1
|
Kostritskii AY, Kostritskaia Y, Dmitrieva N, Stauber T, Machtens JP. Calcium-activated chloride channel TMEM16A opens via pi-helical transition in transmembrane segment 4. Proc Natl Acad Sci U S A 2025; 122:e2421900122. [PMID: 40299692 PMCID: PMC12067253 DOI: 10.1073/pnas.2421900122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
TMEM16A is a Ca2+-activated Cl- channel that has crucial roles in various physiological and pathological processes. However, the structure of the open state of the channel and the mechanism of Ca2+-induced pore opening have remained elusive. Using extensive molecular dynamics simulations, protein structure prediction, and patch-clamp electrophysiology, we demonstrate that TMEM16A opens a hydrated Cl--conductive pore via a pi-helical transition in transmembrane segment 4 (TM4). We also describe a coupling mechanism that links pi-helical transition and pore opening to the Ca2+-induced conformational changes in TMEM16A. Furthermore, we designed a pi-helix-stabilizing mutation (I551P) that facilitates TMEM16A activation, revealing atomistic details of the ion-conduction mechanism. Finally, AlphaFold2 structure predictions revealed the importance of the pi helix in TM4 to structure-function relations in TMEM16 and the related OSCA/TMEM63 family, further highlighting the relevance of dynamic pi helices for gating in various ion channels.
Collapse
Affiliation(s)
- Andrei Y. Kostritskii
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich52428, Germany
| | - Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg20457, Germany
| | - Natalia Dmitrieva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich52428, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg20457, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Jülich52428, Germany
- Institute of Neurophysiology, Hannover Medical School, Hannover30625, Germany
| |
Collapse
|
2
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z, Zhou C. ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol 2025; 16:1570333. [PMID: 40356890 PMCID: PMC12067801 DOI: 10.3389/fimmu.2025.1570333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Anoctamin 1 (ANO1), also known as TMEM16A, is a multifunctional protein that serves as a calcium-activated chloride channel (CaCC). It is ubiquitously expressed across various tissues, including epithelial cells, smooth muscle cells, and neurons, where it is integral to physiological processes such as epithelial secretion, smooth muscle contraction, neural conduction, and cell proliferation and migration. Dysregulation of ANO1 has been linked to the pathogenesis of numerous diseases. Extensive research has established its involvement in non-neoplastic conditions such as asthma, hypertension, and gastrointestinal (GI) dysfunction. Moreover, ANO1 has garnered significant attention for its role in the development and progression of cancers, including head and neck cancer, breast cancer, and lung cancer, where its overexpression correlates with increased tumor growth, metastasis, and poor prognosis. Additionally, ANO1 regulates multiple signaling pathways, including the epidermal growth factor receptor (EGFR) pathway, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, among others. These pathways are pivotal in regulating cell proliferation, migration, and invasion. Given its central role in these processes, ANO1 has emerged as a promising diagnostic biomarker and therapeutic target. Recent advancements in ANO1 research have highlighted its potential in disease diagnosis and treatment. Strategies targeting ANO1, such as small molecule modulators or gene-silencing techniques, have shown preclinical promise in both non-neoplastic and neoplastic diseases. This review explores the latest findings in ANO1 research, focusing on its mechanistic involvement in disease progression, its regulation, and its therapeutic potential. Modulating ANO1 activity may offer novel therapeutic strategies for effectively treating ANO1-associated diseases.
Collapse
Affiliation(s)
- Yanghao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiali He
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huihuang Rao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Duomi Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
4
|
Arreola J, López-Romero AE, Huerta M, Guzmán-Hernández ML, Pérez-Cornejo P. Insights into the function and regulation of the calcium-activated chloride channel TMEM16A. Cell Calcium 2024; 121:102891. [PMID: 38772195 DOI: 10.1016/j.ceca.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Collapse
Affiliation(s)
- Jorge Arreola
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico.
| | - Ana Elena López-Romero
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - Miriam Huerta
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - María Luisa Guzmán-Hernández
- Catedrática CONAHCYT, Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
5
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Mata-Daboin A, Garrud TAC, Fernandez-Pena C, Peixoto-Neves D, Leo MD, Bernardelli AK, Singh P, Malik KU, Jaggar JH. Vasodilators activate the anion channel TMEM16A in endothelial cells to reduce blood pressure. Sci Signal 2023; 16:eadh9399. [PMID: 37963195 PMCID: PMC10694922 DOI: 10.1126/scisignal.adh9399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Systemic blood pressure is acutely controlled by total peripheral resistance as determined by the diameter of small arteries and arterioles, the contractility of which is regulated by endothelial cells lining the lumen of blood vessels. We investigated the physiological functions of the chloride (Cl-) channel TMEM16A in endothelial cells. TMEM16A channels generated calcium (Ca2+)-activated Cl- currents in endothelial cells from control (TMEM16Afl/fl) mice that were absent in those from mice with tamoxifen-inducible, endothelial cell-specific knockout of TMEM16A (TMEM16A ecKO). TMEM16A currents in endothelial cells were activated by the muscarinic receptor agonist acetylcholine and an agonist of the Ca2+ channel TRPV4, which localized in nanoscale proximity with TMEM16A as assessed by single-molecule localization imaging of endothelial cells. Acetylcholine stimulated TMEM16A currents by activating Ca2+ influx through surface TRPV4 channels without altering the nanoscale properties of TMEM16A and TRPV4 surface clusters or their colocalization. In pressurized arteries, activation of TMEM16A channels in endothelial cells induced by acetylcholine; TRPV4 channel stimulation; or intraluminal ATP, another vasodilator, produced hyperpolarization and dilation. Furthermore, deficiency of TMEM16A channels in endothelial cells resulted in increased systemic blood pressure in conscious mice. These data indicate that vasodilators stimulate TRPV4 channels, leading to Ca2+-dependent activation of nearby TMEM16A channels in endothelial cells to produce arterial hyperpolarization, vasodilation, and reduced blood pressure. Thus, TMEM16A is an anion channel in endothelial cells that regulates arterial contractility and blood pressure.
Collapse
Affiliation(s)
- Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Tessa A. C. Garrud
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Carlos Fernandez-Pena
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | | | - M. Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | | | - Purnima Singh
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Kafait U. Malik
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
7
|
Mata-Daboin A, Garrud TAC, Fernandez-Pena C, Peixoto-Neves D, Leo MD, Bernardelli AK, Singh P, Malik KU, Jaggar JH. Vasodilators activate TMEM16A channels in endothelial cells to reduce blood pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543450. [PMID: 37333248 PMCID: PMC10274675 DOI: 10.1101/2023.06.02.543450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Endothelial cells (ECs) regulate vascular contractility to control regional organ blood flow and systemic blood pressure. Several cation channels are expressed in ECs which regulate arterial contractility. In contrast, the molecular identity and physiological functions of anion channels in ECs is unclear. Here, we generated tamoxifen-inducible, EC-specific TMEM16A knockout ( TMEM16A ecKO) mice to investigate the functional significance of this chloride (Cl - ) channel in the resistance vasculature. Our data demonstrate that TMEM16A channels generate calcium-activated Cl - currents in ECs of control ( TMEM16A fl/fl ) mice that are absent in ECs of TMEM16A ecKO mice. Acetylcholine (ACh), a muscarinic receptor agonist, and GSK101, a TRPV4 agonist, activate TMEM16A currents in ECs. Single molecule localization microscopy data indicate that surface TMEM16A and TRPV4 clusters locate in very close nanoscale proximity, with ∼18% exhibiting overlap in ECs. ACh stimulates TMEM16A currents by activating Ca 2+ influx through surface TRPV4 channels without altering the size or density of TMEM16A or TRPV4 surface clusters, their spatial proximity or colocalization. ACh-induced activation of TMEM16A channels in ECs produces hyperpolarization in pressurized arteries. ACh, GSK101 and intraluminal ATP, another vasodilator, all dilate pressurized arteries through TMEM16A channel activation in ECs. Furthermore, EC-specific knockout of TMEM16A channels elevates systemic blood pressure in conscious mice. In summary, these data indicate that vasodilators stimulate TRPV4 channels, leading to Ca 2+ -dependent activation of nearby TMEM16A channels in ECs to produce arterial hyperpolarization, vasodilation and a reduction in blood pressure. We identify TMEM16A as an anion channel present in ECs that regulates arterial contractility and blood pressure. One sentence summary Vasodilators stimulate TRPV4 channels, leading to calcium-dependent activation of nearby TMEM16A channels in ECs to produce arterial hyperpolarization, vasodilation and a reduction in blood pressure.
Collapse
|
8
|
De Jesús-Pérez JJ, López-Romero AE, Posadas O, Segura-Covarrubias G, Aréchiga-Figueroa I, Gutiérrez-Medina B, Pérez-Cornejo P, Arreola J. Gating and anion selectivity are reciprocally regulated in TMEM16A (ANO1). J Gen Physiol 2022; 154:213275. [PMID: 35687042 PMCID: PMC9194859 DOI: 10.1085/jgp.202113027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
Numerous essential physiological processes depend on the TMEM16A-mediated Ca2+-activated chloride fluxes. Extensive structure-function studies have helped to elucidate the Ca2+ gating mechanism of TMEM16A, revealing a Ca2+-sensing element close to the anion pore that alters conduction. However, substrate selection and the substrate-gating relationship in TMEM16A remain less explored. Here, we study the gating-permeant anion relationship on mouse TMEM16A expressed in HEK 293 cells using electrophysiological recordings coupled with site-directed mutagenesis. We show that the apparent Ca2+ sensitivity of TMEM16A increased with highly permeant anions and SCN- mole fractions, likely by stabilizing bound Ca2+. Conversely, mutations at crucial gating elements, including the Ca2+-binding site 1, the transmembrane helix 6 (TM6), and the hydrophobic gate, impaired the anion permeability and selectivity of TMEM16A. Finally, we found that, unlike anion-selective wild-type channels, the voltage dependence of unselective TMEM16A mutant channels was less sensitive to SCN-. Therefore, our work identifies structural determinants of selectivity at the Ca2+ site, TM6, and hydrophobic gate and reveals a reciprocal regulation of gating and selectivity. We suggest that this regulation is essential to set ionic selectivity and the Ca2+ and voltage sensitivities in TMEM16A.
Collapse
Affiliation(s)
| | - Ana E. López-Romero
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Odalys Posadas
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Iván Aréchiga-Figueroa
- Consejo Nacional de Ciencia y Tecnología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Braulio Gutiérrez-Medina
- Advanced Materials Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México,Correspondence to Jorge Arreola:
| |
Collapse
|
9
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
10
|
TMEM16A/ANO1: Current Strategies and Novel Drug Approaches for Cystic Fibrosis. Cells 2021; 10:cells10112867. [PMID: 34831090 PMCID: PMC8616501 DOI: 10.3390/cells10112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect 75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Correctors and potentiators have demonstrated good clinical outcomes for patients with specific gene mutations; however, there are still patients for whom those treatments are not suitable and require alternative CFTR-independent strategies. Although CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate for the deficiency of CFTR. This review summarizes the current knowledge on calcium-activated chloride channel (CaCC) ANO1 and presents ANO1 as an exciting target in CF.
Collapse
|
11
|
Grigoriev VV. [Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:17-33. [PMID: 33645519 DOI: 10.18097/pbmc20216701017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ca2+-activated chloride channels (CaCC) are a class of intracellular calcium activated chloride channels that mediate numerous physiological functions. In 2008, the molecular structure of CaCC was determined. CaCC are formed by the protein known as anoctamine 1 (ANO1 or TMEM16A). CaCC mediates the secretion of Cl- in secretory epithelia, such as the airways, salivary glands, intestines, renal tubules, and sweat glands. The presence of CaCC has also been recognized in the vascular muscles, smooth muscles of the respiratory tract, which control vascular tone and hypersensitivity of the respiratory tract. TMEM16A is activated in many cancers; it is believed that TMEM16A is involved in carcinogenesis. TMEM16A is also involved in cancer cells proliferation. The role of TMEM16A in the mechanisms of hypertension, asthma, cystic fibrosis, nociception, and dysfunction of the gastrointestinal tract has been determined. In addition to TMEM16A, its isoforms are involved in other physiological and pathophysiological processes. TMEM16B (or ANO2) is involved in the sense of smell, while ANO6 works like scramblase, and its mutation causes a rare bleeding disorder, known as Scott syndrome. ANO5 is associated with muscle and bone diseases. TMEM16A interacts with various cellular signaling pathways including: epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK), calmodulin (CaM) kinases, transforming growth factor TGF-β. The review summarizes existing information on known natural and synthetic compounds that can block/modulate CaCC currents and their effect on some pathologies in which CaCC is involved.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Le SC, Yang H. Structure-Function of TMEM16 Ion Channels and Lipid Scramblases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:87-109. [PMID: 35138612 PMCID: PMC11020148 DOI: 10.1007/978-981-16-4254-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The TMEM16 protein family comprises two novel classes of structurally conserved but functionally distinct membrane transporters that function as Ca2+-dependent Cl- channels (CaCCs) or dual functional Ca2+-dependent ion channels and phospholipid scramblases. Extensive functional and structural studies have advanced our understanding of TMEM16 molecular mechanisms and physiological functions. TMEM16A and TMEM16B CaCCs control transepithelial fluid transport, smooth muscle contraction, and neuronal excitability, whereas TMEM16 phospholipid scramblases mediate the flip-flop of phospholipids across the membrane to allow phosphatidylserine externalization, which is essential in a plethora of important processes such as blood coagulation, bone development, and viral and cell fusion. In this chapter, we summarize the major methods in studying TMEM16 ion channels and scramblases and then focus on the current mechanistic understanding of TMEM16 Ca2+- and voltage-dependent channel gating as well as their ion and phospholipid permeation.
Collapse
Affiliation(s)
- Son C Le
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Sánchez-Solano A, Corral N, Segura-Covarrubias G, Guzmán-Hernández ML, Arechiga-Figueroa I, Cruz-Rangel S, Pérez-Cornejo P, Arreola J. Regulation of the Ca 2+-activated chloride channel Anoctamin-1 (TMEM16A) by Ca 2+-induced interaction with FKBP12 and calcineurin. Cell Calcium 2020; 89:102211. [PMID: 32422433 DOI: 10.1016/j.ceca.2020.102211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
Chloride fluxes through the calcium-gated chloride channel Anoctamin-1 (TMEM16A) control blood pressure, secretion of saliva, mucin, insulin, and melatonin, gastrointestinal motility, sperm capacitation and motility, and pain sensation. Calcium activates a myriad of regulatory proteins but how these proteins affect TMEM16A activity is unresolved. Here we show by co-immunoprecipitation that increasing intracellular calcium with ionomycin or by activating sphingosine-1-phosphate receptors, induces coupling of calcium/calmodulin-dependent phosphatase calcineurin and prolyl isomerase FK506-binding protein 12 (FKBP12) to TMEM16A in HEK-293 cells. Application of drugs that target either calcineurin (cyclosporine A) or FKBP12 (tacrolimus known as FK506 and sirolimus known as rapamycin) caused a decrease in TMEM16A activity. In addition, FK506 and BAPTA-AM prevented co-immunoprecipitation between FKBP12 and TMEM16A. FK506 rendered the channel insensitive to cyclosporine A without altering its apparent calcium sensitivity whereas zero intracellular calcium blocked the effect of FK506. Rapamycin decreased TMEM16A activity in cells pre-treated with cyclosporine A or FK506. These results suggest the formation of a TMEM16A-FKBP12-calcineurin complex that regulates channel function. We conclude that upon a cytosolic calcium increase the TMEM16A-FKPB12-calcineurin trimers are assembled. Such hetero-oligomerization enhances TMEM16A channel activity but is not mandatory for activation by calcium.
Collapse
Affiliation(s)
- Alfredo Sánchez-Solano
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - Nancy Corral
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - María Luisa Guzmán-Hernández
- Cátedra CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Ivan Arechiga-Figueroa
- Cátedra CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Silvia Cruz-Rangel
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Universidad Autónoma de San Luis Potosí School of Medicine, Ave. V. Carranza 2405, San Luis Potosí, SLP 78290, Mexico
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico.
| |
Collapse
|
14
|
Liu CZ, Li FY, Lv XF, Ma MM, Li XY, Lin CX, Wang GL, Guan YY. Endophilin A2 regulates calcium-activated chloride channel activity via selective autophagy-mediated TMEM16A degradation. Acta Pharmacol Sin 2020; 41:208-217. [PMID: 31484993 PMCID: PMC7470808 DOI: 10.1038/s41401-019-0298-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
TMEM16A Ca2+-activated chloride channel (CaCC) plays an essential role in vascular homeostasis. In this study we investigated the molecular mechanisms underlying downregulation of TMEM16A CaCC activity during hypertension. In cultured basilar artery smooth muscle cells (BASMCs) isolated from 2k2c renohypertesive rats, treatment with angiotensin II (0.125-1 μM) dose-dependently increased endophilin A2 levels and decreased TMEM16A expression. Similar phenomenon was observed in basilar artery isolated from 2k2c rats. We then used whole-cell recording to examine whether endophilin A2 could regulate TMEM16A CaCC activity in BASMCs and found that knockdown of endophilin A2 significantly enhanced CaCC activity, whereas overexpression of endophilin A2 produced the opposite effect. Overexpression of endophilin A2 did not affect the TMEM16A mRNA level, but markedly decreased TMEM16A protein level in BASMCs by inducing ubiquitination and autophagy of TMEM16A. Ubiquitin-binding receptor p62 (SQSTM1) could bind to ubiquitinated TMEM16A and resulted in a process of TMEM16A proteolysis in autophagosome/lysosome. These data provide new insights into the regulation of TMEM16A CaCC activity by endophilin A2 in BASMCs, which partly explains the mechanism of angiotensin-II-induced TMEM16A inhibition during hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Can-Zhao Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Fei-Ya Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Ming Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiang-Yu Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cai-Xia Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
16
|
Salzer I, Boehm S. Calcium-activated chloride channels: Potential targets for antinociceptive therapy. Int J Biochem Cell Biol 2019; 111:37-41. [PMID: 31005634 DOI: 10.1016/j.biocel.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
The molecular identity of calcium-activated chloride channels (CaCCs) was clarified only some ten years ago when it was linked to the family of "transmembrane proteins of unknown function 16″ (TMEM16). Since then, numerous studies have been conducted both to define their role in physiology and identify their biophysical functions. For the latter, the ultrastructural description of mouse TMEM16 A was a breakthrough. CaCCs were functionally described in a number of different tissues including first-order sensory neurons. The activating rise in intracellular calcium concentration can be caused by an influx of calcium through other calcium permeable ion channels. Calcium release from intracellular stores, mediated by G-protein coupled receptors, also leads to CaCC activation. Prominent inflammatory mediators like bradykinin or serotonin stimulate CaCCs via such a mechanism. The (patho) physiological function of these ion channels renders them promising targets for antinociceptive treatment.
Collapse
Affiliation(s)
- Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| |
Collapse
|
17
|
Nguyen DM, Chen LS, Yu WP, Chen TY. Comparison of ion transport determinants between a TMEM16 chloride channel and phospholipid scramblase. J Gen Physiol 2019; 151:518-531. [PMID: 30670476 PMCID: PMC6445582 DOI: 10.1085/jgp.201812270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023] Open
Abstract
The I-V relation of the TMEM16A channel is linear, whereas that of the TMEM16F scramblase is outwardly rectifying. Nguyen et al. show that rectification of TMEM16A is regulated by the charge of residue 584 but that rectification of TMEM16F is affected by aromatic residues at the equivalent position. Two TMEM16 family members, TMEM16A and TMEM16F, have different ion transport properties. Upon activation by intracellular Ca2+, TMEM16A—a Ca2+-activated Cl− channel—is more selective for anions than cations, whereas TMEM16F—a phospholipid scramblase—appears to transport both cations and anions. Under saturating Ca2+ conditions, the current–voltage (I-V) relationships of these two proteins also differ; the I-V curve of TMEM16A is linear, while that of TMEM16F is outwardly rectifying. We previously found that mutating a positively charged lysine residue (K584) in the ion transport pathway to glutamine converted the linear I-V curve of TMEM16A to an outwardly rectifying curve. Interestingly, the corresponding residue in the outwardly rectifying TMEM16F is also a glutamine (Q559). Here, we examine the ion transport functions of TMEM16 molecules and compare the roles of K584 of TMEM16A and Q559 of TMEM16F in controlling the rectification of their respective I-V curves. We find that rectification of TMEM16A is regulated electrostatically by the side-chain charge on the residue at position 584, whereas the charge on residue 559 in TMEM16F has little effect. Unexpectedly, mutation of Q559 to aromatic amino acid residues significantly alters outward rectification in TMEM16F. These same mutants show reduced Ca2+-induced current rundown (or desensitization) compared with wild-type TMEM16F. A mutant that removes the rundown of TMEM16F could facilitate the study of ion transport mechanisms in this phospholipid scramblase in the same way that a CLC-0 mutant in which inactivation (or closure of the slow gate) is suppressed was used in our previous studies.
Collapse
Affiliation(s)
- Dung M Nguyen
- Graduate Group of Pharmacology and Toxicology, University of California, Davis, Davis, CA
| | - Louisa S Chen
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Wei-Ping Yu
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA .,Department of Neurology, University of California, Davis, Davis, CA
| |
Collapse
|
18
|
Dayal A, Ng SFJ, Grabner M. Ca 2+-activated Cl - channel TMEM16A/ANO1 identified in zebrafish skeletal muscle is crucial for action potential acceleration. Nat Commun 2019; 10:115. [PMID: 30631052 PMCID: PMC6328546 DOI: 10.1038/s41467-018-07918-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
The Ca2+-activated Cl- channel (CaCC) TMEM16A/Anoctamin 1 (ANO1) is expressed in gastrointestinal epithelia and smooth muscle cells where it mediates secretion and intestinal motility. However, ANO1 Cl- conductance has never been reported to play a role in skeletal muscle. Here we show that ANO1 is robustly expressed in the highly evolved skeletal musculature of the euteleost species zebrafish. We characterised ANO1 as bonafide CaCC which is activated close to maximum by Ca2+ ions released from the SR during excitation-contraction (EC) coupling. Consequently, our study addressed the question about the physiological advantage of implementation of ANO1 into the euteleost skeletal-muscle EC coupling machinery. Our results reveal that Cl- influx through ANO1 plays an essential role in restricting the width of skeletal-muscle action potentials (APs) by accelerating the repolarisation phase. Resulting slimmer APs enable higher AP-frequencies and apparently tighter controlled, faster and stronger muscle contractions, crucial for high speed movements.
Collapse
Affiliation(s)
- Anamika Dayal
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| | - Shu Fun J Ng
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Manfred Grabner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
19
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol 2018; 234:7856-7873. [PMID: 30515811 DOI: 10.1002/jcp.27865] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
20
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Dai WJ, Qiu J, Sun J, Ma CL, Huang N, Jiang Y, Zeng J, Ren BC, Li WC, Li YH. Downregulation of microRNA-9 reduces inflammatory response and fibroblast proliferation in mice with idiopathic pulmonary fibrosis through the ANO1-mediated TGF-β-Smad3 pathway. J Cell Physiol 2018; 234:2552-2565. [PMID: 30144053 DOI: 10.1002/jcp.26961] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates and unfavorable treatment regimens. In the current study, we identified the expression of microRNA-9 (miR-9) and anoctamin-1 (ANO1) in IPF mouse models induced by bleomycin, and their effects on inflammation and fibroblast proliferation through the transforming growth factor-β (TGF-β)-Smad3 pathway. To verify the targeting relationship between miR-9 and ANO1, we used bioinformatics prediction and conducted a dual-luciferase reporter gene assay. The underlying regulatory mechanisms of miR-9 and the target gene ANO1 were investigated mainly with the treatment of miR-9 mimic, miR-9 inhibitor, or siRNA against ANO1 in fibroblasts isolated from IPF mice. Enzyme-linked immunosorbent assay was performed to investigate the effect of miR-9 or ANO1 on inflammatory factors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to detect fibroblast proliferation and apoptosis. Reverse transcription quantitative polymerase chain reaction and western blot analysis were applied to measure the expression of the TGF-β-Smad3 pathway-related genes. The determination of luciferase activity suggested that miR-9 targets ANO1. Upregulation of miR-9 or silencing of ANO1 intensified inflammation in IPF, promoted proliferation and inhibited apoptotic ability of lung fibroblasts. MiR-9 negatively modulated ANO1, and thus activated the TGF-β-Smad3 pathway. These findings suggest that miR-9 can indirectly activate the TGF-β-Smad3 pathway by inhibiting the expression of ANO1, thereby aggravating inflammation, promotes proliferation and suppressing apoptosis of lung fibroblasts in mice models of IPF.
Collapse
Affiliation(s)
- Wen-Jing Dai
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing Qiu
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Sun
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chun-Lan Ma
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Na Huang
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Jiang
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zeng
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bo-Chen Ren
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wan-Cheng Li
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yun-Hui Li
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
22
|
Falzone ME, Malvezzi M, Lee BC, Accardi A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol 2018; 150:933-947. [PMID: 29915161 PMCID: PMC6028493 DOI: 10.1085/jgp.201711957] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Falzone et al. interpret the mechanisms underlying the activity of TMEM16 family members from recent structural and functional work. The TMEM16 family of membrane proteins is composed of both Ca2+-gated Cl− channels and Ca2+-dependent phospholipid scramblases. The functional diversity of TMEM16s underlies their involvement in numerous signal transduction pathways that connect changes in cytosolic Ca2+ levels to cellular signaling networks. Indeed, defects in the function of several TMEM16s cause a variety of genetic disorders, highlighting their fundamental pathophysiological importance. Here, we review how our mechanistic understanding of TMEM16 function has been shaped by recent functional and structural work. Remarkably, the recent determination of near-atomic-resolution structures of TMEM16 proteins of both functional persuasions has revealed how relatively minimal rearrangements in the substrate translocation pathway are sufficient to precipitate the dramatic functional differences that characterize the family. These structures, when interpreted in the light of extensive functional analysis, point to an unusual mechanism for Ca2+-dependent activation of TMEM16 proteins in which substrate permeation is regulated by a combination of conformational rearrangements and electrostatics. These breakthroughs pave the way to elucidate the mechanistic bases of ion and lipid transport by the TMEM16 proteins and unravel the molecular links between these transport activities and their function in human pathophysiology.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, New York, NY
| | - Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Byoung-Cheol Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, New York, NY .,Department of Anesthesiology, Weill Cornell Medical School, New York, NY.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical School, New York, NY
| |
Collapse
|
23
|
Rottgen TS, Nickerson AJ, Rajendran VM. Calcium-Activated Cl - Channel: Insights on the Molecular Identity in Epithelial Tissues. Int J Mol Sci 2018; 19:E1432. [PMID: 29748496 PMCID: PMC5983713 DOI: 10.3390/ijms19051432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca2+-activated Cl− secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca2+-activated Cl− channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca2+-sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.
Collapse
Affiliation(s)
- Trey S Rottgen
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Andrew J Nickerson
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Vazhaikkurichi M Rajendran
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
24
|
Kim CS, Ahmad S, Wu T, Walton WG, Redinbo MR, Tarran R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J 2018; 32:2478-2491. [PMID: 29295861 PMCID: PMC5901381 DOI: 10.1096/fj.201701126r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023]
Abstract
Cystic fibrosis (CF) is a common genetic disease with significantly increased mortality. CF airways exhibit ion transport abnormalities, including hyperactivity of the epithelial Na+ channel (ENaC). Short-palate lung and nasal epithelial clone 1 (SPLUNC1) is a multifunctional innate defense protein that is secreted into the airway lumen. We have previously demonstrated that SPLUNC1 binds to and inhibits ENaC to maintain fluid homeostasis in airway epithelia and that this process fails in CF airways. Despite this, how SPLUNC1 actually regulates ENaC is unknown. Here, we found that SPLUNC1 caused αγ-ENaC to internalize, whereas SPLUNC1 and β-ENaC remained at the plasma membrane. Additional studies revealed that SPLUNC1 increased neural precursor cell-expressed developmentally down-regulated protein 4-2-dependent ubiquitination of α- but not β- or γ-ENaC. We also labeled intracellular ENaC termini with green fluorescent protein and mCherry, and found that extracellular SPLUNC1 altered intracellular ENaC Forster resonance energy transfer. Taken together, our data indicate that SPLUNC1 is an allosteric regulator of ENaC that dissociates αβγ-ENaC to generate a new SPLUNC1-β-ENaC complex. These data indicate a novel mode for regulating ENaC at the plasma membrane.-Kim, C. S., Ahmad, S., Wu, T., Walton, W. G., Redinbo, M. R., Tarran, R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel.
Collapse
Affiliation(s)
- Christine Seulki Kim
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Saira Ahmad
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tongde Wu
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William G. Walton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R. Redinbo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Affiliation(s)
- H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
26
|
Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:299-312. [PMID: 29277655 DOI: 10.1016/j.bbalip.2017.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
Abstract
The TMEM16A-mediated Ca2+-activated Cl- current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca2+. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.
Collapse
|
27
|
Yamamura H, Nishimura K, Hagihara Y, Suzuki Y, Imaizumi Y. TMEM16A and TMEM16B channel proteins generate Ca 2+-activated Cl - current and regulate melatonin secretion in rat pineal glands. J Biol Chem 2017; 293:995-1006. [PMID: 29187602 DOI: 10.1074/jbc.ra117.000326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
Pinealocytes regulate circadian rhythm by synthesizing and secreting melatonin. These cells generate action potentials; however, the contribution of specific ion channels to melatonin secretion from pinealocytes remains unclear. In this study, the involvement and molecular identity of Ca2+-activated Cl- (ClCa) channels in the regulation of melatonin secretion were examined in rat pineal glands. Treatment with the ClCa channel blockers, niflumic acid or T16Ainh-A01, significantly reduced melatonin secretion in pineal glands. After pineal K+ currents were totally blocked under whole-cell patch clamp conditions, depolarization and subsequent repolarization induced a slowly activating outward current and a substantial inward tail current, respectively. Both of these current changes were dependent on intracellular Ca2+ concentration and inhibited by niflumic acid and T16Ainh-A01. Quantitative real-time PCR, Western blotting, and immunocytochemical analyses revealed that TMEM16A and TMEM16B were highly expressed in pineal glands. siRNA knockdown of TMEM16A and/or TMEM16B showed that both channels contribute to ClCa currents in pinealocytes. Conversely, co-expression of TMEM16A and TMEM16B channels or the expression of this tandem channel in HEK293 cells mimicked the electrophysiological characteristics of ClCa currents in pinealocytes. Moreover, bimolecular fluorescence complementation, FRET, and co-immunoprecipitation experiments suggested that TMEM16A and TMEM16B can form heteromeric channels, as well as homomeric channels. In conclusion, pineal ClCa channels are composed of TMEM16A and TMEM16B subunits, and these fluxes regulate melatonin secretion in pineal glands.
Collapse
Affiliation(s)
- Hisao Yamamura
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kaori Nishimura
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yumiko Hagihara
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuji Imaizumi
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
28
|
Benedetto R, Ousingsawat J, Wanitchakool P, Zhang Y, Holtzman MJ, Amaral M, Rock JR, Schreiber R, Kunzelmann K. Epithelial Chloride Transport by CFTR Requires TMEM16A. Sci Rep 2017; 7:12397. [PMID: 28963502 PMCID: PMC5622110 DOI: 10.1038/s41598-017-10910-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-activated Cl− currents, but unexpectedly also abrogates CFTR-mediated Cl− secretion and completely abolishes cAMP-activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.
Collapse
Affiliation(s)
- Roberta Benedetto
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Podchanart Wanitchakool
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Margarida Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016, Lisboa, Portugal
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, USA
| | - Rainer Schreiber
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| |
Collapse
|
29
|
Truong EC, Phuan PW, Reggi AL, Ferrera L, Galietta LJ, Levy SE, Moises AC, Cil O, Diez-Cecilia E, Lee S, Verkman AS, Anderson MO. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). J Med Chem 2017; 60:4626-4635. [PMID: 28493701 PMCID: PMC5516794 DOI: 10.1021/acs.jmedchem.7b00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.
Collapse
Affiliation(s)
- Eric C. Truong
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Puay W. Phuan
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Amanda L. Reggi
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Loretta Ferrera
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, ITALY
| | - Luis J.V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), ITALY
| | - Sarah E. Levy
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Alannah C. Moises
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Onur Cil
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Elena Diez-Cecilia
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| | - Sujin Lee
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco CA, 94143-0521 USA
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco CA, 94132-4136 USA
| |
Collapse
|
30
|
Paulino C, Neldner Y, Lam AKM, Kalienkova V, Brunner JD, Schenck S, Dutzler R. Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. eLife 2017; 6:e26232. [PMID: 28561733 PMCID: PMC5470873 DOI: 10.7554/elife.26232] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
The calcium-activated chloride channel TMEM16A is a member of a conserved protein family that comprises ion channels and lipid scramblases. Although the structure of the scramblase nhTMEM16 has defined the architecture of the family, it was unknown how a channel has adapted to cope with its distinct functional properties. Here we have addressed this question by the structure determination of mouse TMEM16A by cryo-electron microscopy and a complementary functional characterization. The protein shows a similar organization to nhTMEM16, except for changes at the site of catalysis. There, the conformation of transmembrane helices constituting a membrane-spanning furrow that provides a path for lipids in scramblases has changed to form an enclosed aqueous pore that is largely shielded from the membrane. Our study thus reveals the structural basis of anion conduction in a TMEM16 channel and it defines the foundation for the diverse functional behavior in the TMEM16 family.
Collapse
Affiliation(s)
- Cristina Paulino
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andy KM Lam
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | | | - Stephan Schenck
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Peckys DB, Stoerger C, Latta L, Wissenbach U, Flockerzi V, de Jonge N. The stoichiometry of the TMEM16A ion channel determined in intact plasma membranes of COS-7 cells using liquid-phase electron microscopy. J Struct Biol 2017; 199:102-113. [PMID: 28559167 DOI: 10.1016/j.jsb.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/29/2022]
Abstract
TMEM16A is a membrane protein forming a calcium-activated chloride channel. A homodimeric stoichiometry of the TMEM16 family of proteins has been reported but an important question is whether the protein resides always in a dimeric configuration in the plasma membrane or whether monomers of the protein are also present in its native state within in the intact plasma membrane. We have determined the stoichiometry of the human (h)TMEM16A within whole COS-7 cells in liquid. For the purpose of detecting TMEM16A subunits, single proteins were tagged by the streptavidin-binding peptide within extracellular loops accessible by streptavidin coated quantum dot (QD) nanoparticles. The labeled proteins were then imaged using correlative light microscopy and environmental scanning electron microscopy (ESEM) using scanning transmission electron microscopy (STEM) detection. The locations of 19,583 individual proteins were determined of which a statistical analysis using the pair correlation function revealed the presence of a dimeric conformation of the protein. The amounts of detected label pairs and single labels were compared between experiments in which the TMEM16A SBP-tag position was varied, and experiments in which tagged and non-tagged TMEM16A proteins were present. It followed that hTMEM16A resides in the plasma membrane as dimer only and is not present as monomer. This strategy may help to elucidate the stoichiometry of other membrane protein species within the context of the intact plasma membrane in future.
Collapse
Affiliation(s)
- Diana B Peckys
- Department of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Christof Stoerger
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Lorenz Latta
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Saarland University, 66123 Saarbrücken, Germany; Department of Physics, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
32
|
Kamaleddin MA. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J Cell Physiol 2017; 233:787-798. [PMID: 28121009 DOI: 10.1002/jcp.25823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl- and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl- flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Sala-Rabanal M, Yurtsever Z, Berry KN, Nichols CG, Brett TJ. Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 2017; 292:9164-9174. [PMID: 28420732 DOI: 10.1074/jbc.m117.788232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Zeynep Yurtsever
- Biochemistry Program.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kayla N Berry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Medical Scientist Training Program, and
| | - Colin G Nichols
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Tom J Brett
- From the Center for the Investigation of Membrane Excitability Diseases, .,Department of Cell Biology and Physiology.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
34
|
Abstract
UNLABELLED Transmembrane protein 16A (TMEM16A) regulates a wide variety of cellular activities, including epithelial fluid secretion and maintenance of ion homeostasis. Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, is one of the major causes of acute lung injury (ALI). In this study, we investigated the effects of LPS on the expression of TMEM16A in LA795 cells and mouse lung tissue and the potential mechanism. RESULT We detected the expression of TMEM16A in LA795 cells and mouse lung tissue by RT-PCR, Western blot, and RNA interference techniques. TMEM16A expression was significantly increased by LPS stimulation in LA795 cells and in mouse lung tissue. Moreover, the LPS-induced TMEM16A expression enhancement in lung tissue was much more prominent in the alveolar epithelial region than in bigger airway epithelial cells. The typical TMEM16A current was recorded, and LPS treatment significantly enhances the current amplitude in LA795 cells. TMEM16A shRNA or TMEM16A inhibitor (T16Ainh-A01) did not affect alveolar fluid clearance (AFC), while co-application of T16Ainh-A01 induced a stronger AFC inhibition than LPS alone. LPS notably and synchronously enhanced Akt phosphorylation (p-Akt) and TMEM16A expression in a time-dependent manner in LA795 cells. Taken together, our results suggest that TMEM16A maybe plays an important role in pathological conditions of LPS-induced ALI as a protective protein.
Collapse
|
35
|
Pifferi S. Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels. PLoS One 2017; 12:e0169572. [PMID: 28046119 PMCID: PMC5207786 DOI: 10.1371/journal.pone.0169572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
TMEM16A and TMEM16B encode for Ca2+-activated Cl− channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B.
Collapse
Affiliation(s)
- Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- * E-mail:
| |
Collapse
|
36
|
Scudieri P, Musante I, Gianotti A, Moran O, Galietta LJV. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity. Sci Rep 2016; 6:38788. [PMID: 27929144 PMCID: PMC5144075 DOI: 10.1038/srep38788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl− channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl− transport.
Collapse
Affiliation(s)
- Paolo Scudieri
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy.,Telethon Institute for Genetics and Medicine (Tigem), Pozzuoli, Italy
| | - Ilaria Musante
- Telethon Institute for Genetics and Medicine (Tigem), Pozzuoli, Italy
| | - Ambra Gianotti
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Luis J V Galietta
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy.,Telethon Institute for Genetics and Medicine (Tigem), Pozzuoli, Italy
| |
Collapse
|
37
|
Jeng G, Aggarwal M, Yu WP, Chen TY. Independent activation of distinct pores in dimeric TMEM16A channels. J Gen Physiol 2016; 148:393-404. [PMID: 27799319 PMCID: PMC5089935 DOI: 10.1085/jgp.201611651] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023] Open
Abstract
The TMEM16 family encompasses Ca2+-activated Cl- channels (CaCCs) and lipid scramblases. These proteins are formed by two identical subunits, as confirmed by the recently solved crystal structure of a TMEM16 lipid scramblase. However, the high-resolution structure did not provide definitive information regarding the pore architecture of the TMEM16 channels. In this study, we express TMEM16A channels constituting two covalently linked subunits with different Ca2+ affinities. The dose-response curve of the heterodimer appears to be a weighted sum of two dose-response curves-one corresponding to the high-affinity subunit and the other to the low-affinity subunit. However, fluorescence resonance energy transfer experiments suggest that the covalently linked heterodimeric proteins fold and assemble as one molecule. Together these results suggest that activation of the two TMEM16A subunits likely activate independently of each other. The Ca2+ activation curve for the heterodimer at a low Ca2+ concentration range ([Ca2+] < 5 µM) is similar to that of the wild-type channel-the Hill coefficients in both cases are significantly greater than one. This suggests that Ca2+ binding to one subunit of TMEM16A is sufficient to activate the channel and that each subunit contains more than one Ca2+-binding site. We also take advantage of the I-V curve rectification that results from mutation of a pore residue to address the pore architecture of the channel. By introducing the pore mutation and the mutation that alters Ca2+ affinity in the same or different subunits, we demonstrate that activation of different subunits appears to be associated with the opening of different pores. These results suggest that the TMEM16A CaCC may also adopt a "double-barrel" pore architecture, similar to that found in CLC channels and transporters.
Collapse
Affiliation(s)
- Grace Jeng
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Muskaan Aggarwal
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Wei-Ping Yu
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA 95618 .,Department of Neurology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
38
|
Ma K, Wang H, Yu J, Wei M, Xiao Q. New Insights on the Regulation of Ca 2+ -Activated Chloride Channel TMEM16A. J Cell Physiol 2016; 232:707-716. [PMID: 27682822 DOI: 10.1002/jcp.25621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
TMEM16A, also known as anoctamin 1, is a recently identified Ca2+ -activated chloride channel and the first member of a 10-member TMEM16 family. TMEM16A dysfunction is implicated in many diseases such as cancer, hypertension, and cystic fibrosis. TMEM16A channels are well known to be dually regulated by voltage and Ca2+ . In addition, recent studies have revealed that TMEM16A channels are regulated by many molecules such as calmodulin, protons, cholesterol, and phosphoinositides, and a diverse range of stimuli such as thermal and mechanical stimuli. A better understanding of the regulatory mechanisms of TMEM16A is important to understand its physiological and pathological role. Recently, the crystal structure of a TMEM16 family member from the fungus Nectria haematococcaten (nhTMEM16) is discovered, and provides valuable information for studying the structure and function of TMEM16A. In this review, we discuss the structure and function of TMEM16A channels based on the crystal structure of nhTMEM16A and focus on the regulatory mechanisms of TMEM16A channels. J. Cell. Physiol. 232: 707-716, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
39
|
The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 2016; 473:3237-52. [PMID: 27422782 DOI: 10.1042/bcj20160312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
Collapse
|
40
|
Structural basis for phospholipid scrambling in the TMEM16 family. Curr Opin Struct Biol 2016; 39:61-70. [PMID: 27295354 DOI: 10.1016/j.sbi.2016.05.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/28/2016] [Accepted: 05/30/2016] [Indexed: 11/21/2022]
Abstract
Upon activation, lipid scramblases dissipate the lipid asymmetry of membranes, in an ATP-independent manner, by catalyzing flip-flop of lipids between the leaflets. The molecular identities of these proteins long remained obscure, but in recent years the TMEM16 family of proteins has been found to constitute Ca2+-activated scramblases. Recently, the X-ray structure of a fungal TMEM16 homologue has provided insight into the architecture of this protein family and into potential scrambling mechanisms. The protein forms homodimers with each subunit containing a membrane-spanning hydrophilic cleft. This region is of sufficient size to harbor polar headgroups on their way across the membrane and thus may lower the energetic barrier for the diffusion of lipids between the two leaflets of the bilayer. A regulatory Ca2+ binding site located within the membrane adjacent to this hydrophobic cleft is responsible for activation by yet unknown mechanisms.
Collapse
|
41
|
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor. Sci Rep 2016; 6:27390. [PMID: 27278076 PMCID: PMC4899698 DOI: 10.1038/srep27390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.
Collapse
|
42
|
Ishihara K, Suzuki J, Nagata S. Role of Ca(2+) in the Stability and Function of TMEM16F and 16K. Biochemistry 2016; 55:3180-8. [PMID: 27227820 DOI: 10.1021/acs.biochem.6b00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are 10 transmembrane protein (TMEM) 16-family proteins in humans and mice. Among them, TMEM16F acts as a Ca(2+)-dependent phospholipid scramblase at the plasma membrane. However, how Ca(2+) activates TMEM16F's phospholipid-scramblase activity has not been elucidated. Here we found that in the presence of Ca(2+), TMEM16K (whose function is unknown) directly binds Ca(2+) to form a stable complex that can be detected by blue-native polyacrylamide gel electrophoresis. In the absence of Ca(2+), TMEM16K and TMEM16F aggregated, suggesting that their structure is stabilized by Ca(2+). Comprehensive mutagenesis of acidic residues in TMEM16K's cytoplasmic and transmembrane regions identified five residues that are critical for binding Ca(2+). These residues were well conserved between TMEM16F and 16K, and point mutations of these residues in TMEM16F reduced its ability to support Ca(2+)-dependent phospholipid scrambling. Our results suggest that Ca(2+) binds TMEM16F directly and induces conformational changes that support its stability and function.
Collapse
Affiliation(s)
- Kenji Ishihara
- Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University , 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun Suzuki
- Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University , 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University , 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Lee YS, Lee JK, Bae Y, Lee BS, Kim E, Cho CH, Ryoo K, Yoo J, Kim CH, Yi GS, Lee SG, Lee CJ, Kang SS, Hwang EM, Park JY. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells. Sci Rep 2016; 6:26413. [PMID: 27212225 PMCID: PMC4876403 DOI: 10.1038/srep26413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis.
Collapse
Affiliation(s)
- Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea.,Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.,Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae Kwang Lee
- Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eunju Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea.,Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, College of Korean Medicine, KHU-KIST department of Convergging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - C Justin Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
44
|
Piechowicz KA, Truong EC, Javed KM, Chaney RR, Wu JY, Phuan PW, Verkman AS, Anderson MO. Synthesis and evaluation of 5,6-disubstituted thiopyrimidine aryl aminothiazoles as inhibitors of the calcium-activated chloride channel TMEM16A/Ano1. J Enzyme Inhib Med Chem 2016; 31:1362-8. [PMID: 26796863 DOI: 10.3109/14756366.2015.1135912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protein 16A (TMEM16A), also called Ano1, is a Ca(2+) activated Cl(-) channel expressed widely in mammalian epithelia, as well as in vascular smooth muscle and some tumors and electrically excitable cells. TMEM16A inhibitors have potential utility for treatment of disorders of epithelial fluid and mucus secretion, hypertension, some cancers and other diseases. 4-Aryl-2-amino thiazole T16Ainh-01 was previously identified by high-throughput screening. Here, a library of 47 compounds were prepared that explored the 5,6-disubstituted pyrimidine scaffold found in T16Ainh-01. TMEM16A inhibition activity was measured using fluorescence plate reader and short-circuit current assays. We found that very little structural variation of T16Ainh-01 was tolerated, with most compounds showing no activity at 10 μM. The most potent compound in the series, 9bo, which substitutes 4-methoxyphenyl in T16Ainh-01 with 2-thiophene, had IC50 ∼1 μM for inhibition of TMEM16A chloride conductance.
Collapse
Affiliation(s)
- Katarzyna A Piechowicz
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Eric C Truong
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Kashif M Javed
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Rachelle R Chaney
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Johnny Y Wu
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| | - Puay W Phuan
- b Departments of Medicine and Physiology , University of California, San Francisco , San Francisco , CA , USA
| | - Alan S Verkman
- b Departments of Medicine and Physiology , University of California, San Francisco , San Francisco , CA , USA
| | - Marc O Anderson
- a Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA and
| |
Collapse
|
45
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
46
|
Hoffmann EK, Sørensen BH, Sauter DPR, Lambert IH. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels (Austin) 2015; 9:380-96. [PMID: 26569161 DOI: 10.1080/19336950.2015.1089007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g., secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular functions as well as their role in cancer and drug resistance.
Collapse
Affiliation(s)
- Else K Hoffmann
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Belinda H Sørensen
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Daniel P R Sauter
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Ian H Lambert
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| |
Collapse
|
47
|
Deba F, Bessac BF. Anoctamin-1 Cl(-) channels in nociception: activation by an N-aroylaminothiazole and capsaicin and inhibition by T16A[inh]-A01. Mol Pain 2015; 11:55. [PMID: 26364309 PMCID: PMC4567824 DOI: 10.1186/s12990-015-0061-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022] Open
Abstract
Background Anoctamin 1 (ANO1 or TMEM16A) Ca2+-gated Cl− channels of nociceptor neurons are emerging as important molecular components of peripheral pain transduction. At physiological intracellular Cl− concentrations ([Cl−]i) sensory neuronal Cl− channels are excitatory. The ability of sensory neuronal ANO1 to trigger action potentials and subsequent nocifensive (pain) responses were examined by direct activation with an N-aroylaminothiazole. ANO1 channels are also activated by intracellular Ca2+ ([Ca2+]i) from sensory neuronal TRPV1 (transient-receptor-potential vallinoid 1) ion channels and other noxicant receptors. Thus, sensory neuronal ANO1 can facilitate TRPV1 triggering of action potentials, resulting in enhanced nociception. This was investigated by reducing ANO1 facilitation of TRPV1 effects with: (1) T16A[inh]-A01 ANO1-inhibitor reagent at physiological [Cl−]i and (2) by lowering sensory neuronal [Cl−]i to switch ANO1 to be inhibitory. Results ANO1 effects on action potential firing of mouse dorsal root ganglia (DRG) neurons in vitro and mouse nocifensive behaviors in vivo were examined with an N-aroylaminothiazole ANO1-activator (E-act), a TRPV1-activator (capsaicin) and an ANO1-inhibitor (T16A[inh]-A01). At physiological [Cl−]i (40 mM), E-act (10 µM) increased current sizes (in voltage-clamp) and action potential firing (in current-clamp) recorded in DRG neurons using whole-cell electrophysiology. To not disrupt TRPV1 carried-Ca2+ activation of ANO1 in DRG neurons, ANO1 modulation of capsaicin-induced action potentials was measured by perforated-patch (Amphotericin–B) current-clamp technique. Subsequently, at physiological [Cl−]i, capsaicin (15 µM)-induced action potential firing was diminished by co-application with T16A[inh]-A01 (20 µM). Under conditions of low [Cl−]i (10 mM), ANO1 actions were reversed. Specifically, E-act did not trigger action potentials; however, capsaicin-induced action potential firing was inhibited by co-application of E-act, but was unaffected by co-application of T16A[inh]-A01. Nocifensive responses of mice hind paws were dramatically induced by subcutaneous injections of E-act (5 mM) or capsaicin (50 µM). The nocifensive responses were attenuated by co-injection with T16A[inh]-A01 (1.3 mM). Conclusions An ANO1-activator (E-act) induced [Cl−]i-dependent sensory neuronal action potentials and mouse nocifensive behaviors; thus, direct ANO1 activation can induce pain perception. ANO1-inhibition attenuated capsaicin-triggering of action potentials and capsaicin-induced nocifensive behaviors. These results indicate ANO1 channels are involved with TRPV1 actions in sensory neurons and inhibition of ANO1 could be a novel means of inducing analgesia. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| | - Bret F Bessac
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| |
Collapse
|
48
|
TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca2+ and cell volume. Trends Biochem Sci 2015; 40:535-43. [DOI: 10.1016/j.tibs.2015.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023]
|
49
|
Yang T, Colecraft HM. Calmodulin regulation of TMEM16A and 16B Ca(2+)-activated chloride channels. Channels (Austin) 2015; 10:38-44. [PMID: 26083059 DOI: 10.1080/19336950.2015.1058455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ca(2+)-activated chloride channels encoded by TMEM16A and 16B are important for regulating epithelial mucus secretion, cardiac and neuronal excitability, smooth muscle contraction, olfactory transduction, and cell proliferation. Whether and how the ubiquitous Ca(2+) sensor calmodulin (CaM) regulates the activity of TMEM16A and 16B channels has been controversial and the subject of an ongoing debate. Recently, using a bioengineering approach termed ChIMP (Channel Inactivation induced by Membrane-tethering of an associated Protein) we argued that Ca(2+)-free CaM (apoCaM) is pre-associated with functioning TMEM16A and 16B channel complexes in live cells. Further, the pre-associated apoCaM mediates Ca(2+)-dependent sensitization of activation (CDSA) and Ca(2+)-dependent inactivation (CDI) of some TMEM16A splice variants. In this review, we discuss these findings in the context of previous and recent results relating to Ca(2+)-dependent regulation of TMEM16A/16B channels and the putative role of CaM. We further discuss potential future directions for these nascent ideas on apoCaM regulation of TMEM16A/16B channels, noting that such future efforts will benefit greatly from the pioneering work of Dr. David T. Yue and colleagues on CaM regulation of voltage-dependent calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- a Department of Physiology and Cellular Biophysics ; Columbia University; College of Physicians and Surgeons ; New York , NY USA
| | - Henry M Colecraft
- a Department of Physiology and Cellular Biophysics ; Columbia University; College of Physicians and Surgeons ; New York , NY USA
| |
Collapse
|
50
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|