1
|
Li Y, Yang C, Xie L, Shi F, Tang M, Luo X, Liu N, Hu X, Zhu Y, Bode AM, Gao Q, Zhou J, Fan J, Li X, Cao Y. CYLD induces high oxidative stress and DNA damage through class I HDACs to promote radiosensitivity in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:95. [PMID: 38287022 PMCID: PMC10824711 DOI: 10.1038/s41419-024-06419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Abnormal expression of Cylindromatosis (CYLD), a tumor suppressor molecule, plays an important role in tumor development and treatment. In this work, we found that CYLD binds to class I histone deacetylases (HDAC1 and HDAC2) through its N-terminal domain and inhibits HDAC1 activity. RNA sequencing showed that CYLD-HDAC axis regulates cellular antioxidant response via Nrf2 and its target genes. Then we revealed a mechanism that class I HDACs mediate redox abnormalities in CYLD low-expressing tumors. HDACs are central players in the DNA damage signaling. We further confirmed that CYLD regulates radiation-induced DNA damage and repair response through inhibiting class I HDACs. Furthermore, CYLD mediates nasopharyngeal carcinoma cell radiosensitivity through class I HDACs. Thus, we identified the function of the CYLD-HDAC axis in radiotherapy and blocking HDACs by Chidamide can increase the sensitivity of cancer cells and tumors to radiation therapy both in vitro and in vivo. In addition, ChIP and luciferase reporter assays revealed that CYLD could be transcriptionally regulated by zinc finger protein 202 (ZNF202). Our findings offer novel insight into the function of CYLD in tumor and uncover important roles for CYLD-HDAC axis in radiosensitivity, which provide new molecular target and therapeutic strategy for tumor radiotherapy.
Collapse
Affiliation(s)
- Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chenxing Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Children's Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yongwei Zhu
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Qiang Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Xuejun Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China.
- Department of Radiology, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China.
- Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, 410078, China.
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, 410078, China.
| |
Collapse
|
2
|
Zhang W, Ma Z, Wang L, Fan D, Ho YY. Genome-wide search algorithms for identifying dynamic gene co-expression via Bayesian variable selection. Stat Med 2023; 42:5616-5629. [PMID: 37806971 DOI: 10.1002/sim.9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
A wealth of gene expression data generated by high-throughput techniques provides exciting opportunities for studying gene-gene interactions systematically. Gene-gene interactions in a biological system are tightly regulated and are often highly dynamic. The interactions can change flexibly under various internal cellular signals or external stimuli. Previous studies have developed statistical methods to examine these dynamic changes in gene-gene interactions. However, due to the massive number of possible gene combinations that need to be considered in a typical genomic dataset, intensive computation is a common challenge for exploring gene-gene interactions. On the other hand, oftentimes only a small proportion of gene combinations exhibit dynamic co-expression changes. To solve this problem, we propose Bayesian variable selection approaches based on spike-and-slab priors. The proposed algorithms reduce the computational intensity by focusing on identifying subsets of promising gene combinations in the search space. We also adopt a Bayesian multiple hypothesis testing procedure to identify strong dynamic gene co-expression changes. Simulation studies are performed to compare the proposed approaches with existing exhaustive search heuristics. We demonstrate the implementation of our proposed approach to study the association between gene co-expression patterns and overall survival using the RNA-sequencing dataset from The Cancer Genome Atlas breast cancer BRCA-US project.
Collapse
Affiliation(s)
- Wenda Zhang
- Walmart Global Tech, Sunnyvale, California, USA
| | - Zichen Ma
- Department of Mathematics, Colgate University, Hamilton, New York, USA
| | - Lianming Wang
- Department of Statistics, University of South Carolina, Columbia, South Carolina, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
3
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
4
|
Li J, Xiao H, Luo H, Tan Y, Ni Q, He C, Magdalou J, Chen L, Wang H. GR/HDAC2/TGFβR1 pathway contributes to prenatal caffeine induced-osteoarthritis susceptibility in male adult offspring rats. Food Chem Toxicol 2020; 140:111279. [PMID: 32199975 DOI: 10.1016/j.fct.2020.111279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 12/25/2022]
Abstract
Prenatal caffeine exposure (PCE) induces developmental toxicity of multi-organ and susceptibility to multi-disease in offspring. However, the effects of PCE on osteoarthritis susceptibility in adult offspring and its intrauterine programming mechanism remain to be further investigated. Here, we found that PCE induced susceptibility to osteoarthritis in male adult offspring rats, which was related to the inhibited function of cartilage matrix synthesis from fetuses to adults. Meanwhile, PCE consistently downregulated the H3K9ac and expression levels of transforming growth factor β receptor 1 (TGFβR1), and then blocked TGFβ signaling pathway, which contributed to the suppressed cartilage matrix synthesis. Moreover, the high level of corticosterone caused by PCE reduced the H3K9ac level on TGFβR1 promoter region through acting on glucocorticoids receptor (GR) and recruiting histone deacetylase 2 (HDAC2) into the nucleus of fetal chondrocytes. Taken together, PCE induced osteoarthritis susceptibility in male adult offspring rats, which was attributed to the low-functional programming of TGFβR1 induced by corticosterone via GR/HDAC2 signaling.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Yang Tan
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Chunjiang He
- Department of Medical Genetics, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | | | - Liaobin Chen
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
5
|
Lorén V, Garcia-Jaraquemada A, Naves JE, Carmona X, Mañosa M, Aransay AM, Lavin JL, Sánchez I, Cabré E, Manyé J, Domènech E. ANP32E, a Protein Involved in Steroid-Refractoriness in Ulcerative Colitis, Identified by a Systems Biology Approach. J Crohns Colitis 2019; 13:351-361. [PMID: 30329026 DOI: 10.1093/ecco-jcc/jjy171] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Steroid-refractoriness is a common and unpredictable phenomenon in ulcerative colitis [UC], but there are no conclusive studies on the molecular functions involved. We aimed to assess the mechanism of action related to steroid failure by integrating transcriptomic data from UC patients, and updated molecular data on UC and glucocorticoids. METHODS MicroRNA [miRNA] and mRNA expression were evaluated by sequencing and microarrays, respectively, from rectal biopsies of patients with moderately-to-severe active UC, obtained before and on the third day of steroid treatment. The differential results were integrated into the mathematical models generated by a systems biology approach. RESULTS This computational approach identified 18 proteins that stand out either by being associated with the mechanism of action or by providing a means to classify the patients according to steroid response. Their biological functions have been linked to inflammation, glucocorticoid-induced transcription and angiogenesis. All the selected proteins except ANP32E [a chaperone which has been linked to the exchange of H2A.z histone and promotes glucocorticoid receptor-induced transcription] had previously been related to UC and/or glucocorticoid-induced biological actions. Western blot and immunofluorescence assays confirmed the implication of this chaperone in steroid failure in patients with active UC. CONCLUSIONS A systems biology approach allowed us to identify a comprehensive mechanism of action of steroid-refractoriness, highlighting the key role of steroid-induced transcription and the potential implication of ANP32E in this phenomenon.
Collapse
Affiliation(s)
- V Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - A Garcia-Jaraquemada
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - J E Naves
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - X Carmona
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - M Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - A M Aransay
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Genome Analysis Platform, CIC bioGUNE, Derio, Bizkaia, Spain
| | - J L Lavin
- Genome Analysis Platform, CIC bioGUNE, Derio, Bizkaia, Spain
| | - I Sánchez
- Functional Biology and Experimental Therapeutics Laboratory, Functional and Translational Neurogenetics Unit, Department of Neurosciences, Germans Trias i Pujol Research Institute, Badalona, Catalonia, Spain
| | - E Cabré
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - J Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - E Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| |
Collapse
|
6
|
Ishijima Y, Ohmori S, Uneme A, Aoki Y, Kobori M, Ohida T, Arai M, Hosaka M, Ohneda K. The Gata2 repression during 3T3-L1 preadipocyte differentiation is dependent on a rapid decrease in histone acetylation in response to glucocorticoid receptor activation. Mol Cell Endocrinol 2019; 483:39-49. [PMID: 30615908 DOI: 10.1016/j.mce.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
The transcription factor GATA2 is an anti-adipogenic factor whose expression is downregulated during adipocyte differentiation. The present study attempted to clarify the molecular mechanism underlying the GATA2 repression and found that the repression is dependent on the activation of the glucocorticoid receptor (GR) during 3T3-L1 preadipocyte differentiation. Although several recognition sequences for GR were found in both the proximal and distal regions of the Gata2 locus, the promoter activity was not affected by the GR activation in the reporter assays, and the CRISPR-Cas9-mediated deletion of the two distal regions of the Gata2 locus was not involved in the GR-mediated Gata2 repression. Notably, the level of histone acetylation was markedly reduced at the Gata2 locus during 3T3-L1 differentiation, and the GR-mediated Gata2 repression was significantly relieved by histone deacetylase inhibition. These results suggest that GR regulates the Gata2 gene by reducing histone acetylation in the early phase of adipogenesis.
Collapse
Affiliation(s)
- Yasushi Ishijima
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Shin'ya Ohmori
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Ai Uneme
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yusuke Aoki
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Miki Kobori
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Terutoshi Ohida
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Momoko Arai
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Misa Hosaka
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan.
| |
Collapse
|
7
|
Goldstein I, Hager GL. Dynamic enhancer function in the chromatin context. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:10.1002/wsbm.1390. [PMID: 28544514 PMCID: PMC6638546 DOI: 10.1002/wsbm.1390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
The nature of the GRE influences the screening for GR-activity enhancing modulators. PLoS One 2017; 12:e0181101. [PMID: 28686666 PMCID: PMC5501670 DOI: 10.1371/journal.pone.0181101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/25/2017] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid resistance (GCR), i.e. unresponsiveness to the beneficial anti-inflammatory activities of the glucocorticoid receptor (GR), poses a serious problem in the treatment of inflammatory diseases. One possible solution to try and overcome GCR, is to identify molecules that prevent or revert GCR by hyper-stimulating the biological activity of the GR. To this purpose, we screened for compounds that potentiate the dexamethasone (Dex)-induced transcriptional activity of GR. To monitor GR transcriptional activity, the screen was performed using the lung epithelial cell line A549 in which a glucocorticoid responsive element (GRE) coupled to a luciferase reporter gene construct was stably integrated. Histone deacetylase inhibitors (HDACi) such as Vorinostat and Belinostat are two broad-spectrum HDACi that strongly increased the Dex-induced luciferase expression in our screening system. In sharp contrast herewith, results from a genome-wide transcriptome analysis of Dex-induced transcripts using RNAseq, revealed that Belinostat impairs the ability of GR to transactivate target genes. The stimulatory effect of Belinostat in the luciferase screen further depends on the nature of the reporter construct. In conclusion, a profound discrepancy was observed between HDACi effects on two different synthetic promoter-luciferase reporter systems. The favorable effect of HDACi on gene expression should be evaluated with care, when considering them as potential therapeutic agents. GEO accession number GSE96649.
Collapse
|
9
|
Jian W, Yan B, Huang S, Qiu Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly. FASEB J 2017; 31:4104-4116. [PMID: 28572446 DOI: 10.1096/fj.201700022r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/15/2017] [Indexed: 11/11/2022]
Abstract
Histone acetyltransferases and histone deacetylases (HDACs) are important epigenetic coregulators. It has been thought that HDACs associate with corepressor complexes and repress gene transcription; however, in this study, we have found that PU.1-a key master regulator for hematopoietic self-renewal and lineage specification-requires HDAC activity for gene activation. Deregulated PU.1 gene expression is linked to dysregulated hematopoiesis and the development of leukemia. In this study, we used erythroid differentiation as a model to analyze how the PU.1 gene is regulated. We found that active HDAC1 is directly recruited to active PU.1 promoter in progenitor cells, whereas acetylated HDAC1, which is inactive, is on the silenced PU.1 promoter in differentiated erythroid cells. We then studied the mechanism of HDAC1-mediated activation. We discovered that HDAC1 activates PU.1 gene transcription via deacetylation of TATA-binding protein-associated factor 9 (TAF9), a component in the transcription factor IID (TFIID) complex. Treatment with HDAC inhibitor results in an increase in TAF9 acetylation. Acetylated TAF9 does not bind to the PU.1 gene promoter and subsequently leads to the disassociation of the TFIID complex and transcription repression. Thus, these results demonstrate a key role for HDAC1 in PU.1 gene transcription and, more importantly, uncover a novel mechanism of TFIID recruitment and gene activation.-Jian, W., Yan, B., Huang, S., Qiu, Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly.
Collapse
Affiliation(s)
- Wei Jian
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bowen Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA; and.,Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
10
|
DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci U S A 2016; 113:8236-41. [PMID: 27382178 DOI: 10.1073/pnas.1606774113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors.
Collapse
|
11
|
Tesikova M, Dezitter X, Nenseth HZ, Klokk TI, Mueller F, Hager GL, Saatcioglu F. Divergent Binding and Transactivation by Two Related Steroid Receptors at the Same Response Element. J Biol Chem 2016; 291:11899-910. [PMID: 27056330 DOI: 10.1074/jbc.m115.684480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 01/19/2023] Open
Abstract
Transcription factor (TF) recruitment to chromatin is central to activation of transcription. TF-chromatin interactions are highly dynamic, which are evaluated by recovery half time (t1/2) in seconds, determined by fluorescence recovery experiments in living cells, and chromatin immunoprecipitation (ChIP) analysis, measured in minutes. These two states are related: the larger the t1/2, the longer the ChIP occupancy resulting in increased transcription. Here we present data showing that this relationship does not always hold. We found that histone deacetylase inhibitors (HDACis) significantly increased t1/2 of green fluorescent protein (GFP) fused androgen receptor (AR) on a tandem array of positive hormone response elements (HREs) in chromatin. This resulted in increased ChIP signal of GFP-AR. Unexpectedly, however, transcription was inhibited. In contrast, the GFP-fused glucocorticoid receptor (GR), acting through the same HREs, displayed a profile consistent with current models. We provide evidence that these differences are mediated, at least in part, by HDACs. Our results provide insight into TF action in living cells and show that very closely related TFs may trigger significantly divergent outcomes at the same REs.
Collapse
Affiliation(s)
- Martina Tesikova
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Xavier Dezitter
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Hatice Z Nenseth
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tove I Klokk
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Florian Mueller
- Computational Imaging and Modeling Unit, Institut Pasteur, 75015 Paris, France
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Fahri Saatcioglu
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway, Institute for Cancer Genetics and Informatics, Division of Cancer and Surgery, Oslo University Hospital, 0310 Oslo, Norway
| |
Collapse
|
12
|
Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1. J Mol Biol 2015; 427:1644-54. [PMID: 25688804 DOI: 10.1016/j.jmb.2015.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/22/2022]
Abstract
Heat shock factor 1 (HSF1) is critical for defending cells from both acute and chronic stresses. In aging cells, the DNA binding activity of HSF1 deteriorates correlating with the onset of pathological events including neurodegeneration and heart disease. We find that DNA binding by HSF1 is controlled by lysine deacetylases with HDAC7, HDAC9, and SIRT1 distinctly increasing the magnitude and length of a heat shock response (HSR). In contrast, HDAC1 inhibits HSF1 in a deacetylase-independent manner. In aging cells, the levels of HDAC1 are elevated and the HSR is impaired, yet reduction of HDAC1 in aged cells restores the HSR. Our results provide a mechanistic basis for the age-associated regulation of the HSR. Besides HSF1, the deacetylases differentially modulate the activities of unrelated DNA binding proteins. Taken together, our data further support the model that lysine deacetylases are selective regulators of DNA binding proteins.
Collapse
|
13
|
Li X, Yang H, Huang S, Qiu Y. Histone deacetylase 1 and p300 can directly associate with chromatin and compete for binding in a mutually exclusive manner. PLoS One 2014; 9:e94523. [PMID: 24722339 PMCID: PMC3983199 DOI: 10.1371/journal.pone.0094523] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 03/18/2014] [Indexed: 12/13/2022] Open
Abstract
Lysine acetyltransferases (KATs) and histone deacetylases (HDACs) are important epigenetic modifiers and dynamically cycled on active gene promoters to regulate transcription. Although HDACs are recruited to gene promoters and DNA hypersensitive sites through interactions with DNA binding factors, HDAC activities are also found globally in intergenic regions where DNA binding factors are not present. It is suggested that HDACs are recruited to those regions through other distinct, yet undefined mechanisms. Here we show that HDACs can be directly recruited to chromatin in the absence of other factors through direct interactions with both DNA and core histone subunits. HDACs interact with DNA in a non-sequence specific manner. HDAC1 and p300 directly bind to the overlapping regions of the histone H3 tail and compete for histone binding. Previously we show that p300 can acetylate HDAC1 to attenuate deacetylase activity. Here we have further mapped two distinct regions of HDAC1 that interact with p300. Interestingly, these regions of HDAC1 also associate with histone H3. More importantly, p300 and HDAC1 compete for chromatin binding both in vitro and in vivo. Therefore, the mutually exclusive associations of HDAC1/p300, p300/histone, and HDAC1/histone on chromatin contribute to the dynamic regulation of histone acetylation by balancing HDAC or KAT activity present at histones to reorganize chromatin structure and regulate transcription.
Collapse
Affiliation(s)
- Xuehui Li
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Hui Yang
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
14
|
Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 2014; 127:1441-53. [PMID: 24463822 PMCID: PMC3970557 DOI: 10.1242/jcs.136390] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Forkhead box O (FoxO) transcription factors are activated, and necessary for the muscle atrophy, in several pathophysiological conditions, including muscle disuse and cancer cachexia. However, the mechanisms that lead to FoxO activation are not well defined. Recent data from our laboratory and others indicate that the activity of FoxO is repressed under basal conditions via reversible lysine acetylation, which becomes compromised during catabolic conditions. Therefore, we aimed to determine how histone deacetylase (HDAC) proteins contribute to activation of FoxO and induction of the muscle atrophy program. Through the use of various pharmacological inhibitors to block HDAC activity, we demonstrate that class I HDACs are key regulators of FoxO and the muscle-atrophy program during both nutrient deprivation and skeletal muscle disuse. Furthermore, we demonstrate, through the use of wild-type and dominant-negative HDAC1 expression plasmids, that HDAC1 is sufficient to activate FoxO and induce muscle fiber atrophy in vivo and is necessary for the atrophy of muscle fibers that is associated with muscle disuse. The ability of HDAC1 to cause muscle atrophy required its deacetylase activity and was linked to the induction of several atrophy genes by HDAC1, including atrogin-1, which required deacetylation of FoxO3a. Moreover, pharmacological inhibition of class I HDACs during muscle disuse, using MS-275, significantly attenuated both disuse muscle fiber atrophy and contractile dysfunction. Together, these data solidify the importance of class I HDACs in the muscle atrophy program and indicate that class I HDAC inhibitors are feasible countermeasures to impede muscle atrophy and weakness.
Collapse
Affiliation(s)
- Adam W. Beharry
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610-0154, USA
| | - Pooja B. Sandesara
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610-0154, USA
| | - Brandon M. Roberts
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610-0154, USA
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610-0154, USA
| | - Sarah M. Senf
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610-0154, USA
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610-0154, USA
- Author for correspondence ()
| |
Collapse
|
15
|
Abstract
The nuclear receptor (NR) family comprises 48 transcription factors (TFs) with essential and diverse roles in development, metabolism and disease. Differently from other TFs, NRs engage with well-defined DNA-regulatory elements, mostly after ligand-induced structural changes. However, NR binding is not stochastic, and only a fraction of the cognate regulatory elements within the genome actively engage with NRs. In this review, we summarize recent advances in the understanding of the interactions between NRs and DNA. We discuss how chromatin accessibility and epigenetic modifications contribute to the recruitment and transactivation of NRs. Lastly, we present novel evidence of the interplay between non-coding RNA and NRs in the mediation of the assembly of the transcriptional machinery.
Collapse
Affiliation(s)
- Raffaella Maria Gadaleta
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, W12 0NN, UK
| | | |
Collapse
|
16
|
Kadiyala V, Smith CL. Minireview: The versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 2014; 28:607-21. [PMID: 24645680 DOI: 10.1210/me.2014-1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysine deacetylases have been known to regulate nuclear receptor function for many years. In the unliganded state, nuclear receptors that form heterodimers with retinoid X receptors, such as the retinoic acid and thyroid hormone receptors, associate with deacetylases to repress target genes. In the case of steroid receptors, binding of an antagonist ligand was initially reported to induce association of deacetylases to prevent activation of target genes. Since then, deacetylases have been shown to have diverse functions in steroid receptor signaling, from regulating interactions with molecular chaperones to facilitating their ability to activate transcription. The purpose of this review is to summarize recent studies on the role of deacetylases in steroid receptor signaling, which show deacetylases to be highly versatile regulators of steroid receptor function.
Collapse
Affiliation(s)
- Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy (V.K., C.L.S.), Department of Chemistry and Biochemistry, College of Science (V.K.), University of Arizona, Tucson Arizona 85721
| | | |
Collapse
|
17
|
Højfeldt JW, Cruz-Rodríguez O, Imaeda Y, Van Dyke AR, Carolan JP, Mapp AK, Iñiguez-Lluhí JA. Bifunctional ligands allow deliberate extrinsic reprogramming of the glucocorticoid receptor. Mol Endocrinol 2014; 28:249-59. [PMID: 24422633 DOI: 10.1210/me.2013-1343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics.
Collapse
Affiliation(s)
- Jonas W Højfeldt
- Department of Chemistry (J.W.H.,Y.I., J.P.C., A.K.M.), University of Michigan, and Department of Pharmacology (O.C.-R., J.A.I.-L.), University of Michigan Medical School, Ann Arbor, Michigan 48109; and Department of Chemistry and Biochemistry (A.R.V.D.), Fairfield University, Fairfield, Connecticut 06824
| | | | | | | | | | | | | |
Collapse
|
18
|
Kadiyala V, Patrick NM, Mathieu W, Jaime-Frias R, Pookhao N, An L, Smith CL. Class I lysine deacetylases facilitate glucocorticoid-induced transcription. J Biol Chem 2013; 288:28900-12. [PMID: 23946490 DOI: 10.1074/jbc.m113.505115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors use lysine acetyltransferases and lysine deacetylases (KDACs) in regulating transcription through histone acetylation. Lysine acetyltransferases interact with steroid receptors upon binding of an agonist and are recruited to target genes. KDACs have been shown to interact with steroid receptors upon binding to an antagonist. We have shown previously that KDAC inhibitors (KDACis) potently repress the mouse mammary tumor virus promoter through transcriptional mechanisms and impair the ability of the glucocorticoid receptor (GR) to activate it, suggesting that KDACs can play a positive role in GR transactivation. In the current study, we extended this analysis to the entire GR transcriptome and found that the KDACi valproic acid impairs the ability of agonist-bound GR to activate about 50% of its target genes. This inhibition is largely due to impaired transcription rather than defective GR processing and was also observed using a structurally distinct KDACi. Depletion of KDAC1 expression mimicked the effects of KDACi in over half of the genes found to be impaired in GR transactivation. Simultaneous depletion of KDACs 1 and 2 caused full or partial impairment of several more GR target genes. Altogether we found that Class I KDAC activity facilitates GR-mediated activation at a sizable fraction of GR-activated target genes and that KDAC1 alone or in coordination with KDAC2 is required for efficient GR transactivation at many of these target genes. Finally, our work demonstrates that KDACi exposure has a significant impact on GR signaling and thus has ramifications for the clinical use of these drugs.
Collapse
Affiliation(s)
- Vineela Kadiyala
- From the Department of Pharmacology and Toxicology, College of Pharmacy
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y, Kim IK. Histone Deacetylase Inhibition Attenuates Transcriptional Activity of Mineralocorticoid Receptor Through Its Acetylation and Prevents Development of Hypertension. Circ Res 2013; 112:1004-12. [DOI: 10.1161/circresaha.113.301071] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Inhibition of histone deacetylases (HDACs) results in attenuated development of hypertension in deoxycorticosterone acetate–induced hypertensive rats and spontaneously hypertensive rats. However, the molecular mechanism remains elusive.
Objective:
We hypothesized that HDAC inhibition attenuates transcriptional activity of mineralocorticoid receptor (MR) through its acetylation and prevents development of hypertension in deoxycorticosterone acetate–induced hypertensive rats.
Methods and Results:
Expression of MR target genes was measured by quantitative real-time polymerase chain reaction. Recruitment of MR and RNA polymerase II on promoters of target genes was analyzed by chromatin immunoprecipitation assay. Live cell imaging was performed for visualization of nuclear translocation of MR. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Transcriptional activity of MR was determined by luciferase assay. For establishment of a hyperaldosteronism animal, Sprague-Dawley rats underwent uninephrectomy and received subcutaneous injection of 40 mg/kg per week of deoxycorticosterone acetate and drinking water containing 1% NaCl. Treatment with a HDAC class I inhibitor resulted in reduced expression of MR target genes in accordance with reduced recruitment of MR and RNA polymerase II on promoters of target genes. HDAC inhibition promoted MR acetylation, leading to decreased transcriptional activity of MR. Knockdown or inhibition of HDAC3 resulted in reduced expression of MR target genes induced by mineralocorticoids.
Conclusions:
These results indicate that HDAC inhibition attenuates transcriptional activity of MR through its acetylation and prevents development of hypertension in deoxycorticosterone acetate–induced hypertensive rats.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Dong-Youb Lee
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Hyun-Min Cho
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Sang-Yeob Kim
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Yasumasa Iwasaki
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - In Kyeom Kim
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| |
Collapse
|
20
|
Yang T, Jian W, Luo Y, Fu X, Noguchi C, Bungert J, Huang S, Qiu Y. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity. J Biol Chem 2012; 287:40279-91. [PMID: 23014989 DOI: 10.1074/jbc.m112.349704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. RESULTS GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. CONCLUSION Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. SIGNIFICANCE HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bush KA, Krukowski K, Eddy JL, Janusek LW, Mathews HL. Glucocorticoid receptor mediated suppression of natural killer cell activity: identification of associated deacetylase and corepressor molecules. Cell Immunol 2012; 275:80-9. [PMID: 22483981 PMCID: PMC3348463 DOI: 10.1016/j.cellimm.2012.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/15/2022]
Abstract
Physical and psychological stressors reduce natural killer cell function. This reduction in cellular function results from stress-induced release of glucocorticoids. Glucocorticoids act upon natural killer cells to deacetylate and transrepress immune response genes through epigenetic processes. However, other than the glucocorticoid receptor, the proteins that participate in this process are not well described in natural killer cells. The purpose of this study was to identify the proteins associated with the glucocorticoid receptor that are likely epigenetic participants in this process. Treatment of natural killer cells with the synthetic glucocorticoid, dexamethasone, produced a significant time dependent reduction in natural killer cell activity as early as 8h post treatment. This reduction in natural killer cell activity was preceded by nuclear localization of the glucocorticoid receptor with histone deacetylase 1 and the corepressor, SMRT. Other class I histone deacetylases were not associated with the glucocorticoid receptor nor was the corepressor NCoR. These results demonstrate histone deacetylase 1 and SMRT to associate with the ligand activated glucocorticoid receptor within the nuclei of natural killer cells and to be the likely participants in the histone deacetylation and transrepression that accompanies glucocorticoid mediated reductions in natural killer cell function.
Collapse
Affiliation(s)
- Kristin A Bush
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
22
|
Clark AR, Belvisi MG. Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 2011; 134:54-67. [PMID: 22212616 DOI: 10.1016/j.pharmthera.2011.12.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are steroid hormones that have pleiotropic effects on development, metabolism, cognitive function and other aspects of physiology. Since the demonstration more than sixty years ago of their capacity to suppress inflammation, synthetic glucocorticoids have been extremely widely used in the treatment of inflammatory diseases. However, their clinical use is limited by numerous, unpredictable and potentially serious side effects. Glucocorticoids regulate gene expression both positively and negatively. Both of these effects are mediated by the glucocorticoid receptor, a ligand-dependent transcription factor. It has become widely accepted that anti-inflammatory effects of glucocorticoids are mostly due to inhibition of transcription, whereas the activation of transcription by the glucocorticoid receptor accounts for the majority of side effects. This dogma (which we refer to as the "transrepression hypothesis") predicts the possibility of uncoupling therapeutic, anti-inflammatory effects from side effects by identifying novel, selective ligands of the glucocorticoid receptor, which preferentially mediate inhibition rather than activation of transcription. It is argued that such "dissociated" glucocorticoid receptor ligands should retain anti-inflammatory potency but cause fewer side effects. Here we critically re-examine the history and foundations of the transrepression hypothesis. We argue that it is incompatible with the complexity of gene regulation by glucocorticoids and poorly supported by experimental evidence; that it no longer aids clear thinking about the actions of the glucocorticoid receptor; and that it will not prove a fruitful basis for continued refinement and improvement of anti-inflammatory drugs that target the glucocorticoid receptor.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, 65 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | |
Collapse
|
23
|
Larson DR. What do expression dynamics tell us about the mechanism of transcription? Curr Opin Genet Dev 2011; 21:591-9. [PMID: 21862317 PMCID: PMC3475196 DOI: 10.1016/j.gde.2011.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 11/16/2022]
Abstract
Single-cell microscopy studies have the potential to provide an unprecedented view of gene expression with exquisite spatial and temporal sensitivity. However, there is a challenge to connect the holistic cellular view with a reductionist biochemical view. In particular, experimental efforts to characterize the in vivo regulation of transcription have focused primarily on measurements of the dynamics of transcription factors and chromatin modifying factors. Such measurements have elucidated the transient nature of many nuclear interactions. In the past few years, experimental approaches have emerged that allow for interrogation of the output of transcription at the single-molecule, single-cell level. Here, I summarize the experimental results and models that aim to provide an integrated view of transcriptional regulation.
Collapse
Affiliation(s)
- Daniel R Larson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|