1
|
Maria-Solano MA, Serrano-Hervás E, Romero-Rivera A, Iglesias-Fernández J, Osuna S. Role of conformational dynamics in the evolution of novel enzyme function. Chem Commun (Camb) 2018; 54:6622-6634. [PMID: 29780987 PMCID: PMC6009289 DOI: 10.1039/c8cc02426j] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022]
Abstract
The free energy landscape concept that describes enzymes as an ensemble of differently populated conformational sub-states in dynamic equilibrium is key for evaluating enzyme activity, enantioselectivity, and specificity. Mutations introduced in the enzyme sequence can alter the populations of the pre-existing conformational states, thus strongly modifying the enzyme ability to accommodate alternative substrates, revert its enantiopreferences, and even increase the activity for some residual promiscuous reactions. In this feature article, we present an overview of the current experimental and computational strategies to explore the conformational free energy landscape of enzymes. We provide a series of recent publications that highlight the key role of conformational dynamics for the enzyme evolution towards new functions and substrates, and provide some perspectives on how conformational dynamism should be considered in future computational enzyme design protocols.
Collapse
Affiliation(s)
- Miguel A. Maria-Solano
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Eila Serrano-Hervás
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Adrian Romero-Rivera
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Javier Iglesias-Fernández
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
| | - Sílvia Osuna
- CompBioLab Group
, Institut de Química Computacional i Catàlisi and Departament de Química
, Universitat de Girona
,
Carrer Maria Aurèlia Capmany, 69
, 17003 Girona
, Catalonia
, Spain
.
- ICREA
,
Pg. Lluís Companys 23
, 08010 Barcelona
, Spain
| |
Collapse
|
2
|
Romero-Rivera A, Iglesias-Fernández J, Osuna S. Exploring the Conversion of ad-Sialic Acid Aldolase into al-KDO Aldolase. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona; Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Javier Iglesias-Fernández
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona; Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona; Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
- ICREA; Passeig Lluís Companys, 23 08010 Barcelona Spain
| |
Collapse
|
3
|
Benito-Alifonso D, Tremell S, Sadler JC, Berry M, Galan MC. Imidazolium-tagged glycan probes for non-covalent labeling of live cells. Chem Commun (Camb) 2016; 52:4906-9. [DOI: 10.1039/c5cc10040b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use imidazolium tagged-mannosamine derivative for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of live cells is reported.
Collapse
Affiliation(s)
| | | | | | - Monica Berry
- School of Physics
- University of Bristol
- NSQI
- Bristol BS8 1F
- UK
| | | |
Collapse
|
4
|
Spickermann D, Hausmann S, Degering C, Schwaneberg U, Leggewie C. Engineering of Highly Selective Variants ofParvibaculum lavamentivoransAlcohol Dehydrogenase. Chembiochem 2014; 15:2050-2. [DOI: 10.1002/cbic.201402216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Indexed: 11/05/2022]
|
5
|
First functional and mutational analysis of group 3 N-acetylneuraminate lyases from Lactobacillus antri and Lactobacillus sakei 23K. PLoS One 2014; 9:e96976. [PMID: 24817128 PMCID: PMC4016182 DOI: 10.1371/journal.pone.0096976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/15/2014] [Indexed: 01/17/2023] Open
Abstract
N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1.
Collapse
|
6
|
North RA, Kessans SA, Atkinson SC, Suzuki H, Watson AJA, Burgess BR, Angley LM, Hudson AO, Varsani A, Griffin MDW, Fairbanks AJ, Dobson RCJ. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:306-12. [PMID: 23519810 PMCID: PMC3606580 DOI: 10.1107/s1744309113003060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
Abstract
The enzyme N-acetylneuraminate lyase (EC 4.1.3.3) is involved in the metabolism of sialic acids. Specifically, the enzyme catalyzes the retro-aldol cleavage of N-acetylneuraminic acid to form N-acetyl-D-mannosamine and pyruvate. Sialic acids comprise a large family of nine-carbon amino sugars, all of which are derived from the parent compound N-acetylneuraminic acid. In recent years, N-acetylneuraminate lyase has received considerable attention from both mechanistic and structural viewpoints and has been recognized as a potential antimicrobial drug target. The N-acetylneuraminate lyase gene was cloned from methicillin-resistant Staphylococcus aureus genomic DNA, and recombinant protein was expressed and purified from Escherichia coli BL21 (DE3). The enzyme crystallized in a number of crystal forms, predominantly from PEG precipitants, with the best crystal diffracting to beyond 1.70 Å resolution in space group P2₁. Molecular replacement indicates the presence of eight monomers per asymmetric unit. Understanding the structural biology of N-acetylneuraminate lyase in pathogenic bacteria, such as methicillin-resistant S. aureus, will provide insights for the development of future antimicrobials.
Collapse
Affiliation(s)
- Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Andrew J. A. Watson
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Benjamin R. Burgess
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Lauren M. Angley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Arvind Varsani
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Antony J. Fairbanks
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|