1
|
Mabry AR, Gorman J, Delvasto JS, Lavik AR, Layer JH, Mayo LD. Activation of the Snail transcription factor induces Mdm2 gene expression. J Biol Chem 2024; 300:107811. [PMID: 39313097 PMCID: PMC11530585 DOI: 10.1016/j.jbc.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Epithelial-like tumor cells can become metastatic by undergoing molecular and phenotypic reprogramming in a process referred to as epithelial-to-mesenchymal transition (EMT). In response to EMT genes that promote migration and condition the tumor microenvironment to permit intravasation into the bloodstream, dissemination and extravasation into new organs are induced. While the mutant p53 has been implicated in extravasation, one negative regulator of p53, the oncogene murine double minute-2 gene (Mdm2), is required in the early stages of metastasis and the driver of EMT. This activity is independent of Mdm2's role in the p53-Mdm2 autoregulatory feedback loop. Herein, we examine the EMT transcription factor Snail as a downstream effector of kinase signaling pathways. We show that the activation of upstream receptors and KRas signaling increase Snail levels. Snail binds to Ebox DNA motifs, and Mdm2 has two Ebox DNA-binding domains in the second promoter. Snail binds to the second Ebox and induces Mdm2 gene expression. Knockdown of endogenous Snail by shRNA shows a decrease in Mdm2 and is associated with reduced migration. The reintroduction of Mdm2 in shSnail cells restores cellular migration. These data integrate upstream pathways that induce Snail-Mdm2 to promote the metastasis of tumor cells.
Collapse
Affiliation(s)
- Alexander R Mabry
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - James Gorman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Juan S Delvasto
- Department of Biology, Indiana University, Indianapolis, Indiana, USA
| | - Andrew R Lavik
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Justin H Layer
- Department of Hematology and Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
2
|
Chen FC, Huang CM, Yu XW, Chen YY. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum Exp Toxicol 2022; 41:9603271221080236. [PMID: 35099326 DOI: 10.1177/09603271221080237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Periodontal dressing is used to cover the gum surface and protect the wound after periodontal surgery. Nanomaterials have been widely applied in dentistry in recent years. Zinc oxide (ZnO) is one of the main components of periodontal dressing. AIM This study aims to explore the toxicity ZnO nanoparticles (ZnO NPs) causes to human gingival fibroblast cells (HGF-1) and its effect on cell proliferation. METHODS First, we identified and analyzed HGF-1, including cell morphology, growth curve, and immunohistochemistry staining. Then, we treated HGF-1 with ZnO NP. Cell viability, the integrity of the cell membrane, oxidative damage, and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, fluorescent probe, and flow cytometry. Furthermore, the expression of murine double minute 2 (MDM2) and p53 was determined by quantitative real-time polymerase chain reaction (qPCR) and Western blotting. We finally overexpressed MDM2 in HGF-1 to verify the relationship between MDM2 and cell proliferation. RESULTS Our research indicated ZnO NPs did not affect cell proliferation at low concentrations. However, high-concentration ZnO NP inhibited cell proliferation, destroyed the integrity of cell membranes, and induced oxidative stress and apoptosis. In addition, high concentration of ZnO NPs inhibited the proliferation of HGF-1 by regulating the expression of MDM2 and p53. CONCLUSION High concentration of ZnO NP caused toxicity to HGF-1 cells and inhibited cell proliferation by regulating MDM2 and p53 expression.
Collapse
Affiliation(s)
- Fang-Chuan Chen
- Department of Stomatology, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Cong-Ming Huang
- Department of Stomatology, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiao-Wan Yu
- Department of Laboratory Medicine, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ya-Yu Chen
- Department of Stomatology, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Chen FC, Huang CM, Yu XW, Chen YY. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum Exp Toxicol 2021; 40:S804-S813. [PMID: 34797187 DOI: 10.1177/09603271211058063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Periodontal dressing is used to cover the gum surface and protect the wound after periodontal surgery. Nanomaterials have been widely applied in dentistry in recent years. Zinc oxide (ZnO) is one of the main components of periodontal dressing. AIM This study aims to explore the toxicity ZnO nanoparticles (ZnO NPs) causes to human gingival fibroblast cells (HGF-1) and its effect on cell proliferation. METHODS First, we identified and analyzed HGF-1, including cell morphology, growth curve, and immunohistochemistry staining. Then, we treated HGF-1 with ZnO NP. Cell viability, the integrity of the cell membrane, oxidative damage, and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, fluorescent probe, and flow cytometry. Furthermore, the expression of murine double minute 2 (MDM2) and p53 was determined by quantitative real-time polymerase chain reaction (qPCR) and Western blotting. We finally overexpressed MDM2 in HGF-1 to verify the relationship between MDM2 and cell proliferation. RESULTS Our research indicated ZnO NPs did not affect cell proliferation at low concentrations. However, high-concentration ZnO NP inhibited cell proliferation, destroyed the integrity of cell membranes, and induced oxidative stress and apoptosis. In addition, high concentration of ZnO NPs inhibited the proliferation of HGF-1 by regulating the expression of MDM2 and p53. CONCLUSION High concentration of ZnO NP caused toxicity to HGF-1 cells and inhibited cell proliferation by regulating MDM2 and p53 expression.
Collapse
Affiliation(s)
- Fang-Chuan Chen
- Department of Stomatology, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Cong-Ming Huang
- Department of Stomatology, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiao-Wan Yu
- Department of Laboratory Medicine, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ya-Yu Chen
- Department of Stomatology, the 117889Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem 2019; 176:92-104. [PMID: 31100649 DOI: 10.1016/j.ejmech.2019.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
The p53 gene, a well-known tumor suppressor gene, plays a crucial role in cell cycle regulation, DNA repair, cell differentiation, and apoptosis. MDM2 exerts p53-dependent activity mainly by binding to p53 protein to form MDM2-p53 negative feedback loop. In addition, MDM2 is involved in a number of pathways that regulate cell proliferation and apoptosis, playing a p53-independent role. The p53 binding domain of MDMX bind to p53 transcriptional activation domain, inhibiting the transcriptional activity of p53 on its downstream genes, but does not mediate the degradation of p53. The anti-tumor effect is exerted by inhibiting the interaction between the MDM2/MDMX protein and the p53 protein by a small-molecule or by restoring the activity of the p53 protein. This review describes in the structural features, biological functions and mechanisms of p53-MDM2/MDMX, and summarizes small-molecule targeting p53-MDM2/MDMX.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Xiaohui Wang
- Department of Pharmacy, Naval Authorities Clinic, Beijing, 100841, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
5
|
Pushkarev VM, Kovzun OI, Pushkarev VV, Guda BB, Tronko MD. Biochemical aspects of the combined use of taxanes, irradiation and other antineoplastic agents for the treatment of anaplastic thyroid carcinoma. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Medina-Medina I, Martínez-Sánchez M, Hernández-Monge J, Fahraeus R, Muller P, Olivares-Illana V. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Sci 2018. [PMID: 29524278 DOI: 10.1002/pro.3405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HDM2 and HDMX are two homologs essential for controlling p53 tumor suppressor activity under normal conditions. Both proteins bind different sites on the p53 N-terminus, and while HDM2 has E3 ubiquitin ligase activity towards p53, HDMX does not. Nevertheless, HDMX is required for p53 polyubiquitination and degradation, but the underlying molecular mechanism remains unclear. Alone, HDMX and HDM2 interact via their respective C-terminal RING domains but here we show that the presence of p53 induces an N-terminal interface under normal cellular conditions. This results in an increase in HDM2-mediated p53 polyubiquitination and degradation. The HDM2 inhibitor Nutlin-3 binds the N-terminal p53 binding pocket and is sufficient to induce the HDM2-HDMX interaction, suggesting that the mechanism depends on allosteric changes that control the multiprotein complex formation. These results demonstrate an allosteric interchange between three different proteins (HDMX-HDM2-p53) and help to explain the molecular mechanisms of HDM2-inhibitory drugs.
Collapse
Affiliation(s)
- Ixaura Medina-Medina
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290, SLP, México
| | - Mayra Martínez-Sánchez
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290, SLP, México
| | - Jesús Hernández-Monge
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290, SLP, México
| | - Robin Fahraeus
- Équipe Labellisée Ligue Contre le Cancer, INSERM UMRS1162, Institut de Génétique Moléculaire, Université Paris 7, IUH Hôpital St. Louis, Paris, 75010, France
| | - Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, Zona Universitaria, 78290, SLP, México
| |
Collapse
|
7
|
Morrison CD, Allington TM, Thompson CL, Gilmore HL, Chang JC, Keri RA, Schiemann WP. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression. Oncotarget 2018; 7:72777-72794. [PMID: 27626309 PMCID: PMC5340126 DOI: 10.18632/oncotarget.11909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression.
Collapse
Affiliation(s)
- Chevaun D Morrison
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tressa M Allington
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado-Denver, Aurora, CO 80045, USA
| | - Cheryl L Thompson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah L Gilmore
- Department of Pathology, University Hospitals, Case Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jenny C Chang
- Houston Methodist Research Center, Houston, TX 77030, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Hauck PM, Wolf ER, Olivos DJ, McAtarsney CP, Mayo LD. The fate of murine double minute X (MdmX) is dictated by distinct signaling pathways through murine double minute 2 (Mdm2). Oncotarget 2017; 8:104455-104466. [PMID: 29262653 PMCID: PMC5732819 DOI: 10.18632/oncotarget.22320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 01/17/2023] Open
Abstract
Mouse double minute 2 (Mdm2) and MdmX dimerize in response to low levels of genotoxic stress to function in a ubiquitinating complex, which signals for destabilization of p53. Under growth conditions, Mdm2 functions as a neddylating ligase, but the importance and extent of MdmX involvement in this process are largely unknown. Here we show that when Mdm2 functions as a neddylating enzyme, MdmX is stabilized. Furthermore, we demonstrate that under growth conditions, MdmX enhances the neddylation activity of Mdm2 on p53 and is a substrate for neddylation itself. Importantly, MdmX knockdown in MCF-7 breast cancer cells resulted in diminished neddylated p53, suggesting that MdmX is important for Mdm2-mediated neddylation. Supporting this finding, the lack of MdmX in transient assays or in p53/MdmX-/- MEFs results in decreased or altered neddylation of p53 respectively; therefore, MdmX is a critical component of the Mdm2-mediated neddylating complex. c-Src is the upstream activator of this Mdm2-MdmX neddylating pathway and loss of Src signaling leads to the destabilization of MdmX that is dependent on the RING (Really Interesting New Gene) domain of MdmX. Treatment with a small molecule inhibitor of neddylation, MLN4924, results in the activation of Ataxia Telangiectasia Mutated (ATM). ATM phosphorylates Mdm2, converting Mdm2 to a ubiquitinating enzyme which leads to the destabilization of MdmX. These data show how distinct signaling pathways engage neddylating or ubiquitinating activities and impact the Mdm2-MdmX axis.
Collapse
Affiliation(s)
- Paula M Hauck
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana, 46202, United States of America
| | - Eric R Wolf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
| | - David J Olivos
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana, 46202, United States of America
| | - Ciaran P McAtarsney
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana, 46202, United States of America
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana, 46202, United States of America.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
| |
Collapse
|
9
|
Saadatzadeh MR, Elmi AN, Pandya PH, Bijangi-Vishehsaraei K, Ding J, Stamatkin CW, Cohen-Gadol AA, Pollok KE. The Role of MDM2 in Promoting Genome Stability versus Instability. Int J Mol Sci 2017; 18:ijms18102216. [PMID: 29065514 PMCID: PMC5666895 DOI: 10.3390/ijms18102216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
In cancer, the mouse double minute 2 (MDM2) is an oncoprotein that contributes to the promotion of cell growth, survival, invasion, and therapeutic resistance. The impact of MDM2 on cell survival versus cell death is complex and dependent on levels of MDM2 isoforms, p53 status, and cellular context. Extensive investigations have demonstrated that MDM2 protein–protein interactions with p53 and other p53 family members (p63 and p73) block their ability to function as transcription factors that regulate cell growth and survival. Upon genotoxic insults, a dynamic and intricately regulated DNA damage response circuitry is activated leading to release of p53 from MDM2 and activation of cell cycle arrest. What ensues following DNA damage, depends on the extent of DNA damage and if the cell has sufficient DNA repair capacity. The well-known auto-regulatory loop between p53-MDM2 provides an additional layer of control as the cell either repairs DNA damage and survives (i.e., MDM2 re-engages with p53), or undergoes cell death (i.e., MDM2 does not re-engage p53). Furthermore, the decision to live or die is also influenced by chromatin-localized MDM2 which directly interacts with the Mre11-Rad50-Nbs1 complex and inhibits DNA damage-sensing giving rise to the potential for increased genome instability and cellular transformation.
Collapse
Affiliation(s)
- M Reza Saadatzadeh
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| | - Adily N Elmi
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pankita H Pandya
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
| | | | - Jixin Ding
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| | - Christopher W Stamatkin
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| | | | - Karen E Pollok
- Department of Pediatrics (Division of Hematology/Oncology), Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University Simon Cancer Center, 1044 West Walnut Street R4 302, Indianapolis, IN 46202-5525, USA.
| |
Collapse
|
10
|
Hauck PM, Wolf ER, Olivos DJ, Batuello CN, McElyea KC, McAtarsney CP, Cournoyer RM, Sandusky GE, Mayo LD. Early-Stage Metastasis Requires Mdm2 and Not p53 Gain of Function. Mol Cancer Res 2017; 15:1598-1607. [PMID: 28784612 DOI: 10.1158/1541-7786.mcr-17-0174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023]
Abstract
Metastasis of cancer cells to distant organ systems is a complex process that is initiated with the programming of cells in the primary tumor. The formation of distant metastatic foci is correlated with poor prognosis and limited effective treatment options. We and others have correlated Mouse double minute 2 (Mdm2) with metastasis; however, the mechanisms involved have not been elucidated. Here, it is reported that shRNA-mediated silencing of Mdm2 inhibits epithelial-mesenchymal transition (EMT) and cell migration. In vivo analysis demonstrates that silencing Mdm2 in both post-EMT and basal/triple-negative breast cancers resulted in decreased primary tumor vasculature, circulating tumor cells, and metastatic lung foci. Combined, these results demonstrate the importance of Mdm2 in orchestrating the initial stages of migration and metastasis.Implication: Mdm2 is the major factor in the initiation of metastasis. Mol Cancer Res; 15(11); 1598-607. ©2017 AACR.
Collapse
Affiliation(s)
- Paula M Hauck
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - Eric R Wolf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David J Olivos
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher N Batuello
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle C McElyea
- Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ciarán P McAtarsney
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - R Michael Cournoyer
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indianapolis, Indiana. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
11
|
Sheng W, Dong M, Chen C, Wang Z, Li Y, Wang K, Li Y, Zhou J. Cooperation of Musashi-2, Numb, MDM2, and P53 in drug resistance and malignant biology of pancreatic cancer. FASEB J 2017; 31:2429-2438. [PMID: 28223335 DOI: 10.1096/fj.201601240r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Our earlier work showed that Musashi (MSI)-2 promoted the development of pancreatic cancer (PC) by down-regulating Numb, which prevented murine double-minute (MDM)-2-mediated p53 ubiquitin degradation. Thus, we investigate the relationship among MSI2, Numb, MDM2, and p53 in PC in vitro and invivo, an association that has not been reported to our knowledge. MSI2 had no relationship with mutant p53 (mtp53) and wild-type p53 (wtp53) in normal PC cells. However, in response to gemcitabine or cisplatin treatment, MSI2 silencing simultaneously down-regulated MDM2 and up-regulated Numb and wtp53 protein levels. Moreover, these 4 endogenous proteins can be coimmunoprecipitated as a quaternary complex. Numb small interfering RNA (siRNA) reversed the MSI2 silencing-induced p53 increase. During treatment with chemical agents, MSI2 silencing decreased drug resistance and cell motility in vitro and inhibited tumor growth in vivo, all of which were significantly reversed by p53 siRNA. MSI2 was also negatively associated with Numb and positively associated with MDM2 expression in tissue. Overexpression of MSI2, MDM2, and mtp53 and weak expression of Numb were closely associated with aggressive clinicopathologic characteristics and poor prognosis for patients with PC. MSI2 negatively regulates wtp53 protein by up-regulating MDM2 and down-regulating Numb after treatment with chemical agents. MSI2 promotes drug resistance and malignant biology of PC in a p53-dependent manner.-Sheng, W., Dong, M., Chen, C., Wang, Z., Li, Y., Wang, K., Li, Y., Zhou, J. Cooperation of Musashi-2, Numb, MDM2, and P53 in drug resistance and malignant biology of pancreatic cancer.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China;
| | - Chuanping Chen
- Clinical Laboratory, The Sixth Peoples' Hospital of Shenyang City, Shenyang, China
| | - Zixin Wang
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yunwei Li
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Kewei Wang
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yuji Li
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice. Proc Natl Acad Sci U S A 2016; 113:15024-15029. [PMID: 27956626 DOI: 10.1073/pnas.1611798114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes.
Collapse
|
13
|
Carr MI, Jones SN. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 2016; 5:707-724. [PMID: 28690977 PMCID: PMC5501481 DOI: 10.21037/tcr.2016.11.75] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.
Collapse
Affiliation(s)
- Michael I Carr
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Stephen N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
14
|
Abstract
The p53 tumor suppressor is highly regulated at the level of protein degradation and transcriptional activity. The key players of the pathway, p53, MDM2, and MDMX are present at multiple conformational states that are responsive to regulation by post-translational modifications and protein-protein interactions. The structures of major functional domains of these proteins have been determined, but the mechanisms of several intrinsically disordered regions remain unclear despite their critical roles in signaling and regulation. Recent studies suggest that these disordered regions function in part by dynamic intra molecular interactions with the structured domains to regulate p53 DNA binding, MDM2 ubiquitin E3 ligase activity, and MDMX-p53 binding. These findings provide new insight on how p53 is controlled by various stress signals, and suggest potential targets for the search of allosteric regulators of the p53 pathway.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
15
|
Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Mol Cell Biol 2016; 36:2195-205. [PMID: 27215386 DOI: 10.1128/mcb.00113-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated.
Collapse
|
16
|
Wang H, Cai S, Bailey BJ, Reza Saadatzadeh M, Ding J, Tonsing-Carter E, Georgiadis TM, Zachary Gunter T, Long EC, Minto RE, Gordon KR, Sen SE, Cai W, Eitel JA, Waning DL, Bringman LR, Wells CD, Murray ME, Sarkaria JN, Gelbert LM, Jones DR, Cohen-Gadol AA, Mayo LD, Shannon HE, Pollok KE. Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg 2016; 126:446-459. [PMID: 27177180 DOI: 10.3171/2016.1.jns152513] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.
Collapse
Affiliation(s)
- Haiyan Wang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Shanbao Cai
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Anhui Provincial Cancer Hospital, Hefei, Anhui, China; and
| | - Barbara J Bailey
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - M Reza Saadatzadeh
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Goodman Campbell Brain and Spine, Department of Neurosurgery
| | - Jixin Ding
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Goodman Campbell Brain and Spine, Department of Neurosurgery
| | - Eva Tonsing-Carter
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology
| | - Taxiarchis M Georgiadis
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - T Zachary Gunter
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Eric C Long
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Robert E Minto
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Kevin R Gordon
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Stephanie E Sen
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Wenjing Cai
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Jacob A Eitel
- Department of Radiology and Imaging Science, Indiana University, Indianapolis, Indiana
| | - David L Waning
- Indiana University Simon Cancer Center.,Department of Medicine, Division of Endocrinology
| | - Lauren R Bringman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Clark D Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Mary E Murray
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lawrence M Gelbert
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | | | - Aaron A Cohen-Gadol
- Indiana University Simon Cancer Center.,Goodman Campbell Brain and Spine, Department of Neurosurgery
| | - Lindsey D Mayo
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Indiana University Simon Cancer Center
| | - Harlan E Shannon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Karen E Pollok
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology
| |
Collapse
|
17
|
Structural basis of how stress-induced MDMX phosphorylation activates p53. Oncogene 2016; 35:1919-25. [PMID: 26148237 PMCID: PMC5470632 DOI: 10.1038/onc.2015.255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 02/06/2023]
Abstract
The tumor-suppressor protein p53 is tightly controlled in normal cells by its two negative regulators--the E3 ubiquitin ligase MDM2 and its homolog MDMX. Under stressed conditions such as DNA damage, p53 escapes MDM2- and MDMX-mediated functional inhibition and degradation, acting to prevent damaged cells from proliferating through induction of cell cycle arrest, DNA repair, senescence or apoptosis. Ample evidence suggests that stress signals induce phosphorylation of MDM2 and MDMX, leading to p53 activation. However, the structural basis of stress-induced p53 activation remains poorly understood because of the paucity of technical means to produce site-specifically phosphorylated MDM2 and MDMX proteins for biochemical and biophysical studies. Herein, we report total chemical synthesis, via native chemical ligation, and functional characterization of (24-108)MDMX and its Tyr99-phosphorylated analog with respect to their ability to interact with a panel of p53-derived peptide ligands and PMI, a p53-mimicking but more potent peptide antagonist of MDMX, using FP and surface plasmon resonance techniques. Phosphorylation of MDMX at Tyr99 weakens peptide binding by approximately two orders of magnitude. Comparative X-ray crystallographic analyses of MDMX and of pTyr99 MDMX in complex with PMI as well as modeling studies reveal that the phosphate group of pTyr99 imposes extensive steric clashes with the C-terminus of PMI or p53 peptide and induces a significant lateral shift of the peptide ligand, contributing to the dramatic decrease in the binding affinity of MDMX for p53. Because DNA damage activates c-Abl tyrosine kinase that phosphorylates MDMX at Tyr99, our findings afford a rare glimpse at the structural level of how stress-induced MDMX phosphorylation dislodges p53 from the inhibitory complex and activates it in response to DNA damage.
Collapse
|
18
|
Li J, Kurokawa M. Regulation of MDM2 Stability After DNA Damage. J Cell Physiol 2015; 230:2318-27. [PMID: 25808808 DOI: 10.1002/jcp.24994] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Abstract
Cells in our body are constantly exposed to various stresses and threats to their genomic integrity. The tumor suppressor protein p53 plays a critical role in successful defense against these threats by inducing apoptotic cell death or cell cycle arrest. In unstressed conditions, p53 levels and activity must be kept low to prevent lethal activation of apoptotic and senescence pathways. However, upon DNA damage or other stressors, p53 is released from its inhibitory state to induce an array of apoptosis and cell cycle genes. Conversely, inactivation of p53 could promote unrestrained tumor proliferation and failure to appropriately undergo apoptotic cell death, which could, in turn, lead to carcinogenesis. The ubiquitin E3 ligase MDM2 is the most critical inhibitor of p53 that determines the cellular response to various p53-activating agents, including DNA damage. MDM2 activity is controlled by post-translational modifications, especially phosphorylation. However, accumulating evidence suggests that MDM2 is also regulated at the level of protein stability, which is controlled by the ubiquitin-proteasome pathway. Here, we discuss how MDM2 can be regulated in response to DNA damage with particular focus on the regulation of MDM2 protein stability.
Collapse
Affiliation(s)
- Jiaqi Li
- Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Manabu Kurokawa
- Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Lebanon, New Hampshire
| |
Collapse
|
19
|
Src phosphorylation converts Mdm2 from a ubiquitinating to a neddylating E3 ligase. Proc Natl Acad Sci U S A 2015; 112:1749-54. [PMID: 25624478 DOI: 10.1073/pnas.1416656112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Murine double minute-2 protein (Mdm2) is a multifaceted phosphorylated protein that plays a role in regulating numerous proteins including the tumor suppressor protein p53. Mdm2 binds to and is involved in conjugating either ubiquitin or Nedd8 (Neural precursor cell expressed, developmentally down-regulated 8) to p53. Although regulation of the E3 ubiquitin activity of Mdm2 has been investigated, regulation of the neddylating activity of Mdm2 remains to be defined. Here we show that activated c-Src kinase phosphorylates Y281 and Y302 of Mdm2, resulting in an increase in Mdm2 stability and its association with Ubc12, the E2 enzyme of the neddylating complex. Mdm2-dependent Nedd8 conjugation of p53 results in transcriptionally inactive p53, a process that is reversed with a small molecule inhibitor to either Src or Ubc12. Thus, our studies reveal how Mdm2 may neutralize and elevate p53 in actively proliferating cells and also provides a rationale for using therapies that target the Nedd8 pathway in wild-type p53 tumors.
Collapse
|
20
|
Zhang XP, Liu F, Wang W. Interplay between Mdm2 and HIPK2 in the DNA damage response. J R Soc Interface 2014; 11:rsif.2014.0319. [PMID: 24829283 DOI: 10.1098/rsif.2014.0319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumour suppressor p53 is activated to induce cell-cycle arrest or apoptosis in the DNA damage response (DDR). p53 phosphorylation at Ser46 by HIPK2 (homeodomain-interacting protein kinase 2) is a critical event in apoptosis induction. Interestingly, HIPK2 is degraded by Mdm2 (a negative regulator of p53), whereas Mdm2 is downregulated by HIPK2 through several mechanisms. Here, we develop a four-module network model for the p53 pathway to clarify the role of interplay between Mdm2 and HIPK2 in the DDR evoked by ultraviolet radiation. By numerical simulations, we reveal that Mdm2-dependent HIPK2 degradation promotes cell survival after mild DNA damage and that inhibition of HIPK2 degradation is sufficient to trigger apoptosis. In response to severe damage, p53 phosphorylation at Ser46 is promoted by the accumulation of HIPK2 due to downregulation of nuclear Mdm2 in the later phase of the response. Meanwhile, the concentration of p53 switches from moderate to high levels, contributing to apoptosis induction. We show that the presence of three mechanisms for Mdm2 downregulation, i.e. repression of mdm2 expression, inhibition of its nuclear entry and HIPK2-induced degradation, guarantees the apoptosis of irreparably damaged cells. Our results agree well with multiple experimental observations, and testable predictions are also made. This work advances our understanding of the regulation of p53 activity in the DDR and suggests that HIPK2 should be a significant target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Peng Zhang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China Kuang Yaming Honors School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Feng Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wei Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
21
|
Zhang H, Gu L, Liu T, Chiang KY, Zhou M. Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLoS One 2014; 9:e100960. [PMID: 24968304 PMCID: PMC4072773 DOI: 10.1371/journal.pone.0100960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Nilotinib is a selective BCR-ABL tyrosine kinase inhibitor related to imatinib that is more potent than imatinib. Nilotinib is widely used to treat chronic myelogenous leukemia (CML) and Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL). The present study identifies Mouse double minute 2 homolog (MDM2) as a target of nilotinib. In studying ALL cell lines, we found that the expression of MDM2 in both Philadelphia positive (Ph+) and Philadelphia negative (Ph-) ALL cells was remarkably inhibited by nilotinib, in a dose- and time-dependent manner. Further studies demonstrated that nilotinib inhibited MDM2 at the post-translational level by inducing MDM2 self-ubiquitination and degradation. Nilotinib-mediated MDM2 downregulation did not result in accumulation and activation of p53. Inhibition of MDM2 in nilotinib-treated ALL cells led to downregulation of the anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP), a translational target of MDM2, resulting in activation of caspases. Inhibition of XIAP following nilotinib-mediated downregulation of MDM2 resulted in apoptosis of MDM2-expressing ALL; however, similar nilotinib treatment induced stronger apoptosis in Ph+/MDM2+ ALL than in Ph-/MDM2+ or Ph+/MDM2- ALL. The ALL cells that were Ph-/MDM2- were totally resistant to nilotinib. These results suggested that nilotinib can inhibit MDM2 and induce a p53-independent apoptosis pathway by downregulating XIAP; thus, nilotinib can treat not only Ph+, but also Ph- ALL patients whose cancer cells overexpress MDM2.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kuang-Yueh Chiang
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chan AL, Grossman T, Zuckerman V, Campigli Di Giammartino D, Moshel O, Scheffner M, Monahan B, Pilling P, Jiang YH, Haupt S, Schueler-Furman O, Haupt Y. c-Abl phosphorylates E6AP and regulates its E3 ubiquitin ligase activity. Biochemistry 2013; 52:3119-29. [PMID: 23581475 DOI: 10.1021/bi301710c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human papillomavirus (HPV)-infected cells, the p53 tumor suppressor is tightly regulated by the HPV-E6-E6AP complex, which promotes it for proteasomal degradation. We previously demonstrated that c-Abl tyrosine kinase protects p53 from HPV-E6-E6AP complex-mediated ubiquitination and degradation under stress conditions. However, the underlying mechanism was not defined. In this study, we explored the possibility that c-Abl targets E6AP and thereby protects p53. We demonstrated that c-Abl interacts with and phosphorylates E6AP. We determined that the E3 ligase activity of E6AP is impaired in response to phosphorylation by c-Abl. We mapped the phosphorylation site to tyrosine 636 within the HECT catalytic domain of E6AP, and using substitution mutants, we showed that this residue dictates the E3 ligase activity of E6AP, in a substrate-specific manner. On the basis of the crystal structure of the HECT domain of E6AP, we propose a model in which tyrosine 636 plays a regulatory role in the oligomerization of E6AP, which is a process implicated in its E3 ubiquitin ligase activity. Our results suggest that c-Abl protects p53 from HPV-E6-E6AP complex-mediated degradation by phosphorylating E6AP and impairing its E3 ligase activity, thus providing a molecular explanation for the stress-induced protection of p53 in HPV-infected cells.
Collapse
Affiliation(s)
- Ai-Leen Chan
- Research Division, The Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne 3002, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen J. The Roles of MDM2 and MDMX Phosphorylation in Stress Signaling to p53. Genes Cancer 2012; 3:274-82. [PMID: 23150760 DOI: 10.1177/1947601912454733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The p53 tumor suppressor is highly responsive to different physiological stresses such as abnormal cell proliferation, nutrient deprivation, and DNA damage. Distinct signaling mechanisms have evolved to activate p53, which in turn modulate numerous pathways to enhance fitness and survival of the organism. Elucidating the molecular mechanisms of these signaling events is critical for understanding tumor suppression by p53 and development of novel therapeutics. Studies in the past decade have established that MDM2 and MDMX are important targets of signaling input from different pathways. Here, we focus our discussion on MDM2 and MDMX phosphorylation, which is important for p53 activation by DNA damage. Investigations in this area have generated new insight into the inner workings of MDM2 and MDMX and underscore the importance of allosteric communication between different domains in achieving an efficient response to phosphorylation. It is likely that MDM2 and MDMX regulation by phosphorylation will share mechanistic similarities to other signaling hub molecules. Phosphorylation-independent p53 activators such as ARF and ribosomal proteins ultimately achieve the same outcome as phosphorylation, suggesting that they may induce similar changes in the structure and function of MDM2 and MDMX through protein-protein interactions.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
24
|
Shadfan M, Lopez-Pajares V, Yuan ZM. MDM2 and MDMX: Alone and together in regulation of p53. Transl Cancer Res 2012; 1:88-89. [PMID: 23002429 PMCID: PMC3448287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
p53, a critical tumor suppressor, is activated by various cellular stresses to prevent and repair damages that can lead to tumor development. In response to these stresses, p53 activation can cause very serious cellular effects including permanent cell cycle arrest and cell death. p53 must therefore be very tightly regulated to avoid unnecessary pathological effects. The homologs MDM2 and MDMX have been shown to be the major, essential negative regulators of p53. In normal cells, MDM2 and MDMX suppress p53 activity, but in the event of cellular stress, they themselves must be inhibited so that p53 may respond to the stress. MDM2 and MDMX are known to bind together, and play multifaceted, non-redundant roles in modulating p53 protein activity. Recently, evidence has emerged showing that MDM2 and MDMX most effectively inhibit p53 as a complex, and possibly play non-redundant roles because they must function as one to control p53. In this review, we give an overview of MDM2 and MDMX and discuss a few ways in which they are modified so that p53 may be activated. Lastly, we discuss the non-redundant roles of MDM2 and MDMX and how it is important to investigate the effect on the complex as a whole when investigating either protein.
Collapse
Affiliation(s)
- Miriam Shadfan
- Department of Cellular and Structural Biology and Department of Radiation Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | | | - Zhi-Min Yuan
- Department of Cellular and Structural Biology and Department of Radiation Oncology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
25
|
Mdm2 and MdmX partner to regulate p53. FEBS Lett 2012; 586:1390-6. [PMID: 22673503 DOI: 10.1016/j.febslet.2012.02.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 02/06/2023]
Abstract
Mdm2 regulates the stability, translation, subcellular localization and transcriptional activity of p53 protein. Mdm2-dependent p53 inhibition is essential in regulating p53 activity during embryonic development and in adult tissues. MdmX, an Mdm2 homolog, is also essential for p53 inhibition in vivo. Recent advances in the field from biochemical and genetic studies have revealed an essential role for the MdmX RING domain in Mdm2-dependent p53 polyubiquitination and degradation. Mdm2 on its own is a monoubiquitin E3 ligase for p53, but is converted to a p53 polyubiquitin E3 ligase by MdmX through their RING-RING domain interactions. MdmX acts as an activator as well as a substrate of Mdm2/MdmX E3 complex. The insufficiency of Mdm2 for p53 polyubiquitination also demands other p53 E3 ligases or E4 factors be incorporated into the p53 degradation arena. Deubiquitinases nullify the effects of E3 actions and reverse the ubiquitination process, which permits a diverse and dynamic pattern of p53 stability control. Unsurprisingly, stress signals target MdmX to disengage the p53/Mdm2 feedback loop for timely and appropriate p53 responses to these stresses.
Collapse
|
26
|
Li L, Cui D, Zheng SJ, Lou H, Tang J. Regulation of Actinomycin D induced upregulation of Mdm2 in H1299 cells. DNA Repair (Amst) 2012; 11:112-9. [DOI: 10.1016/j.dnarep.2011.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
DNA damage response: The emerging role of c-Abl as a regulatory switch? Biochem Pharmacol 2011; 82:1269-76. [DOI: 10.1016/j.bcp.2011.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/20/2022]
|