-region E2F binding sites in downregulated genes suggested a targeted transcriptional control of an E2F regulated cell cycle program. In addition, the upregulation of the gene for the fundamental regulator of RNA polymerase II, TAF7, demonstrates that viral interference with the cell cycle and transcriptional regulation programs may be critical components during the establishment of a pathogenic infection in vivo.
Collapse
Affiliation(s)
- Carl-Magnus Hogerkorp
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CH); (MR)
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kaimei Song
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CH); (MR)
| |
Collapse
|