1
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C. M. Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A. Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
3
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Histoplasma capsulatum Activates Hematopoietic Stem Cells and Their Progenitors through a Mechanism Dependent on TLR2, TLR4, and Dectin-1. J Fungi (Basel) 2022; 8:jof8101108. [PMID: 36294673 PMCID: PMC9604687 DOI: 10.3390/jof8101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs), a multipotent and self-renewing population responsible for the generation and maintenance of blood cells, have been the subject of numerous investigations due to their therapeutic potential. It has been shown that these cells are able to interact with pathogens through the TLRs that they express on their surface, affecting the hematopoiesis process. However, the interaction between hematopoietic stem and progenitor cells (HSPC) with fungal pathogens such as Histoplasma capsulatum has not been studied. Therefore, the objective of the present study was to determine if the interaction of HSPCs with H. capsulatum yeasts affects the hematopoiesis, activation, or proliferation of these cells. The results indicate that HSPCs are able to adhere to and internalize H. capsulatum yeasts through a mechanism dependent on TLR2, TLR4, and Dectin-1; however, this process does not affect the survival of the fungus, and, on the contrary, such interaction induces a significant increase in the expression of IL-1β, IL-6, IL-10, IL-17, TNF-α, and TGF-β, as well as the immune mediators Arg-1 and iNOS. Moreover, H. capsulatum induces apoptosis and alters HSPC proliferation. These findings suggest that H. capsulatum directly modulates the immune response exerted by HPSC through PRRs, and this interaction could directly affect the process of hematopoiesis, a fact that could explain clinical manifestations such as anemia and pancytopenia in patients with severe histoplasmosis, especially in those with fungal spread to the bone marrow.
Collapse
|
5
|
Luna-Rodríguez CE, González GM, Flores-Maldonado OE, Treviño-Rangel R, Rosas-Taraco AG, Becerril-García MA. Early production of proinflammatory cytokines in response to Scedosporium apiospermum during murine pulmonary infection. Microb Pathog 2022; 170:105718. [PMID: 35961485 DOI: 10.1016/j.micpath.2022.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Scedosporium apiospermum is an opportunistic pathogen that can cause pulmonary infections in both immunosuppressive and immunocompetent patients. Cytokines are molecules that mediate the immune response to promote or eliminate fungal infections. In this work, we evaluated the cytokines profile in the lung and serum of mice infected with Scedosporium apiospermum. We found early production of IL-6, IL-1β and TNF-α cytokines in the lung of infected mice during the first 5 days of infection. We suggest that release of pro-inflammatory cytokines could play a role in the control of fungal invasion.
Collapse
Affiliation(s)
- Carolina E Luna-Rodríguez
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Orlando E Flores-Maldonado
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Rogelio Treviño-Rangel
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Adrián G Rosas-Taraco
- Departamento de Inmunología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Miguel A Becerril-García
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|
6
|
Tamez-Castrellón AK, van der Beek SL, López-Ramírez LA, Martínez-Duncker I, Lozoya-Pérez NE, van Sorge NM, Mora-Montes HM. Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction. Cell Surf 2021; 7:100058. [PMID: 34308006 PMCID: PMC8258688 DOI: 10.1016/j.tcsw.2021.100058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Sporotrichosis is a fungal disease caused by the members of the Sporothrix pathogenic clade, and one of the etiological agents is Sporothrix schenckii. The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the S. schenckii-host interaction. We identified and silenced in S. schenckii a functional ortholog of the bacterial rmlD gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. RmlD silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the RmlD silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the S. schenckii virulence in the G. mellonella model of infection.
Collapse
Affiliation(s)
- Alma K. Tamez-Castrellón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Samantha L. van der Beek
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Nina M. van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| |
Collapse
|
7
|
Biochemical and structural studies of target lectin SapL1 from the emerging opportunistic microfungus Scedosporium apiospermum. Sci Rep 2021; 11:16109. [PMID: 34373510 PMCID: PMC8352872 DOI: 10.1038/s41598-021-95008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Scedosporium apiospermum is an emerging opportunistic fungal pathogen responsible for life-threatening infections in humans. Host-pathogen interactions often implicate lectins that have become therapeutic targets for the development of carbohydrate mimics for antiadhesive therapy. Here, we present the first report on the identification and characterization of a lectin from S. apiospermum named SapL1. SapL1 was found using bioinformatics as a homolog to the conidial surface lectin FleA from Aspergillus fumigatus known to play a role in the adhesion to host glycoconjugates present in human lung epithelium. In our strategy to obtain recombinant SapL1, we discovered the importance of osmolytes to achieve its expression in soluble form in bacteria. Analysis of glycan arrays indicates specificity for fucosylated oligosaccharides as expected. Submicromolar affinity was measured for fucose using isothermal titration calorimetry. We solved SapL1 crystal structure in complex with α-methyl-L-fucoside and analyzed its structural basis for fucose binding. We finally demonstrated that SapL1 binds to bronchial epithelial cells in a fucose-dependent manner. The information gathered here will contribute to the design and development of glycodrugs targeting SapL1.
Collapse
|
8
|
The Role of IL-17-Producing Cells in Cutaneous Fungal Infections. Int J Mol Sci 2021; 22:ijms22115794. [PMID: 34071562 PMCID: PMC8198319 DOI: 10.3390/ijms22115794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.
Collapse
|
9
|
Peptidogalactomannan from Histoplasma capsulatum yeast cell wall: role of the chemical structure in recognition and activation by peritoneal macrophages. Braz J Microbiol 2021; 52:479-489. [PMID: 33611739 DOI: 10.1007/s42770-021-00447-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022] Open
Abstract
Histoplasma capsulatum is the causative agent of histoplasmosis, a systemic disease responsible for most reported causes of morbidity and mortality among immunosuppressed individuals. Peptidogalactomannan (pGM) was purified from the yeast cell wall of H. capsulatum isolated from bats, and its structure and involvement in modulating the host immune response were evaluated. Gas chromatography, methylation analysis, and two-dimensional nuclear magnetic resonance (2D-NMR) were used for the structural characterization of pGM. Methylation and 2D-NMR data revealed that pGM comprises a main chain containing α-D-Manp (1 → 6) residues substituted at O-2 by α-D-Manp (1 → 2)-linked side chains, non-reducing end units of α-D-Galf, or β-D-Galp linked (1→ 6) to α-D-Manp side chains. The involvement of H. capsulatum pGM in antigenic reactivity and in interactions with macrophages was demonstrated by ELISA and phagocytosis assay, respectively. The importance of the carbohydrate and protein moieties of pGM in sera reactivity was evaluated. Periodate oxidation abolished much pGM antigenic reactivity, suggesting that the sugar moiety is the most immunogenic part of pGM. Reactivity slightly decreased in pGM treated with proteinase K, suggesting that the peptide moiety plays a minor role in pGM antigenicity. In vitro experiments suggested that pGM is involved in the phagocytosis of H. capsulatum yeast and induction of IL-10 and IFN-γ secretion by peritoneal macrophages from C57BL/6 mice. These findings demonstrated the role of pGM in the H. capsulatum-host interaction.
Collapse
|
10
|
The Host Immune Response to Scedosporium/ Lomentospora. J Fungi (Basel) 2021; 7:jof7020075. [PMID: 33499053 PMCID: PMC7912657 DOI: 10.3390/jof7020075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Infections caused by the opportunistic pathogens Scedosporium/Lomentospora are on the rise. This causes problems in the clinic due to the difficulty in diagnosing and treating them. This review collates information published on immune response against these fungi, since an understanding of the mechanisms involved is of great interest in developing more effective strategies against them. Scedosporium/Lomentospora cell wall components, including peptidorhamnomannans (PRMs), α-glucans and glucosylceramides, are important immune response activators following their recognition by TLR2, TLR4 and Dectin-1 and through receptors that are yet unknown. After recognition, cytokine synthesis and antifungal activity of different phagocytes and epithelial cells is species-specific, highlighting the poor response by microglial cells against L. prolificans. Moreover, a great number of Scedosporium/Lomentospora antigens have been identified, most notably catalase, PRM and Hsp70 for their potential medical applicability. Against host immune response, these fungi contain evasion mechanisms, inducing host non-protective response, masking fungal molecular patterns, destructing host defense proteins and decreasing oxidative killing. In conclusion, although many advances have been made, many aspects remain to be elucidated and more research is necessary to shed light on the immune response to Scedosporium/Lomentospora.
Collapse
|
11
|
de Oliveira EB, Xisto MIDDS, Rollin-Pinheiro R, Rochetti VP, Barreto-Bergter E. Peptidorhamnomannans From Scedosporium and Lomentospora Species Display Microbicidal Activity Against Bacteria Commonly Present in Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:598823. [PMID: 33251161 PMCID: PMC7673444 DOI: 10.3389/fcimb.2020.598823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Scedosporium and Lomentospora species are filamentous fungi that cause a wide range of infections in humans. They are usually found in the lungs of cystic fibrosis (CF) patients and are the second most frequent fungal genus after Aspergillus species. Several studies have been recently performed in order to understand how fungi and bacteria interact in CF lungs, since both can be isolated simultaneously from patients. In this context, many bacterial molecules were shown to inhibit fungal growth, but little is known about how fungi could interfere in bacterial development in CF lungs. Scedosporium and Lomentospora species present peptidorhamnomannans (PRMs) in their cell wall that play crucial roles in fungal adhesion and interaction with host epithelial cells and the immune system. The present study aimed to analyze whether PRMs extracted from Lomentospora prolificans, Scedosporium apiospermum, Scedosporium boydii, and Scedosporium aurantiacum block bacterial growth and biofilm formation in vitro. PRM from L. prolificans and S. boydii displayed the best bactericidal effect against methicillin resistant Staphylococcus aureus (MRSA), Burkholderia cepacia, and Escherichia coli, but not Pseudomonas aeruginosa, all of which are the most frequently found bacteria in CF lungs. In addition, biofilm formation was inhibited in all bacteria tested using PRMs at minimal inhibitory concentration (MIC). These results suggest that PRMs from the Scedosporium and Lomentospora surface seem to play an important role in Scedosporium colonization in CF patients, helping to clarify how these pathogens interact to each other in CF lungs.
Collapse
Affiliation(s)
- Evely Bertulino de Oliveira
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Rollin-Pinheiro R, Xisto MIDDS, Rochetti VP, Barreto-Bergter E. Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host-Pathogen Interactions. Mycopathologia 2020; 185:931-946. [PMID: 32990888 DOI: 10.1007/s11046-020-00480-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Scedosporium species are filamentous fungi usually found in sewage and soil from human-impacted areas. They cause a wide range of diseases in humans, from superficial infections, such as mycetoma, to invasive and disseminated cases, especially associated in immunocompromised patients. Scedosporium species are also related to lung colonization in individuals presenting cystic fibrosis and are considered one of the most frequent fungal pathogens associated to this pathology. Scedosporium cell wall contains glycosylated molecules involved in important biological events related to virulence and pathogenicity and represents a significant source of antigens. Polysaccharides, peptidopolysaccharides, O-linked oligosaccharides and glycosphingolipids have been identified on the Scedosporium surface. Their primary structures were determined based on a combination of techniques including gas chromatography, ESI-MS, and 1H and 13C nuclear magnetic resonance. Peptidorhamnnomannans are common cell wall components among Scedosporium species. Comparing different species, minor structural differences in the carbohydrate portions were detected which could be useful to understand variations in virulence observed among the species. N- and O-linked peptidorhamnomannans are major pathogen-associated molecular patterns and, along with α-glucans, play important roles in triggering host innate immunity. Glycosphingolipids, such as glucosylceramides, have highly conserved structures in Scedosporium species and are crucial for fungal growth and virulence. The present review presents current knowledge on structural and functional aspects of Scedosporium glycoconjugates that are relevant for understanding pathogenicity mechanisms and could contribute to the design of new agents capable of inhibiting growth and differentiation of Scedosporium species. Other cell components such as melanin and ectophosphatases will be also included.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
13
|
Xisto MIDDS, Santos SS, Rossato L, Yoshikawa FSY, Haido RMT, de Almeida SR, Barreto-Bergter E. Peptidorhamnomannan from Lomentospora prolificans modulates the inflammatory response in macrophages infected with Candida albicans. BMC Microbiol 2020; 20:245. [PMID: 32762645 PMCID: PMC7412847 DOI: 10.1186/s12866-020-01931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Peptidorhamnomannan is a glycoconjugate that consists of a peptide chain substituted by O- and N-linked glycans, present on the cell surface of Lomentospora prolificans, a saprophytic fungus which is widely distributed in regions with temperate climates. O-linked oligosaccharides from peptidorhamnomannan isolated from Lomentospora prolificans conidia are recognized by macrophages mediating macrophage - conidia interaction. In this work, peptidorhamnomannan was isolated from L. prolificans mycelium cell wall and its role in macrophage - Candida albicans interaction was evaluated. Results Purified peptidorhamnomannan inhibits the reactivity of rabbit immune sera to mycelial and conidia forms of L. prolificans, indicating that this glycoconjugate is exposed on the fungal surface and can mediate interaction with host immune cells. We demonstrated that peptidorhamnomannan leads to TNF-α production in J774 macrophages for 1, 2 and 3 h of incubation, suggesting that this glycoconjugate may have a beneficial role in the response to fungal infections. In order to confirm this possibility, the effect of peptidorhamnomannan on the macrophage - C. albicans interaction was evaluated. Macrophages treated with peptidorhamnomannan led to a lower fungal survival, suggesting that peptidorhamnomannan induces an increased fungicidal activity in macrophages. Furthermore, TNF-α levels were measured in supernatants after macrophage - C. albicans interaction for 1, 2 and 3 h. Peptidorhamnomannan treatment led to a higher TNF-α production at the beginning of the interaction. However, the release of TNF-α was not maintained after 1 h of incubation. Besides, peptidorhamnomannan did not show any inhibitory or fungicidal effect in C. albicans when used at 100 μg/ml but it was able to kill C. albicans at a concentration of 400 μg/ml. Conclusion We suggest that peptidorhamnomannan acts as a molecular pattern on the invading pathogen, promotes TNF-α production and, thus, increases macrophage fungicidal activity against Candida albicans.
Collapse
Affiliation(s)
- Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Suelen S Santos
- Departamento de Análises Clinicas e Toxicológicas, Faculdade de Ciências Farmacêuticas -USP, São Paulo, Brazil
| | - Luana Rossato
- Departamento de Análises Clinicas e Toxicológicas, Faculdade de Ciências Farmacêuticas -USP, São Paulo, Brazil
| | | | - Rosa Maria Tavares Haido
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clinicas e Toxicológicas, Faculdade de Ciências Farmacêuticas -USP, São Paulo, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
14
|
de Oliveira NF, Santos GRC, Xisto MIDS, Pires Dos Santos GM, Nucci M, Haido RMT, Barreto-Bergter E. β-1,6-linked Galactofuranose- rich peptidogalactomannan of Fusarium oxysporum is important in the activation of macrophage mechanisms and as a potential diagnostic antigen. Med Mycol 2019; 57:234-245. [PMID: 29767770 DOI: 10.1093/mmy/myx167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A peptidogalactomannan (PGM) from Fusarium oxysporum was structurally characterized by a combination of chemical and spectroscopic methods, including one and two-dimensional nuclear magnetic resonance (1D and 2D NMR). The galactomannan component consists of a main chain containing (1→6)-linked β-D-galactofuranose residues with side chains containing (1→2)-linked α-D-Glcp, (1→2)-linked -β-D-Manp (1→2) and β-D-Manp terminal nonreducing end units and differs from that of Aspergillus fumigatus and Cladosporium resinae that present a main chain containing (1→6)-linked α-D-Manp residues presenting β-D-Galf as side chains of 3-4 units that are (1→5)-interlinked. The importance of the carbohydrate moiety of the F. oxysporum PGM was demonstrated. Periodate oxidation abolished much of the PGM antigenic activity. A strong decrease in reactivity was also observed with de-O-glycosylated PGM. In addition, de-O-glycosylated PGM was not able to inhibit F. oxysporum phagocytosis, suggesting that macrophages recognize and internalize F. oxysporum via PGM. F. oxysporum PGM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PGM led to a significant increase of TNF-α cytokine levels, suggesting that their removal could exposure another PGM motifs able to induce a higher secretion of TNF-α levels. Interestingly, F. oxysporum conidia, intact and de-O-linked PGM were not able to induce IL-10 cytokine release. The difference in patient serum reativity using a PGM from F. oxysporum characterized in the present study as compared with a PGM from C. resinae, that presents the same epitopes recognized by serum from patients with aspergillosis, could be considered a potential diagnostic antigen and should be tested with more sera.
Collapse
Affiliation(s)
- Nathalia Ferreira de Oliveira
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Bloco I, Ilha do Fundão, 21941-970, Rio de Janeiro, RJ, Brazil
| | - Gustavo R C Santos
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), 21941-913, Rio de Janeiro, RJ, Brazil
| | - Mariana Ingrid D S Xisto
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Bloco I, Ilha do Fundão, 21941-970, Rio de Janeiro, RJ, Brazil
| | | | - Marcio Nucci
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), 21941-913, Rio de Janeiro, RJ, Brazil
| | | | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Bloco I, Ilha do Fundão, 21941-970, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Abushouk A, Nasr A, Masuadi E, Allam G, Siddig EE, Fahal AH. The Role of Interleukin-1 cytokine family (IL-1β, IL-37) and interleukin-12 cytokine family (IL-12, IL-35) in eumycetoma infection pathogenesis. PLoS Negl Trop Dis 2019; 13:e0007098. [PMID: 30946748 PMCID: PMC6483278 DOI: 10.1371/journal.pntd.0007098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/25/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mycetoma is a neglected tropical disease, endemic in many tropical and subtropical regions, characterised by massive deformity and disability and can be fatal if untreated early and appropriately. Interleukins (IL) -35 and IL-37 are newly discovered cytokines that play an important role in suppressing the immune system. However, the expression of these interleukins in patients with Madurella mycetomatis (M. mycetomatis) induced eumycetoma has not yet been explored. The aim of this study is to determine the levels of IL-1 family (IL-1β, IL-37) and IL-12 family (IL-12, IL-35) in a group of these patients and the association between these cytokines levels and the patients’ demographic characteristics. The present, case-control study was conducted at the Mycetoma Research Centre, Soba University Hospital, University of Khartoum, Sudan and it included 140 individuals. They were divided into two groups; group I: healthy controls [n = 70; median age 25 years (range 12 to 70 years)]. Group II: mycetoma patients [n = 70 patients; median age 25 (range 13 to 70 years)]. Cytokines levels were measured in sera using enzyme linked immunosorbent assay (ELISA). There was a significant negative correlation between IL-1β and IL-12 levels and lesion size and disease duration, while IL-37 and IL-35 levels were significantly positively correlated with both lesion size and disease duration. The analysis of the risk factors of higher circulatory levels of IL-37 in patients of mycetoma showed a negative significant association with IL-1β cytokine, where a unit increment in IL-1β will decrease the levels of IL-37 by 35.28 pg/ml. The levels of IL-37 among the patients with a duration of mycetoma infection ≤ 1 year were significantly low by an average of 18.45 pg/ml compared to patients with a mycetoma infection’s duration of ≥ 5years (reference group). Furthermore, the risk factors of higher levels of IL-35 in mycetoma patients revealed a negative significant association with IL-12, as a unit increment in IL-12 decreases the levels of IL-35 by 8.99 pg/ml (p < 0.001). Levels of IL-35 among the patients with duration of mycetoma infection ≤ one year were significantly low on average by 41.82 pg/ml (p value = 0.002) compared to patients with a duration of mycetoma infection ≥ 5 years (reference group). In conclusion, this study indicates that both IL-35 and IL-37 are negatively associated with the levels of IL-1β and IL-12 in eumycetoma mycetoma infection; and high levels of IL-37 and IL-35 may have a negative impact on disease progression. Mycetoma is a progressive chronic granulomatous fungal or bacterial infection that may result in massive destruction of subcutaneous tissues, muscles and bones. Mycetoma is a neglected disease which is endemic in many tropical and subtropical areas. If the disease is not treated properly, eventually it ends up with amputation and adverse medical, health and socioeconomic effects on patients and the community. Previous data suggested a crucial role of adaptive immunity in host resistance to causative agents and in the disease progress. The recently identified IL-35 and IL-37 cytokines revealed an important role in immune suppression. Nevertheless, the expression of these interleukins in patients with mycetoma has not yet been investigated. Therefore, the present case-control study aimed to determine the levels of IL-1 family (IL-1β, IL-37) and IL-12 family (IL-12, IL-35) in these patients and the association between these cytokines levels and the patients’ demographic characteristics. The results of this study showed that, the levels of IL-37 and IL-35 were consistently positively correlated with different diameters of mycetoma lesions as well as its duration. However, the levels of IL-1β and IL-12 were consistently negatively correlated with different diameters of lesions and the duration of mycetoma infection. The analysis of the risk factors of higher circulatory levels of IL-37 in patients of mycetoma showed a negative significant association with IL-1β cytokine Furthermore, the risk factors of higher levels of IL-35 in patients of mycetoma revealed a negative significant association with IL-12. These findings uncover a possible the role of IL-35 and IL-37 in the pathogenesis of mycetoma, and may declare their potential value in treatment of mycetoma.
Collapse
Affiliation(s)
- Amir Abushouk
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdul-Aziz University for Health Sciences, Jeddah, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Amre Nasr
- King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Emad Masuadi
- Research Unit, Department of Medical Education, College of Medicine-Riyadh, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Gamal Allam
- Department of Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Ahmed H. Fahal
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- * E-mail: ,
| |
Collapse
|
16
|
Mello TP, Bittencourt VCB, Liporagi-Lopes LC, Aor AC, Branquinha MH, Santos AL. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, de Meirelles JV, Xisto MIDS, Ranque S, Havlicek V, Vandeputte P, Govic YL, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhardt A, Tintelnot K, Capilla J, Martin-Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 2018. [PMID: 29538735 DOI: 10.1093/mmy/myx113] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.
Collapse
Affiliation(s)
- Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | - Stephane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM / CHU Timone, Marseille, France
| | - Vladimir Havlicek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Patrick Vandeputte
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Jean-Philippe Bouchara
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Austria
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology. Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | | | - Javier Peman
- Microbiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carsten Schwarz
- Cystic Fibrosis Centre Berlin/Charité-Universitätsmedizin Berlin, Germany
| | - Anne Bernhardt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Kathrin Tintelnot
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Javier Capilla
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Adela Martin-Vicente
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jose Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Markus Nagl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
18
|
Mello TPD, Aor AC, Gonçalves DDS, Seabra SH, Branquinha MH, Santos ALSD. Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans: a comparative study of surface molecules produced by conidial and germinated conidial cells. Mem Inst Oswaldo Cruz 2018; 113:e180102. [PMID: 29924142 PMCID: PMC6001581 DOI: 10.1590/0074-02760180102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/02/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Scedosporium/Lomentospora species are opportunistic mould pathogens, presenting notable antifungal resistance. OBJECTIVES/METHODS We analysed the conidia and germinated conidia of S. apiospermum (Sap), S. aurantiacum (Sau), S. minutisporum (Smi) and L. prolificans (Lpr) by scanning electron microscopy and exposition of surface molecules by fluorescence microscopy. FINDINGS Conidia of Sap, Smi and Sau had oval, ellipsoidal and cylindrical shape, respectively, with several irregularities surrounding all surface areas, whereas Lpr conidia were rounded with a smooth surface. The germination of Sap occurred at the conidial bottom, while Smi and Sau germination primarily occurred at the centre of the conidial cell, and Lpr germination initiated at any part of the conidial surface. The staining of N-acetylglucosamine-containing molecules by fluorescein-labelled WGA primarily occurred during the germination of all studied fungi and in the conidial scars, which is the primary location of germination. Calcofluor white, which recognises the polysaccharide chitin, strongly stained the conidial cells and, to a lesser extent, the germination. Both mannose-rich glycoconjugates (evidenced by fluoresceinated-ConA) and cell wall externally located polypeptides presented distinct surface locations and expression according to both morphotypes and fungal species. In contrast, sialic acid and galactose-containing structures were not detected at fungal surfaces. MAIN CONCLUSIONS The present study demonstrated the differential production/exposition of surface molecules on distinct morphotypes of Scedosporium/Lomentospora species.
Collapse
Affiliation(s)
- Thaís Pereira de Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Aor
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Diego de Souza Gonçalves
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brasil
| | - Marta Helena Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
19
|
Abstract
Eosinophils are the prominent cells in asthma, allergic bronchopulmonary mycosis (ABPMs), and fungal-sensitization-associated asthma, but their roles in the immunopathology of these disorders are not well understood. Moreover, the immunological mechanisms underlying the molecular direct effector interactions between fungi and eosinophils are rare and not fully known. Here, we provide an overview of eosinophil contributions to allergic asthma and ABPMs. We also revise the major general mechanisms of fungal recognition by eosinophils and consider past and recent advances in our understanding of the molecular mechanisms associated with eosinophil innate effector responses to different fungal species relevant to ABPMs (Alternaria alternata, Candida albicans, and Aspergillus fumigatus). We further examine and speculate about the therapeutic relevance of these findings in fungus-associated allergic pulmonary diseases.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Institute of Biomedical Sciences/Unit of Xerem, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, Tavares L, Pais TF, Pinto P, Ventura MR, Filipe A, McDougall GJ, Stewart D, Kim KS, Palmela I, Brites D, Brito MA, Brito C, Santos CN. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017; 7:11456. [PMID: 28904352 PMCID: PMC5597593 DOI: 10.1038/s41598-017-11512-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related complications such as neurodegenerative disorders are increasing and remain cureless. The possibility of altering the progression or the development of these multifactorial diseases through diet is an emerging and attractive approach with increasing experimental support. We examined the potential of known bioavailable phenolic sulfates, arising from colonic metabolism of berries, to influence hallmarks of neurodegenerative processes. In silico predictions and in vitro transport studies across blood-brain barrier (BBB) endothelial cells, at circulating concentrations, provided evidence for differential transport, likely related to chemical structure. Moreover, endothelial metabolism of these phenolic sulfates produced a plethora of novel chemical entities with further potential bioactivies. Pre-conditioning with phenolic sulfates improved cellular responses to oxidative, excitotoxicity and inflammatory injuries and this attenuation of neuroinflammation was achieved via modulation of NF-κB pathway. Our results support the hypothesis that these small molecules, derived from dietary (poly)phenols may cross the BBB, reach brain cells, modulate microglia-mediated inflammation and exert neuroprotective effects, with potential for alleviation of neurodegenerative diseases.
Collapse
Affiliation(s)
- I Figueira
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - G Garcia
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - R C Pimpão
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - A P Terrasso
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - I Costa
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - A F Almeida
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - L Tavares
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - T F Pais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - P Pinto
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Escola Superior Agrária, Instituto Politécnico de Santarém, Qta do Galinheiro, Santarém, Portugal
| | - M R Ventura
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal
| | - A Filipe
- Medical Department, Grupo Tecnimede, 2710-089, Sintra, Portugal
| | - G J McDougall
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, United Kingdom
| | - D Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, United Kingdom.,Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.,NIBIO, Norwegian Institute of Bioeconomy Research, Pb 115, NO-1431, Ås, Norway
| | - K S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street Park 256, Baltimore, MD21287, USA
| | - I Palmela
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - D Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - M A Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - C Brito
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - C N Santos
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal. .,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
21
|
Abstract
Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in IBD, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Martínez-Álvarez JA, Pérez-García LA, Mellado-Mojica E, López MG, Martínez-Duncker I, Lópes-Bezerra LM, Mora-Montes HM. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Front Microbiol 2017; 8:843. [PMID: 28539922 PMCID: PMC5423980 DOI: 10.3389/fmicb.2017.00843] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes.
Collapse
Affiliation(s)
- José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| | - Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Mercedes G López
- Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicada, Universidad Autónoma del Estado de MorelosCuernavaca, Mexico
| | - Leila M Lópes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Biology Institute, University of Rio de Janeiro StateRio de Janeiro, Brazil
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de GuanajuatoGuanajuato, Mexico
| |
Collapse
|
23
|
Mycetoma: a unique neglected tropical disease. THE LANCET. INFECTIOUS DISEASES 2016; 16:100-112. [PMID: 26738840 DOI: 10.1016/s1473-3099(15)00359-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 11/23/2022]
Abstract
Mycetoma can be caused by bacteria (actinomycetoma) or fungi (eumycetoma) and typically affects poor communities in remote areas. It is an infection of subcutaneous tissues resulting in mass and sinus formation and a discharge that contains grains. The lesion is usually on the foot but all parts of the body can be affected. The causative microorganisms probably enter the body by a thorn prick or other lesions of the skin. Mycetoma has a worldwide distribution but is restricted to specific climate zones. Microbiological diagnosis and characterisation of the exact organism causing mycetoma is difficult; no reliable serological test exists but molecular techniques to identify relevant antigens have shown promise. Actinomycetoma is treated with courses of antibiotics, which usually include co-trimoxazole and amikacin. Eumycetoma has no acceptable treatment at present; antifungals such as ketoconazole and itraconazole have been used but are unable to eradicate the fungus, need to be given for long periods, and are expensive. Amputations and recurrences in patients with eumycetoma are common.
Collapse
|
24
|
Xisto MIDS, Bittencourt VCB, Liporagi-Lopes LC, Haido RMT, Mendonça MSA, Sassaki G, Figueiredo RT, Romanos MTV, Barreto-Bergter E. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages. PLoS One 2015; 10:e0123189. [PMID: 25875427 PMCID: PMC4396840 DOI: 10.1371/journal.pone.0123189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/02/2015] [Indexed: 12/05/2022] Open
Abstract
In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines.
Collapse
Affiliation(s)
- Mariana I. D. S. Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera C. B. Bittencourt
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, UNIRIO, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia Cristina Liporagi-Lopes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosa M. T. Haido
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, UNIRIO, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Guilherme Sassaki
- Departamento de Bioquímica e Biologia Molecular, UFRP, Curitiba, Paraná, Brazil
| | - Rodrigo T. Figueiredo
- Campus de Xerém, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Teresa V. Romanos
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
25
|
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014; 4:145. [PMID: 25353009 PMCID: PMC4196476 DOI: 10.3389/fcimb.2014.00145] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides such as α- and β-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Unidade de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Ghamrawi S, Rénier G, Saulnier P, Cuenot S, Zykwinska A, Dutilh BE, Thornton C, Faure S, Bouchara JP. Cell wall modifications during conidial maturation of the human pathogenic fungus Pseudallescheria boydii. PLoS One 2014; 9:e100290. [PMID: 24950099 PMCID: PMC4065047 DOI: 10.1371/journal.pone.0100290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/22/2014] [Indexed: 01/27/2023] Open
Abstract
Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory secretions of CF patients. It is commonly believed that infection by this fungus occurs through inhalation of airborne conidia, but the mechanisms allowing the adherence of Pseudallescheria to the host epithelial cells and its escape from the host immune defenses remain largely unknown. Given that the cell wall orchestrates all these processes, we were interested in studying its dynamic changes in conidia as function of the age of cultures. We found that the surface hydrophobicity and electronegative charge of conidia increased with the age of culture. Melanin that can influence the cell surface properties, was extracted from conidia and estimated using UV-visible spectrophotometry. Cells were also directly examined and compared using electron paramagnetic resonance (EPR) that determines the production of free radicals. Consistent with the increased amount of melanin, the EPR signal intensity decreased suggesting polymerization of melanin. These results were confirmed by flow cytometry after studying the effect of melanin polymerization on the surface accessibility of mannose-containing glycoconjugates to fluorescent concanavalin A. In the absence of melanin, conidia showed a marked increase in fluorescence intensity as the age of culture increased. Using atomic force microscopy, we were unable to find rodlet-forming hydrophobins, molecules that can also affect conidial surface properties. In conclusion, the changes in surface properties and biochemical composition of the conidial wall with the age of culture highlight the process of conidial maturation. Mannose-containing glycoconjugates that are involved in immune recognition, are progressively masked by polymerization of melanin, an antioxidant that is commonly thought to allow fungal escape from the host immune defenses.
Collapse
Affiliation(s)
- Sarah Ghamrawi
- L’UNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte-Pathogène EA 3142, Angers, France
- * E-mail:
| | - Gilles Rénier
- L’UNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte-Pathogène EA 3142, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Patrick Saulnier
- L’UNAM Université, University d’Angers, INSERM U646, Angers, France
| | - Stéphane Cuenot
- L’UNAM Université, Université de Nantes, Institut des Matériaux Jean Rouxel, Nantes, France
| | - Agata Zykwinska
- L’UNAM Université, Université de Nantes, Institut des Matériaux Jean Rouxel, Nantes, France
| | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christopher Thornton
- Department of Biosciences, University of Exeter, Biosciences, Exeter, United Kingdom
| | | | - Jean-Philippe Bouchara
- L’UNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte-Pathogène EA 3142, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
27
|
Fonseca FL, Guimarães AJ, Kmetzsch L, Dutra FF, Silva FD, Taborda CP, Araujo GDS, Frases S, Staats CC, Bozza MT, Schrank A, Vainstein MH, Nimrichter L, Casadevall A, Rodrigues ML. Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis. Fungal Genet Biol 2013; 60:64-73. [PMID: 23608320 DOI: 10.1016/j.fgb.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/19/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022]
Abstract
The principal capsular component of Cryptococcus neoformans, glucuronoxylomannan (GXM), interacts with surface glycans, including chitin-like oligomers. Although the role of GXM in cryptococcal infection has been well explored, there is no information on how chitooligomers affect fungal pathogenesis. In this study, surface chitooligomers of C. neoformans were blocked through the use of the wheat germ lectin (WGA) and the effects on animal pathogenesis, interaction with host cells, fungal growth and capsule formation were analyzed. Treatment of C. neoformans cells with WGA followed by infection of mice delayed mortality relative to animals infected with untreated fungal cells. This observation was associated with reduced brain colonization by lectin-treated cryptococci. Blocking chitooligomers also rendered yeast cells less efficient in their ability to associate with phagocytes. WGA did not affect fungal viability, but inhibited GXM release to the extracellular space and capsule formation. In WGA-treated yeast cells, genes that are involved in capsule formation and GXM traffic had their transcription levels decreased in comparison with untreated cells. Our results suggest that cellular pathways required for capsule formation and pathogenic mechanisms are affected by blocking chitin-derived structures at the cell surface of C. neoformans. Targeting chitooligomers with specific ligands may reveal new therapeutic alternatives to control cryptococcosis.
Collapse
Affiliation(s)
- Fernanda L Fonseca
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The most important emerging and rare fungal pathogens in solid organ transplant recipients are the Zygomycetes, Scedosporium, Fusarium, and the dark molds. Factors affecting the emergence of these fungi include the combination of intensive immunosuppressive regimens with increasingly widespread use of long-term azole antifungal therapy; employment of aggressive diagnostic approaches (eg, sampling of bronchoalveolar lavage fluid); and changes in patients' interactions with the environment. This article reviews the epidemiology, microbiology, and clinical impact of emerging fungal infections in solid organ transplant recipients, and provides up-to-date recommendations on their treatment.
Collapse
Affiliation(s)
- Shmuel Shoham
- Transplant and Oncology Infectious Diseases Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Fang T, Mo KF, Boons GJ. Stereoselective assembly of complex oligosaccharides using anomeric sulfonium ions as glycosyl donors. J Am Chem Soc 2012; 134:7545-52. [PMID: 22475263 DOI: 10.1021/ja3018187] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of selectively protected monosaccharide building blocks that can reliably be glycosylated with a wide variety of acceptors is expected to make oligosaccharide synthesis a more routine operation. In particular, there is an urgent need for the development of modular building blocks that can readily be converted into glycosyl donors for glycosylations that give reliably high 1,2-cis-anomeric selectivity. We report here that 1,2-oxathiane ethers are stable under acidic, basic, and reductive conditions making it possible to conduct a wide range of protecting group manipulations and install selectively removable protecting groups such as levulinoyl (Lev) ester, fluorenylmethyloxy (Fmoc)- and allyloxy (Alloc)-carbonates, and 2-methyl naphthyl ethers (Nap). The 1,2-oxathiane ethers could easily be converted into bicyclic anomeric sulfonium ions by oxidization to sulfoxides and arylated with 1,3,5-trimethoxybenzene. The resulting sulfonium ions gave high 1,2-cis-anomeric selectivity when glycosylated with a wide variety of glycosyl acceptors including properly protected amino acids, primary and secondary sugar alcohols and partially protected thioglycosides. The selective protected 1,2-oxathianes were successfully employed in the preparation of a branched glucoside derived from a glycogen-like polysaccharide isolated form the fungus Pseudallescheria boydii , which is involved in fungal phagocytosis and activation of innate immune responses. The compound was assembled by a latent-active glycosylation strategy in which an oxathiane was employed as an acceptor in a glycosylation with a sulfoxide donor. The product of such a glycosylation was oxidized to a sulfoxide for a subsequent glycosylation. The use of Nap and Fmoc as temporary protecting groups made it possible to install branching points.
Collapse
Affiliation(s)
- Tao Fang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
30
|
Toll-like receptors (TLR2 and TLR4) recognize polysaccharides of Pseudallescheria boydii cell wall. Carbohydr Res 2012; 356:260-4. [PMID: 22507831 DOI: 10.1016/j.carres.2012.02.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 12/13/2022]
Abstract
Pseudallescheria boydii is an opportunistic fungus widespread in the environment, and has recently emerged as an agent of localized as well as disseminated infections in both immunocompromised and immunocompetent hosts. The host response to fungi is in part dependent on the activation of evolutionary conserved receptors including Toll-like receptors and phagocytic receptors. This review will discuss the isolation and structural characterization of α-glucans and rhamnomannans from P. boydii cell wall and their roles in the induction of innate immune response.
Collapse
|
31
|
Lopes LCL, da Silva MID, Bittencourt VCB, Figueiredo RT, Rollin-Pinheiro R, Sassaki GL, Bozza MT, Gorin PAJ, Barreto-Bergter E. Glycoconjugates and polysaccharides from the Scedosporium/Pseudallescheria boydii complex: structural characterisation, involvement in cell differentiation, cell recognition and virulence. Mycoses 2012; 54 Suppl 3:28-36. [PMID: 21995660 DOI: 10.1111/j.1439-0507.2011.02105.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peptidorhamnomannans (PRMs), rhamnomannans and α-glucans are especially relevant for the architecture of the Scedosporium/Pseudallescheria boydii cell wall, but many of them are immunologically active, with great potential as regulators of pathogenesis and the immune response of the host. In addition, some of them can be specifically recognised by antibodies from the sera of patients, suggesting that they could also be useful in diagnosis of fungal infections. Their primary structures have been determined, based on a combination of techniques including gas chromatography, electrospray ionization - mass spectrometry (ESI-MS), (1)H-COSY and TOCSY, (13)C and (1)H/(13)C NMR spectroscopy. Using monoclonal antibodies to PRM, we showed that it is involved in germination and viability of P. boydii conidia, in the phagocytosis of P. boydii conidia by macrophages and non-phagocytic cells and in the survival of mice with P. boydii infection. Also, components of the fungal cell wall, such as α-glucans, are involved. Rhamnomannans are immunostimulatory and participate in the recognition and uptake of fungal cells by the immune system. These glycosylated polymers, being present in the fungal cell wall, are mostly absent from mammalian cells, and are excellent targets for the design of new agents capable of inhibiting fungal growth and differentiation of pathogens.
Collapse
Affiliation(s)
- Livia Cristina L Lopes
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Figueiredo RT, Carneiro LAM, Bozza MT. Fungal surface and innate immune recognition of filamentous fungi. Front Microbiol 2011; 2:248. [PMID: 22194732 PMCID: PMC3242297 DOI: 10.3389/fmicb.2011.00248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
The innate immune system performs specific detection of molecules from infectious agents through pattern recognition receptors. This recognition triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. Infections caused by filamentous fungi have increased in incidence and represent an important cause of mortality and morbidity especially in individuals with immunosuppression. This review will discuss the innate immune recognition of filamentous fungi molecules and its importance to infection control and disease.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Pólo de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
33
|
Nagahara Y, Nagamori T, Tamegai H, Hitokuwada M, Yoshimi Y, Ikekita M, Shinomiya T. Inulin stimulates phagocytosis of PMA-treated THP-1 macrophages by involvement of PI3-kinases and MAP kinases. Biofactors 2011; 37:447-54. [PMID: 22038771 DOI: 10.1002/biof.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/30/2011] [Indexed: 11/06/2022]
Abstract
Inulin is a polysaccharide that enhances various immune responses, mainly to T and B cells, natural killer cells, and macrophages in vivo and in vitro. Previous reports describe that inulin activates macrophages indirectly by affecting the alternative complement pathway. In this study, we examined the direct effect of inulin on PMA-treated THP-1 macrophages. Inulin treatment did not stimulate the proliferation of THP-1 macrophages at all. However, inulin treatment significantly increased phagocytosis of the polystyrene beads without the influence of serum. Doses of around 1 mg/mL had the maximal effect, and significant progression of phagocytosis occurred at times treated over 6 h. Inulin augmented phagocytosis not only with polystyrene beads but also with apoptotic cancer cells. The inulin-induced phagocytosis uptake was suppressed in Toll-like receptor (TLR) 4 mutated C3H/HeJ mice peritoneal macrophages. Moreover, inulin-induced THP-1 macrophage TNF-α secretion was inhibited using a blocking antibody specific to TLR4, suggesting that TLR4 is involved in the binding of inulin to macrophages. Furthermore, we used specific kinase inhibitors to assess the involvement of inulin-induced phagocytosis and revealed that phosphoinositide 3-kinase and mitogen-activated protein kinase, especially p38, participated in phagocytosis. These results suggest that inulin affects macrophages directly by involving the TLR4 signaling pathway and stimulating phagocytosis for enhancing immunomodulation.
Collapse
Affiliation(s)
- Yukitoshi Nagahara
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|