1
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
2
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
3
|
Kondo C, Clark RB, Al‐Jezani N, Kim TY, Belke D, Banderali U, Szerencsei RT, Jalloul AH, Schnetkamp PPM, Spitzer KW, Giles WR. ATP triggers a robust intracellular [Ca 2+ ]-mediated signalling pathway in human synovial fibroblasts. Exp Physiol 2018; 103:1101-1122. [PMID: 29791754 DOI: 10.1113/ep086851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the main [Ca2+ ]i signalling pathways activated by ATP in human synovial fibroblasts? What is the main finding and its importance? In human synovial fibroblasts ATP acts through a linked G-protein (Gq ) and phospholipase C signalling mechanism to produce IP3 , which then markedly enhances release of Ca2+ from the endoplasmic reticulum. These results provide new information for the detection of early pathophysiology of arthritis. ABSTRACT In human articular joints, synovial fibroblasts (HSFs) have essential physiological functions that include synthesis and secretion of components of the extracellular matrix and essential articular joint lubricants, as well as release of paracrine substances such as ATP. Although the molecular and cellular processes that lead to a rheumatoid arthritis (RA) phenotype are not fully understood, HSF cells exhibit significant changes during this disease progression. The effects of ATP on HSFs were studied by monitoring changes in intracellular Ca2+ ([Ca2+ ]i ), and measuring electrophysiological properties. ATP application to HSF cell populations that had been enzymatically released from 2-D cell culture revealed that ATP (10-100 μm), or its analogues UTP or ADP, consistently produced a large transient increase in [Ca2+ ]i . These changes (i) were initiated by activation of the P2 Y purinergic receptor family, (ii) required Gq -mediated signal transduction, (iii) did not involve a transmembrane Ca2+ influx, but instead (iv) arose almost entirely from activation of endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate (IP3 ) receptors that triggered Ca2+ release from the ER. Corresponding single cell electrophysiological studies revealed that these ATP effects (i) were insensitive to [Ca2+ ]o removal, (ii) involved an IP3 -mediated intracellular Ca2+ release process, and (iii) strongly turned on Ca2+ -activated K+ current(s) that significantly hyperpolarized these cells. Application of histamine produced very similar effects in these HSF cells. Since ATP is a known paracrine agonist and histamine is released early in the inflammatory response, these findings may contribute to identification of early steps/defects in the initiation and progression of RA.
Collapse
Affiliation(s)
- C Kondo
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - R B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - T Y Kim
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - D Belke
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - R T Szerencsei
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A H Jalloul
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - P P M Schnetkamp
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - K W Spitzer
- Nora Eccles Harrison Cardiovascular Centre, Salt Lake City, UT, USA
| | - W R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Grössinger EM, Kang M, Bouchareychas L, Sarin R, Haudenschild DR, Borodinsky LN, Adamopoulos IE. Ca 2+-Dependent Regulation of NFATc1 via KCa3.1 in Inflammatory Osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2017; 200:749-757. [PMID: 29246953 DOI: 10.4049/jimmunol.1701170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
In inflammatory arthritis, the dysregulation of osteoclast activity by proinflammatory cytokines, including TNF, interferes with bone remodeling during inflammation through Ca2+-dependent mechanisms causing pathological bone loss. Ca2+-dependent CREB/c-fos activation via Ca2+-calmodulin kinase IV (CaMKIV) induces transcriptional regulation of osteoclast-specific genes via NFATc1, which facilitate bone resorption. In leukocytes, Ca2+ regulation of NFAT-dependent gene expression oftentimes involves the activity of the Ca2+-activated K+ channel KCa3.1. In this study, we evaluate KCa3.1 as a modulator of Ca2+-induced NFAT-dependent osteoclast differentiation in inflammatory bone loss. Microarray analysis of receptor activator of NF-κB ligand (RANKL)-activated murine bone marrow macrophage (BMM) cultures revealed unique upregulation of KCa3.1 during osteoclastogenesis. The expression of KCa3.1 in vivo was confirmed by immunofluorescence staining on multinucleated cells at the bone surface of inflamed mouse joints. Experiments on in vitro BMM cultures revealed that KCa3.1-/- and TRAM-34 treatment significantly reduced the expression of osteoclast-specific genes (p < 0.05) alongside decreased osteoclast formation (p < 0.0001) in inflammatory (RANKL+TNF) and noninflammatory (RANKL) conditions. In particular, live cell Ca2+ imaging and Western blot analysis showed that TRAM-34 pretreatment decreased transient RANKL-induced Ca2+ amplitudes in BMMs by ∼50% (p < 0.0001) and prevented phosphorylation of CaMKIV. KCa3.1-/- reduced RANKL+/-TNF-stimulated phosphorylation of CREB and expression of c-fos in BMMs (p < 0.01), culminating in decreased NFATc1 protein expression and transcriptional activity (p < 0.01). These data indicate that KCa3.1 regulates Ca2+-dependent NFATc1 expression via CaMKIV/CREB during inflammatory osteoclastogenesis in the presence of TNF, corroborating its role as a target candidate for the treatment of bone erosion in inflammatory arthritis.
Collapse
Affiliation(s)
- Eva M Grössinger
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Mincheol Kang
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Laura Bouchareychas
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | - Ritu Sarin
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616
| | | | - Laura N Borodinsky
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616; and.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children - Northern California, Sacramento, CA 95817
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California Davis, Davis, CA 95616; .,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children - Northern California, Sacramento, CA 95817
| |
Collapse
|
5
|
Pchelintseva E, Djamgoz MBA. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels. J Cell Physiol 2017; 233:3755-3768. [PMID: 28776687 DOI: 10.1002/jcp.26120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in modern medicine for which understanding the mechanisms controlling their differentiation is fundamental. Ion channels offer novel insights to this process because of their role in modulating membrane potential and intracellular milieu. Here, we evaluate the contribution of calcium-activated potassium (KCa ) channels to the three main components of MSC differentiation: initiation, proliferation, and migration. First, we demonstrate the importance of the membrane potential (Vm ) and the apparent association of hyperpolarization with differentiation. Of KCa subtypes, most evidence points to activity of big-conductance channels in inducing initiation. On the other hand, intermediate-conductance currents have been shown to promote progression through the cell cycle. While there is no information on the role of KCa channels in migration of MSCs, work from other stem cells and cancer cells suggest that intermediate-conductance and to a lesser extent big-conductance channels drive migration. In all cases, these effects depend on species, tissue origin and lineage. Finally, we present a conceptual model that demonstrates how KCa activity could influence differentiation by regulating Vm and intracellular Ca2+ oscillations. We conclude that KCa channels have significant involvement in MSC differentiation and could potentially enable novel tissue engineering approaches and therapies.
Collapse
Affiliation(s)
- Ekaterina Pchelintseva
- Department of Life Sciences, Imperial College London, South Kensington Campus, Neuroscience Solution to Cancer Research Group, London, UK.,Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, Neuroscience Solution to Cancer Research Group, London, UK
| |
Collapse
|
6
|
Ryanodine receptor type 3 does not contribute to contractions in the mouse myometrium regardless of pregnancy. Pflugers Arch 2016; 469:313-326. [PMID: 27866274 DOI: 10.1007/s00424-016-1900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Ryanodine receptor type 3 (RyR3) is expressed in myometrial smooth muscle cells (MSMCs). The short isoform of RyR3 is a dominant negative variant (DN-RyR3) and negatively regulates the functions of RyR2 and full-length (FL)-RyR3. DN-RyR3 has been suggested to function as a major RyR3 isoform in non-pregnant (NP) mouse MSMCs, and FL-RyR3 may also be upregulated during pregnancy (P). This increase in the FL-RyR3/DN-RyR3 ratio may contribute to the strong contractions by MSMCs for parturition. In the present study, spontaneous contractions by the myometrium in NP and P mice were highly susceptible to nifedipine but were not affected by ryanodine. Ca2+ image analyses under a voltage clamp revealed that the influx of Ca2+ through voltage-dependent Ca2+ channels did not cause the release of Ca2+ from the sarcoplasmic reticulum (SR). Cytosolic Ca2+ concentrations ([Ca2+]cyt) in MSMCs were not affected by caffeine. Despite the abundant expression of large conductance Ca2+-activated K+ channels in MSMCs, spontaneous transient outward currents were not observed in the resting state because of the substantive lack of Ca2+ sparks. Quantitative PCR and Western blot analyses indicated that DN-RyR3 was strongly expressed in the NP myometrium, while the expression of FL-RyR3 and DN-RyR3 was markedly reduced in the P myometrium. The messenger RNA (mRNA) expression of RyR2 and RyR1 was negligible in the NP and P myometria. Moreover, RyR3 knockout mice may become pregnant and deliver normally. Thus, we concluded that none of the RyR subtypes, including RyR3, play a significant role in the regulation of [Ca2+]cyt in or contractions by mouse MSMCs regardless of pregnancy.
Collapse
|
7
|
Tagishi K, Shimizu A, Endo K, Kito H, Niwa S, Fujii M, Ohya S. Defective splicing of the background K+ channel K2P5.1 by the pre-mRNA splicing inhibitor, pladienolide B in lectin-activated mouse splenic CD4+ T cells. J Pharmacol Sci 2016; 132:205-209. [DOI: 10.1016/j.jphs.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022] Open
|
8
|
Ohya S, Kanatsuka S, Hatano N, Kito H, Matsui A, Fujimoto M, Matsuba S, Niwa S, Zhan P, Suzuki T, Muraki K. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells. Pharmacol Res Perspect 2016; 4:e00228. [PMID: 27069638 PMCID: PMC4804315 DOI: 10.1002/prp2.228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
The intermediate‐conductance Ca2+‐activated K+ channel KCa3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail. The results of this study showed a significant decrease in KCa3.1 transcription by HDAC inhibition in the human breast cancer cell line YMB‐1, which functionally expresses KCa3.1. A treatment with the clinically available, class I, II, and IV HDAC inhibitor, vorinostat significantly downregulated KCa3.1 transcription in a concentration‐dependent manner, and the plasmalemmal expression of the KCa3.1 protein and its functional activity were correspondingly decreased. Pharmacological and siRNA‐based HDAC inhibition both revealed the involvement of HDAC2 and HDAC3 in KCa3.1 transcription through the same mechanism. The downregulation of KCa3.1 in YMB‐1 was not due to the upregulation of the repressor element‐1 silencing transcription factor, REST and the insulin‐like growth factor‐binding protein 5, IGFBP5. The significant decrease in KCa3.1 transcription by HDAC inhibition was also observed in the KCa3.1‐expressing human prostate cancer cell line, PC‐3. These results suggest that vorinostat and the selective HDACis for HDAC2 and/or HDAC3 are effective drug candidates for KCa3.1‐overexpressing cancers.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Saki Kanatsuka
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology School of Pharmacy Aichi-Gakuin University Nagoya 464-8650 Japan
| | - Hiroaki Kito
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Azusa Matsui
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Mayu Fujimoto
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Sayo Matsuba
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Satomi Niwa
- Department of Pharmacology Division of Pathological Sciences Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Peng Zhan
- Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology School of Pharmacy Aichi-Gakuin University Nagoya 464-8650 Japan
| |
Collapse
|
9
|
Abstract
Potassium ion (K(+)) channels play an important role in the modulation of calcium ion (Ca(2+)) signaling via control of the membrane potential. In T-lymphocytes, the voltage-gated K(+) channel, KV1.3, and the intermediate-conductance Ca(2+)-activated K(+) channel, KCa3.1, predominantly contribute to K(+) conductance, and are responsible for cell proliferation, differentiation, apoptosis and infiltration. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, afflicts more than 0.1% of the population worldwide. In the chemically-induced IBD model mouse, an increase in KCa3.1 activity was observed in mesenteric lymph node CD4(+) T-lymphocytes, concomitant with an upregulation of KCa3.1 and a positive KCa3.1 regulator, NDPK-B. Pharmacological blockade of the KCa3.1 K(+) channel by TRAM-34 and/or ICA17043 elicited 1) a significant decrease in IBD severity, as assessed by diarrhea, visible fecal blood, inflammation and crypt damage of the colon; and 2) restoration of the expression levels of KCa3.1 and Th1 cytokines in CD4(+) T-lymphocytes in the IBD model. Recent studies have indicated the impact of K2P5.1 upregulation in T lymphocytes on the pathogenesis of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. The K2P5.1 K(+) channel is therefore highlighted as a potent therapeutic target in managing the pathogenesis of autoimmune diseases. Alternatively, pre-mRNA splicing of ion channels is associated with the development and progression of various diseases, including autoimmune diseases. Therefore, mRNA-splicing mechanisms underlying the transcriptional regulation of K2P5.1 K(+) channels may be a new strategic therapeutic target for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Kyoto Pharmaceutical University
| |
Collapse
|
10
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
11
|
Arthur GK, Duffy SM, Roach KM, Hirst RA, Shikotra A, Gaillard EA, Bradding P. KCa3.1 K+ Channel Expression and Function in Human Bronchial Epithelial Cells. PLoS One 2015; 10:e0145259. [PMID: 26689552 PMCID: PMC4687003 DOI: 10.1371/journal.pone.0145259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
The KCa3.1 K+ channel has been proposed as a novel target for pulmonary diseases such as asthma and pulmonary fibrosis. It is expressed in epithelia but its expression and function in primary human bronchial epithelial cells (HBECs) has not been described. Due to its proposed roles in the regulation of cell proliferation, migration, and epithelial fluid secretion, inhibiting this channel might have either beneficial or adverse effects on HBEC function. The aim of this study was to assess whether primary HBECs express the KCa3.1 channel and its role in HBEC function. Primary HBECs from the airways of healthy and asthmatic subjects, SV-transformed BEAS-2B cells and the neoplastic H292 epithelial cell line were studied. Primary HBECs, BEAS-2B and H292 cells expressed KCa3.1 mRNA and protein, and robust KCa3.1 ion currents. KCa3.1 protein expression was increased in asthmatic compared to healthy airway epithelium in situ, and KCa3.1 currents were larger in asthmatic compared to healthy HBECs cultured in vitro. Selective KCa3.1 blockers (TRAM-34, ICA-17043) had no effect on epithelial cell proliferation, wound closure, ciliary beat frequency, or mucus secretion. However, several features of TGFβ1-dependent epithelial-mesenchymal transition (EMT) were inhibited by KCa3.1 blockade. Treatment with KCa3.1 blockers is likely to be safe with respect to airway epithelial biology, and may potentially inhibit airway remodelling through the inhibition of EMT.
Collapse
Affiliation(s)
- Greer K. Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - S. Mark Duffy
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Katy M. Roach
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Rob A. Hirst
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Erol A. Gaillard
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Ramos Gomes F, Romaniello V, Sánchez A, Weber C, Narayanan P, Psol M, Pardo LA. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes. J Biol Chem 2015; 290:30351-65. [PMID: 26518875 PMCID: PMC4683259 DOI: 10.1074/jbc.m115.668749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/18/2022] Open
Abstract
KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy.
Collapse
Affiliation(s)
| | - Vincenzo Romaniello
- the Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Araceli Sánchez
- the Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Claudia Weber
- From the Department of Molecular Biology of Neuronal Signals and
| | | | - Maryna Psol
- From the Department of Molecular Biology of Neuronal Signals and
| | - Luis A Pardo
- the Oncophysiology Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| |
Collapse
|
13
|
Endo K, Kurokawa N, Kito H, Nakakura S, Fujii M, Ohya S. Molecular identification of the dominant-negative, splicing isoform of the two-pore domain K(+) channel K(2P)5.1 in lymphoid cells and enhancement of its expression by splicing inhibition. Biochem Pharmacol 2015; 98:440-52. [PMID: 26475531 DOI: 10.1016/j.bcp.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022]
Abstract
The two-pore domain background K(+) channel K2P5.1 is expected as a possible therapeutic target for autoimmune and inflammatory disorders and cancers because it plays an important role in maintaining the resting membrane potential and regulation of Ca(2+) signaling in T lymphocytes and cancer cells. However, the lack of selective K2P5.1 blockers has led to difficulties conducting experimental studies on this K(+) channel. We identified a novel splicing isoform of K2P5.1, K2P5.1B from the mammalian spleen, which lacked the N-terminus of full-length K2P5.1A. A co-immunoprecipitation assay using mice spleen lysates revealed an interaction between K2P5.1A and K2P5.1B in the cytoplasmic C-terminal domain. In a heterologous HEK293 expression system, K2P5.1B inhibited the trafficking of K2P5.1A to the plasma membrane. The alkaline pHe-induced hyperpolarizing response was significantly suppressed in K2P5.1B-transfected human leukemia K562 cells. Enhancement in cell proliferation by the overexpression of K2P5.1A in K562 was significantly prevented by the transfection of K2P5.1B. The spliceosome inhibitor pladienolide B significantly enhanced the relative expression of K2P5.1B in K562, resulting in decreases in the activity of K2P5.1A. K2P5.1B suppresses the function of the K2P5.1 K(+) channel in a dominant-negative manner, suggesting that the mRNA splicing mechanisms underlying the transcriptional regulation of K2P5.1B may be a new therapeutic strategy for autoimmune and inflammatory disorders and cancers.
Collapse
Affiliation(s)
- Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Natsumi Kurokawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Sawa Nakakura
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
14
|
Ohya S, Nakamura E, Horiba S, Kito H, Matsui M, Yamamura H, Imaizumi Y. Role of the K(Ca)3.1 K+ channel in auricular lymph node CD4+ T-lymphocyte function of the delayed-type hypersensitivity model. Br J Pharmacol 2015; 169:1011-23. [PMID: 23594188 DOI: 10.1111/bph.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) modulates the Ca(2+) response through the control of the membrane potential in the immune system. We investigated the role of K(Ca)3.1 on the pathogenesis of delayed-type hypersensitivity (DTH) in auricular lymph node (ALN) CD4(+) T-lymphocytes of oxazolone (Ox)-induced DTH model mice. EXPERIMENTAL APPROACH The expression patterns of K(Ca)3.1 and its possible transcriptional regulators were compared among ALN T-lymphocytes of three groups [non-sensitized (Ox-/-), Ox-sensitized, but non-challenged (Ox+/-) and Ox-sensitized and -challenged (Ox+/+)] using real-time polymerase chain reaction, Western blotting and flow cytometry. KCa 3.1 activity was measured by whole-cell patch clamp and the voltage-sensitive dye imaging. The effects of K(Ca)3.1 blockade were examined by the administration of selective K(Ca)3.1 blockers. KEY RESULTS Significant up-regulation of K(Ca)3.1a was observed in CD4(+) T-lymphocytes of Ox+/- and Ox+/+, without any evident changes in the expression of the dominant-negative form, K(Ca)3.1b. Negatively correlated with this, the repressor element-1 silencing transcription factor (REST) was significantly down-regulated. Pharmacological blockade of K(Ca)3.1 resulted in an accumulation of the CD4(+) T-lymphocytes of Ox+/+ at the G0/G1 phase of the cell cycle, and also significantly recovered not only the pathogenesis of DTH, but also the changes in the K(Ca)3.1 expression and activity in the CD4(+) T-lymphocytes of Ox+/- and Ox+/+. CONCLUSIONS AND IMPLICATIONS The up-regulation of K(Ca)3.1a in conjunction with the down-regulation of REST may be involved in CD4(+) T-lymphocyte proliferation in the ALNs of DTH model mice; and K(Ca)3.1 may be an important target for therapeutic intervention in allergy diseases such as DTH.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Ohya S, Fukuyo Y, Kito H, Shibaoka R, Matsui M, Niguma H, Maeda Y, Yamamura H, Fujii M, Kimura K, Imaizumi Y. Upregulation of KCa3.1 K(+) channel in mesenteric lymph node CD4(+) T lymphocytes from a mouse model of dextran sodium sulfate-induced inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2014; 306:G873-85. [PMID: 24674776 DOI: 10.1152/ajpgi.00156.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1/KCNN4 plays an important role in the modulation of Ca(2+) signaling through the control of the membrane potential in T lymphocytes. Here, we study the involvement of KCa3.1 in the enlargement of the mesenteric lymph nodes (MLNs) in a mouse model of inflammatory bowel disease (IBD). The mouse model of IBD was prepared by exposing male C57BL/6J mice to 5% dextran sulfate sodium for 7 days. Inflammation-induced changes in KCa3.1 activity and the expressions of KCa3.1 and its regulators in MLN CD4(+) T lymphocytes were monitored by real-time PCR, Western blot, voltage-sensitive dye imaging, patch-clamp, and flow cytometric analyses. Concomitant with an upregulation of KCa3.1a and nucleoside diphosphate kinase B (NDPK-B), a positive KCa3.1 regulator, an increase in KCa3.1 activity was observed in MLN CD4(+) T lymphocytes in the IBD model. Pharmacological blockade of KCa3.1 elicited the following results: 1) a significant decrease in IBD disease severity, as assessed by diarrhea, visible fecal blood, inflammation, and crypt damage of the colon and MLN enlargement compared with control mice, and 2) the restoration of the expression levels of KCa3.1a, NDPK-B, and Th1 cytokines in IBD model MLN CD4(+) T lymphocytes. These findings suggest that the increase in KCa3.1 activity induced by the upregulation of KCa3.1a and NDPK-B may be involved in the pathogenesis of IBD by mediating the enhancement of the proliferative response in MLN CD4(+) T lymphocyte and, therefore, that the pharmacological blockade of KCa3.1 may decrease the risk of IBD.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan; Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan;
| | - Yuka Fukuyo
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Hiroaki Kito
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Rina Shibaoka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miki Matsui
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Hiroki Niguma
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; and
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| | - Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; and Department of Clinical Pharmacy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Nagoya City University, Nagoya, Japan
| |
Collapse
|
16
|
Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system. Pflugers Arch 2014; 467:311-28. [PMID: 24797146 DOI: 10.1007/s00424-014-1523-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/09/2023]
Abstract
The expression pattern and functional roles for calcium-activated potassium channels of the KCa2.x family and KCa1.1 have been extensively examined in central neurons. Recent work indicates that intermediate conductance calcium-activated potassium channels (KCa3.1) are also expressed in central neurons of the cerebellum and spinal cord. The current study used immunocytochemistry and GFP linked to KCNN4 promoter activity in a transgenic mouse to determine the expression pattern of KCa3.1 channels in rat or mouse neocortex, hippocampus, thalamus, and cerebellum. KCa3.1 immunolabel and GFP expression were closely matched and detected in both excitatory and inhibitory cells of all regions examined. KCa3.1 immunolabel was localized primarily to the somatic region of excitatory cells in cortical structures but at the soma and over longer segments of dendrites of cells in deep cerebellar nuclei. More extensive labeling was apparent for inhibitory cells at the somatic and dendritic level with no detectable label associated with axon tracts or regions of intense synaptic innervation. The data indicate that KCa3.1 channels are expressed in the CNS with a differential pattern of distribution between cells, suggesting important functional roles for these calcium-activated potassium channels in regulating the excitability of central neurons.
Collapse
|
17
|
NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML. Blood 2014; 123:2816-25. [PMID: 24574459 DOI: 10.1182/blood-2013-02-481507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies revealed an increase in alternative splicing of multiple RNAs in cells from patients with acute myeloid leukemia (AML) compared with CD34(+) bone marrow cells from normal donors. Aberrantly spliced genes included a number of oncogenes, tumor suppressor genes, and genes involved in regulation of apoptosis, cell cycle, and cell differentiation. Among the most commonly mis-spliced genes (>70% of AML patients) were 2, NOTCH2 and FLT3, that encode myeloid cell surface proteins. The splice variants of NOTCH2 and FLT3 resulted from complete or partial exon skipping and utilization of cryptic splice sites. Longitudinal analyses suggested that NOTCH2 and FLT3 aberrant splicing correlated with disease status. Correlation analyses between splice variants of these genes and clinical features of patients showed an association between NOTCH2-Va splice variant and overall survival of patients. Our results suggest that NOTCH2 and FLT3 mis-splicing is a common characteristic of AML and has the potential to generate transcripts encoding proteins with altered function. Thus, splice variants of these genes might provide disease markers and targets for novel therapeutics.
Collapse
|
18
|
Roach KM, Duffy SM, Coward W, Feghali-Bostwick C, Wulff H, Bradding P. The K+ channel KCa3.1 as a novel target for idiopathic pulmonary fibrosis. PLoS One 2013; 8:e85244. [PMID: 24392001 PMCID: PMC3877378 DOI: 10.1371/journal.pone.0085244] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that KCa3.1 K+ channel-dependent cell processes contribute to IPF pathophysiology. Methods KCa3.1 expression in primary human lung myofibroblasts was examined using RT-PCR, western blot, immunofluorescence and patch-clamp electrophysiology. The role of KCa3.1 channels in myofibroblast proliferation, wound healing, collagen secretion and contraction was examined using two specific and distinct KCa3.1 blockers (TRAM-34 and ICA-17043 [Senicapoc]). Results Both healthy non fibrotic control and IPF-derived human lung myofibroblasts expressed KCa3.1 channel mRNA and protein. KCa3.1 ion currents were elicited more frequently and were larger in IPF-derived myofibroblasts compared to controls. KCa3.1 currents were increased in myofibroblasts by TGFβ1 and basic FGF. KCa3.1 was expressed strongly in IPF tissue. KCa3.1 pharmacological blockade attenuated human myofibroblast proliferation, wound healing, collagen secretion and contractility invitro, and this was associated with inhibition of TGFβ1-dependent increases in intracellular free Ca2+. Conclusions KCa3.1 activity promotes pro-fibrotic human lung myofibroblast function. Blocking KCa3.1 may offer a novel approach to treating IPF with the potential for rapid translation to the clinic.
Collapse
Affiliation(s)
- Katy Morgan Roach
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Stephen Mark Duffy
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - William Coward
- Division of Respiratory Medicine, Centre for Respiratory Research and Nottingham Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Peter Bradding
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Cox RH, Fromme SJ. A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells. Am J Physiol Cell Physiol 2013; 305:C896-905. [PMID: 23926129 DOI: 10.1152/ajpcell.00217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits, Cav1.2Δ73 acts as an inhibitor of wild-type Cav1.2 currents. HEK-293 cells were transfected with Cav1.2Δ73 in a pIRES vector with CD8 or in pcDNA3.1 with a V5/his COOH-terminal tag plus β2 and α2δ1 accessory subunits and pEGFP. Production of Cav1.2Δ73 protein was confirmed by Western blotting and immunofluorescence. Voltage-clamp studies revealed the absence of functional channels in transfected cells. In contrast, cells transfected with full-length Cav1.2 plus accessory subunits and pEGFP exhibited robust Ca(2+) currents. A7r5 cells exhibited endogenous Cav1.2-based currents that were greatly reduced (>80%) without a change in voltage-dependent activation when transfected with Cav1.2Δ73-IRES-CD8 compared with empty vector or pIRES-CD8 controls. Transfection of A7r5 cells with an analogous Cav2.3Δ73-IRES-CD8 had no effect on Ca(2+) currents. Immunofluorescence showed intracellular, but not plasma membrane, localization of Cav1.2Δ73-V5/his, as well as colocalization with an endoplasmic reticulum marker, ER Organelle Lights. Expression of Cav1.2Δ73 α1-subunits in A7r5 cells inhibits endogenous Cav1.2 currents. The fact that this variant arises naturally by alternative splicing raises the possibility that it may represent a physiological mechanism to modulate Cav1.2 functional activity.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Studies, Lankenau Institute for Medical Research, Main Line Health System, Wynnewood, Pennsylvania
| | | |
Collapse
|
20
|
Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 2013; 466:389-405. [PMID: 23748495 DOI: 10.1007/s00424-013-1303-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/17/2022]
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) are fatty acid epoxides that play an important role in the control of vascular tone in selected coronary, renal, carotid, cerebral and skeletal muscle arteries. Vasodilation due to endothelium-dependent smooth muscle hyperpolarization (EDH) has been suggested to involve EETs as a transferable endothelium-derived hyperpolarizing factor. However, this activity may also be due to EETs interacting with the components of other primary EDH-mediated vasodilator mechanisms. Indeed, the transfer of hyperpolarization initiated in the endothelium to the adjacent smooth muscle via gap junction connexins occurs separately or synergistically with the release of K(+) ions at discrete myoendothelial microdomain signalling sites. The net effects of such activity are smooth muscle hyperpolarization, closure of voltage-dependent Ca(2+) channels, phospholipase C deactivation and vasodilation. The spatially localized and key components of the microdomain signalling complex are the inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum Ca(2+) store, Ca(2+)-activated K(+) (KCa), transient receptor potential (TRP) and inward-rectifying K(+) channels, gap junctions and the smooth muscle Na(+)/K(+)-ATPase. Of these, TRP channels and connexins are key endothelial effector targets modulated by EETs. In an integrated manner, endogenous EETs enhance extracellular Ca(2+) influx (thereby amplifying and prolonging KCa-mediated endothelial hyperpolarization) and also facilitate the conduction of this hyperpolarization to spatially remote vessel regions. The contribution of EETs and the receptor and channel subtypes involved in EDH-related microdomain signalling, as a candidate for a universal EDH-mediated vasodilator mechanism, vary with vascular bed, species, development and disease and thus represent potentially selective targets for modulating specific artery function.
Collapse
|
21
|
Ferreira R, Schlichter LC. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells. PLoS One 2013; 8:e62345. [PMID: 23620825 PMCID: PMC3631179 DOI: 10.1371/journal.pone.0062345] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Microglial activation involves Ca(2+) signaling, and numerous receptors can evoke elevation of intracellular Ca(2+). ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca(2+) rise through release from intracellular Ca(2+) stores and store-operated Ca(2+) entry, and some have been implicated in microglial migration. This Ca(2+) rise is expected to activate small-conductance Ca(2+)-dependent K(+) (SK) channels, if present. We previously found that SK3 (KCa2.3) and KCa3.1 (SK4/IK1) are expressed in rat microglia and contribute to LPS-mediated activation and neurotoxicity. However, neither current has been studied by elevating Ca(2+) during whole-cell recordings. We hypothesized that, rather than responding only to Ca(2+), each channel type might be coupled to different receptor-mediated pathways. Here, our objective was to determine whether the channels are differentially activated by P2Y receptors, and, if so, whether they play differing roles. We used primary rat microglia and a rat microglial cell line (MLS-9) in which riluzole robustly activates both SK3 and KCa3.1 currents. Using electrophysiological, Ca(2+) imaging and pharmacological approaches, we show selective functional coupling of KCa3.1 to UTP-mediated P2Y2 receptor activation. KCa3.1 current is activated by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC/Orai1) channels, and both CRAC/Orai1 and KCa3.1 channels facilitate refilling of Ca(2+) stores. The Ca(2+) dependence of KCa3.1 channel activation was skewed to abnormally high concentrations, and we present evidence for a close physical association of the two channel types. Finally, migration of primary rat microglia was stimulated by UTP and inhibited by blocking either KCa3.1 or CRAC/Orai1 channels. This is the first report of selective coupling of one type of SK channel to purinergic stimulation of microglia, transactivation of KCa3.1 channels by CRAC/Orai1, and coordinated roles for both channels in store refilling, Ca(2+) signaling and microglial migration.
Collapse
Affiliation(s)
- Roger Ferreira
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lyanne C. Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Balut CM, Hamilton KL, Devor DC. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts? ChemMedChem 2012; 7:1741-55. [PMID: 22887933 DOI: 10.1002/cmdc.201200226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Ca(2+)-activated K(+) (KCa) channels play a pivotal role in the physiology of a wide variety of tissues and disease states, including vascular endothelia, secretory epithelia, certain cancers, red blood cells (RBC), neurons, and immune cells. Such widespread involvement has generated an intense interest in elucidating the function and regulation of these channels, with the goal of developing pharmacological strategies aimed at selective modulation of KCa channels in various disease states. Herein we give an overview of the molecular and functional properties of these channels and their therapeutic importance. We discuss the achievements made in designing pharmacological tools that control the function of KCa channels by modulating their gating properties. Moreover, this review discusses the recent advances in our understanding of KCa channel assembly and anterograde trafficking toward the plasma membrane, the micro-domains in which these channels are expressed within the cell, and finally the retrograde trafficking routes these channels take following endocytosis. As the regulation of intracellular trafficking by agonists as well as the protein-protein interactions that modify these events continue to be explored, we anticipate this will open new therapeutic avenues for the targeting of these channels based on the pharmacological modulation of KCa channel density at the plasma membrane.
Collapse
Affiliation(s)
- Corina M Balut
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
23
|
Parajuli SP, Soder RP, Hristov KL, Petkov GV. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility. J Pharmacol Exp Ther 2012; 340:114-23. [PMID: 22001258 PMCID: PMC3251021 DOI: 10.1124/jpet.111.186213] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/13/2011] [Indexed: 02/05/2023] Open
Abstract
Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot. Using the perforated patch-clamp technique on freshly isolated DSM cells, we observed that SKA-31 (10 μM) increased SK currents, which were blocked by apamin (1 μM), a selective SK channel inhibitor. In current-clamp mode, SKA-31 (10 μM) hyperpolarized the cell resting membrane potential, which was blocked by apamin (1 μM) but not by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), a selective IK channel inhibitor. SKA-31 (10 nM-10 μM) significantly inhibited the spontaneous phasic contraction amplitude, frequency, duration, and muscle force in DSM isolated strips. The SKA-31 inhibitory effects on DSM contractility were blocked by apamin (1 μM) but not by TRAM-34 (1 μM), which did not per se significantly affect DSM spontaneous contractility. SK channel activation with SKA-31 reduced contractions evoked by electrical field stimulation. SKA-31 effects were reversible upon washout. In conclusion, SK channels, but not IK channels, mediate SKA-31 effects in guinea pig DSM. Pharmacological activation of SK channels reduces DSM excitability and contractility and therefore may provide a novel therapeutic approach for controlling bladder dysfunction.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|