1
|
Sebghatollahi Z, Yogesh R, Mahato N, Kumar V, Mohanta YK, Baek KH, Mishra AK. Signaling Pathways in Oxidative Stress-Induced Neurodegenerative Diseases: A Review of Phytochemical Therapeutic Interventions. Antioxidants (Basel) 2025; 14:457. [PMID: 40298834 PMCID: PMC12024045 DOI: 10.3390/antiox14040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidative stress, a pivotal driver of neurodegenerative diseases, results from an imbalance between the generation of reactive oxygen species (ROS) and cellular antioxidant defenses. This review provides a comprehensive analysis of key oxidative stress sources, focusing on NADPH oxidase (NOX) hyperactivity and mitochondrial Uncoupling Protein (UCP) downregulation. Critically, we examine the therapeutic potential of phytochemicals in mitigating NOX-mediated ROS generation through direct enzyme inhibition, including impacts on NOX subunit assembly and gene expression. Furthermore, we explore the ability of phytochemicals to bolster cellular antioxidant defenses by activating the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway, elucidating the upregulation of antioxidant genes, such as GPx, SOD, CAT, and HO-1. This review expands beyond confined overviews; emphasizes specific molecular interactions between phytochemicals and target proteins, including NOX isoforms; and provides an in-depth analysis of the specific antioxidant genes upregulated via Nrf2. This approach aims to pave the way for targeted and translatable therapeutic strategies in neurodegenerative diseases. Ultimately, this review illuminates the intricate molecular dynamics of oxidative stress in neurodegenerative diseases; underscores the potential of phytochemicals to restore redox homeostasis and reverse pathological conditions through precise modulation of key signaling pathways.
Collapse
Affiliation(s)
- Zahra Sebghatollahi
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Ruchika Yogesh
- MaTestLab Inc., 2093 Philadelphia Pike, Claymont, DE 19703, USA;
| | - Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea;
| | - Vijay Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Yugal Kishore Mohanta
- Nano-Biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua 793101, Meghalaya, India;
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Grosjean N, Zhang L, Kumaran D, Xie M, Fahey A, Santiago K, Hu F, Regulski M, Blaby IK, Ware D, Blaby-Haas CE. Functional diversification within the heme-binding split-barrel family. J Biol Chem 2024; 300:107888. [PMID: 39395795 PMCID: PMC11602992 DOI: 10.1016/j.jbc.2024.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Due to neofunctionalization, a single fold can be identified in multiple proteins that have distinct molecular functions. Depending on the time that has passed since gene duplication and the number of mutations, the sequence similarity between functionally divergent proteins can be relatively high, eroding the value of sequence similarity as the sole tool for accurately annotating the function of uncharacterized homologs. Here, we combine bioinformatic approaches with targeted experimentation to reveal a large multifunctional family of putative enzymatic and nonenzymatic proteins involved in heme metabolism. This family (homolog of HugZ (HOZ)) is embedded in the "FMN-binding split barrel" superfamily and contains separate groups of proteins from prokaryotes, plants, and algae, which bind heme and either catalyze its degradation or function as nonenzymatic heme sensors. In prokaryotes these proteins are often involved in iron assimilation, whereas several plant and algal homologs are predicted to degrade heme in the plastid or regulate heme biosynthesis. In the plant Arabidopsis thaliana, which contains two HOZ subfamilies that can degrade heme in vitro (HOZ1 and HOZ2), disruption of AtHOZ1 (AT3G03890) or AtHOZ2A (AT1G51560) causes developmental delays, pointing to important biological roles in the plastid. In the tree Populus trichocarpa, a recent duplication event of a HOZ1 ancestor has resulted in localization of a paralog to the cytosol. Structural characterization of this cytosolic paralog and comparison to published homologous structures suggests conservation of heme-binding sites. This study unifies our understanding of the sequence-structure-function relationships within this multilineage family of heme-binding proteins and presents new molecular players in plant and bacterial heme metabolism.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Audrey Fahey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kassandra Santiago
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Fangle Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Ian K Blaby
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA; USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit, Ithaca, New York, USA.
| | - Crysten E Blaby-Haas
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
3
|
Li C, Wu J, Dong Q, Ma J, Gao H, Liu G, Chen Y, Ning J, Lv X, Zhang M, Zhong H, Zheng T, Liu Y, Peng Y, Qu Y, Gao X, Shi H, Sun C, Hui Y. The crosstalk between oxidative stress and DNA damage induces neural stem cell senescence by HO-1/PARP1 non-canonical pathway. Free Radic Biol Med 2024; 223:443-457. [PMID: 39047850 DOI: 10.1016/j.freeradbiomed.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Neural stem cells play a crucial role in maintaining brain homeostasis. Neural stem cells senescence can lead to the decline of nerve repair and regeneration, causing brain aging and neurodegenerative diseases. However, the mechanism underlying neural stem cells senescence remains poorly understood. In this study, we report a novel HO-1/PARP1 non-canonical pathway highlighting how oxidative stress triggers the DNA damage response, ultimately leading to premature cellular senescence in neural stem cells. HO-1 acts as a sensor for oxidative stress, while PARP1 functions as a sensor for DNA damage. The simultaneous expression and molecular interaction of these two sensors can initiate a crosstalk of oxidative stress and DNA damage response processes, leading to the vicious cycle. The persistent activation of this pathway contributes to the senescence of neural stem cells, which in turn plays a crucial role in the progression of neurodegenerative diseases. Consequently, targeting this novel signaling pathway holds promise for the development of innovative therapeutic strategies and targets aimed at mitigating neural stem cells senescence-related disorders.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Qi Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Huiqun Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - You Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiaqi Ning
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xuebing Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Mingyang Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Haojie Zhong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Tianhu Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
4
|
Tang J, Chen Y, Li Q, Xin W, Xiao X, Chen X, Yang L, Mou B, Li J, Lu F, Fu C, Long W, Liao H, Han X, Feng P, Li W, Zhou K, Yang L, Yang Y, Ma M, Wang H. The response mechanism analysis of HMX1 knockout strain to levulinic acid in Saccharomyces cerevisiae. Front Microbiol 2024; 15:1416903. [PMID: 38989024 PMCID: PMC11233763 DOI: 10.3389/fmicb.2024.1416903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Levulinic acid, a hydrolysis product of lignocellulose, can be metabolized into important compounds in the field of medicine and pesticides by engineered strains of Saccharomyces cerevisiae. Levulinic acid, as an intermediate product widely found in the conversion process of lignocellulosic biomass, has multiple applications. However, its toxicity to Saccharomyces cerevisiae reduces its conversion efficiency, so screening Saccharomyces cerevisiae genes that can tolerate levulinic acid becomes the key. By creating a whole-genome knockout library and bioinformatics analysis, this study used the phenotypic characteristics of cells as the basis for screening and found the HMX1 gene that is highly sensitive to levulinic acid in the oxidative stress pathway. After knocking out HMX1 and treating with levulinic acid, the omics data of the strain revealed that multiple affected pathways, especially the expression of 14 genes related to the cell wall and membrane system, were significantly downregulated. The levels of acetyl-CoA and riboflavin decreased by 1.02-fold and 1.44-fold, respectively, while the content of pantothenic acid increased. These findings indicate that the cell wall-membrane system, as well as the metabolism of acetyl-CoA and riboflavin, are important in improving the resistance of Saccharomyces cerevisiae to levulinic acid. They provide theoretical support for enhancing the tolerance of microorganisms to levulinic acid, which is significant for optimizing the conversion process of lignocellulosic biomass to levulinic acid.
Collapse
Affiliation(s)
- Jiaye Tang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yulei Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenli Xin
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Ximeng Xiao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Xuemei Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Lixi Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Borui Mou
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Jialian Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Fujia Lu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Chun Fu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Wencong Long
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Feng
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Wei Li
- Aba Prefecture Ecological Protection and Development Research Institute, Wenchuan, Sichuan, China
| | - Kedi Zhou
- Institute of Nature Conservation Area Planning, Sichuan Forestry and Grassland Survey and Planning Institute, Chengdu, Sichuan, China
| | - Liuyun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hanyu Wang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| |
Collapse
|
5
|
Wu J, Li S, Li C, Cui L, Ma J, Hui Y. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress. Redox Biol 2021; 47:102170. [PMID: 34688156 PMCID: PMC8577501 DOI: 10.1016/j.redox.2021.102170] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
The role of heme oxygenase-1 in resisting oxidative stress and cell protection has always been a hot research topic. With the continuous deepening of research, in addition to directly regulating redox by catalyzing the degradation of heme, HO-1 protein also participates in the gene expression level in a great diversity of methods, thereby initiating cell defense. Particularly the non-canonical nuclear-localized HO-1 and HO-1 protein interactions play the role of a warrior against oxidative stress. Besides, HO-1 may be a promising marker for disease prediction and detection in many clinical trials. Especially for malignant diseases, there may be new advances in the treatment of HO-1 by regulating abnormal ROS and metabolic signaling. The purpose of this review is to systematically sort out and describe several aspects of research to facilitate further detailed mechanism research and clinical application promotion in the future. The different subcellular localizations ofHO-1 implies that it has special functions. Nuclear HO-1 plays an indispensable role in gene regulation and other aspects. The interactions between HO-1 and others provide the possibility to participate in vital physiological processes. HO-1 may become a potential disease assessment marker.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Siyu Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Liying Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
6
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
7
|
Němeček D, Chmelikova E, Petr J, Kott T, Sedmíková M. The effect of carbon monoxide on meiotic maturation of porcine oocytes. PeerJ 2021; 9:e10636. [PMID: 33828903 PMCID: PMC7996072 DOI: 10.7717/peerj.10636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress impairs the correct course of meiotic maturation, and it is known that the oocytes are exposed to increased oxidative stress during meiotic maturation in in vitro conditions. Thus, reduction of oxidative stress can lead to improved quality of cultured oocytes. The gasotransmitter carbon monoxide (CO) has a cytoprotective effect in somatic cells. The CO is produced in cells by the enzyme heme oxygenase (HO) and the heme oxygenase/carbon monoxide (HO/CO) pathway has been shown to have an antioxidant effect in somatic cells. It has not yet been investigated whether the CO has an antioxidant effect in oocytes as well. We assessed the level of expression of HO mRNA, using reverse transcription polymerase chain reaction. The HO protein localization was evaluated by the immunocytochemical method. The influence of CO or HO inhibition on meiotic maturation was evaluated in oocytes cultured in a culture medium containing CO donor (CORM-2 or CORM-A1) or HO inhibitor Zn-protoporphyrin IX (Zn-PP IX). Detection of reactive oxygen species (ROS) was performed using the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate. We demonstrated the expression of mRNA and proteins of both HO isoforms in porcine oocytes during meiotic maturation. The inhibition of HO enzymes by Zn-PP IX did not affect meiotic maturation. CO delivered by CORM-2 or CORM-A1 donors led to a reduction in the level of ROS in the oocytes during meiotic maturation. However, exogenously delivered CO also inhibited meiotic maturation, especially at higher concentrations. In summary, the CO signaling molecule has antioxidant properties in porcine oocytes and may also be involved in the regulation of meiotic maturation.
Collapse
Affiliation(s)
- David Němeček
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Uhřiněves, Czech Republic
| | - Tomas Kott
- Institute of Animal Science, Uhřiněves, Czech Republic
| | - Markéta Sedmíková
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Nuclear Localization of Heme Oxygenase-1 in Pathophysiological Conditions: Does It Explain the Dual Role in Cancer? Antioxidants (Basel) 2021; 10:antiox10010087. [PMID: 33440611 PMCID: PMC7826503 DOI: 10.3390/antiox10010087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022] Open
Abstract
Heme Oxygenase-1 (HO-1) is a type II detoxifying enzyme that catalyzes the rate-limiting step in heme degradation leading to the formation of equimolar quantities of carbon monoxide (CO), free iron and biliverdin. HO-1 was originally shown to localize at the smooth endoplasmic reticulum membrane (sER), although increasing evidence demonstrates that the protein translocates to other subcellular compartments including the nucleus. The nuclear translocation occurs after proteolytic cleavage by proteases including signal peptide peptidase and some cysteine proteases. In addition, nuclear translocation has been demonstrated to be involved in several cellular processes leading to cancer progression, including induction of resistance to therapy and enhanced metastatic activity. In this review, we focus on nuclear HO-1 implication in pathophysiological conditions with special emphasis on malignant processes. We provide a brief background on the current understanding of the mechanisms underlying how HO-1 leaves the sER membrane and migrates to the nucleus, the circumstances under which it does so and, maybe the most important and unknown aspect, what the function of HO-1 in the nucleus is.
Collapse
|
9
|
Nuclear Heme Oxidase-1 Inhibits Endoplasmic Reticulum Stress-Mediated Apoptosis after Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7576063. [PMID: 32802873 PMCID: PMC7421098 DOI: 10.1155/2020/7576063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
The treatment goal for spinal cord injury (SCI) is to repair neurites and suppress cellular apoptosis. This study is to investigate the effects of nuclear heme oxidase-1 (HO-1) on the acute spinal cord injury and the related mechanisms. The rat model of the SCI was established. On day 7, before model establishment, the adenovirus vector carrying nuclear HO-1 (Ad-GFP-HO-1CΔ23) was injected into the animals into the tenth thoracic spine (T10) segment by the intrathecal injection. Starting from after the model establishment to day 28, the recovery of motor function was assessed by the Basso-Beattie-Bresnahan (BBB) scoring method. Immunofluorescence was performed to detect the expression patterns of nuclear and cytoplasmic proteins. HE and Nissl staining methods were used to evaluate the structural damage and the number of surviving neurons near the injured area. The TUNEL method was conducted to evaluate the apoptotic degree. Protein expression levels were detected with the Western blot analysis. The BBB assay scores in the nuclear HO-1 group were significantly higher than the blank and adenovirus control groups. Moreover, compared to the blank and adenovirus control groups, the neuronal apoptosis in the nuclear HO-1 group was significantly alleviated. Furthermore, the expression levels of the endoplasmic reticulum stress-related proteins, i.e., CHOP, GRP78, and caspase-12, were significantly decreased in the nuclear HO-1 group. Nuclear HO-1 significantly improves the SCI, promotes the functional recovery, inhibits the endoplasmic reticulum stress, and alleviates the apoptotic process after SCI.
Collapse
|
10
|
Zhang X, Shi S, Shen J, Zhao M, He Q. Functional Immunoregulation by Heme Oxygenase 1 in Juvenile Autoimmune Diseases. Curr Gene Ther 2020; 19:110-116. [PMID: 31288720 DOI: 10.2174/1566523219666190710092935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
An autoimmune disease is an inflammatory condition in which the human body's immune system attacks normal cells, resulting in decreased and abnormal immune function, which eventually leads to tissue damage or organ dysfunction. In the field of medicine, especially in pediatrics, knowledge about autoimmune diseases is still inadequate. Some common juvenile autoimmune diseases such as Henoch-Schonlein purpura, systemic juvenile idiopathic arthritis, mucocutaneous lymph node syndrome, and autoimmune encephalitis cause considerable public concern. Recent studies revealed that heme oxygenase 1 (HO-1), an enzyme that participates in heme degradation, plays a critical role in the pathogenesis and may regulate autoimmunity. Firstly, it may promote the differentiation of T lymphocytes into CD4+CD25+ regulatory T cells and may be associated with changes in the ratios of cytokines (Th1/Th2 and Th17/Treg) as well. Secondly, HO-1 can regulate the immune system through the secretion of proteins such as transforming growth factors and interleukins. Moreover, increasing the expression of HO-1 can improve vascular function by increasing antioxidant levels. Thus, HO-1 may provide a theoretical basis and guidance for therapeutic management of juvenile autoimmune diseases.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China.,Medical College of Xiangya, Central South University, Changsha, Hunan Province, 410013, China
| | - Shupeng Shi
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China.,Medical College of Xiangya, Central South University, Changsha, Hunan Province, 410013, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, China
| |
Collapse
|
11
|
Kaiser S, Selzner L, Weber J, Schallner N. Carbon monoxide controls microglial erythrophagocytosis by regulating CD36 surface expression to reduce the severity of hemorrhagic injury. Glia 2020; 68:2427-2445. [PMID: 32476210 DOI: 10.1002/glia.23864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Microglial erythrophagocytosis is crucial in injury response to hemorrhagic stroke. We hypothesized that regulation of microglial erythrophagocytosis via HO-1/CO depends on a pathway involving reactive oxygen species (ROS) and CD36 surface-expression. The microglial BV-2 cell line and primary microglia (PMG) were incubated +/-blood and +/-CO-exposure. PMG isolated from tissue-specific HO-1-deficient (LyzM-Cre-Hmox1 fl/fl ) and CD36 -/- mice or siRNA against AMPK (AMP-activated protein kinase) were used to test our hypothesis. In a murine subarachnoid hemorrhage (SAH) model, we compared neuronal injury in wild-type and CD36 -/- mice. Readouts included vasospasm, microglia activation, neuronal apoptosis, and spatial memory. We observed increased microglial HO-1-expression after blood-exposure. A burst in ROS-production was seen after CO-exposure, which led to increased amounts of phosphorylated AMPK with subsequently enhanced CD36 surface-expression. Naïve PMG from LyzM-Cre-Hmox1 fl/fl mice showed reduced ROS-production and CD36 surface-expression and failed to respond to CO with increased CD36 surface-expression. Lack of HO-1 and CD36 resulted in reduced erythrophagocytosis that could not be rescued with CO. Erythrophagocytosis was enhanced in BV-2 cells in the presence of exogenous CO, which was abolished in cells treated with siRNA to AMPK. CD36 -/- mice subjected to SAH showed enhanced neuronal cell death, which resulted in impaired spatial memory function. We demonstrate that microglial phagocytic function partly depends on a pathway involving HO-1 with changes in ROS-production, phosphorylated AMPK, and surface expression of CD36. CD36 was identified as a crucial component in blood clearance after hemorrhage that ultimately determines neuronal outcome. These results demand further investigations studying the potential neuroprotective properties of CO.
Collapse
Affiliation(s)
- Sandra Kaiser
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Lisa Selzner
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Janick Weber
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
12
|
Ding P, Fang L, Wang G, Li X, Huang S, Gao Y, Zhu J, Xiao L, Tong J, Chen F, Xia G. Wheat methionine sulfoxide reductase A4.1 interacts with heme oxygenase 1 to enhance seedling tolerance to salinity or drought stress. PLANT MOLECULAR BIOLOGY 2019; 101:203-220. [PMID: 31297725 DOI: 10.1007/s11103-019-00901-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Here, a functional characterization of a wheat MSR has been presented: this protein makes a contribution to the plant's tolerance of abiotic stress, acting through its catalytic capacity and its modulation of ROS and ABA pathways. The molecular mechanism and function of certain members of the methionine sulfoxide reductase (MSR) gene family have been defined, however, these analyses have not included the wheat equivalents. The wheat MSR gene TaMSRA4.1 is inducible by salinity and drought stress and in this study, we demonstrate that its activity is restricted to the Met-S-SO enantiomer, and its subcellular localization is in the chloroplast. Furthermore, constitutive expression of TaMSRA4.1 enhanced the salinity and drought tolerance of wheat and Arabidopsis thaliana. In these plants constitutively expressing TaMSRA4.1, the accumulation of reactive oxygen species (ROS) was found to be influenced through the modulation of genes encoding proteins involved in ROS signaling, generation and scavenging, while the level of endogenous abscisic acid (ABA), and the sensitivity of stomatal guard cells to exogenous ABA, was increased. A yeast two-hybrid screen, bimolecular fluorescence complementation and co-immunoprecipitation assays demonstrated that heme oxygenase 1 (HO1) interacted with TaMSRA4.1, and that this interaction depended on a TaHO1 C-terminal domain. In plants subjected to salinity or drought stress, TaMSRA4.1 reversed the oxidation of TaHO1, activating ROS and ABA signaling pathways, but not in the absence of HO1. The aforementioned properties advocate TaMSRA4.1 as a candidate for plant genetic enhancement.
Collapse
Affiliation(s)
- Pengcheng Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Linlin Fang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangling Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yankun Gao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiantang Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Fanguo Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
13
|
UV Laser-Induced, Time-Resolved Transcriptome Responses of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:2549-2560. [PMID: 31213515 PMCID: PMC6686910 DOI: 10.1534/g3.119.400291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We determined the effect on gene transcription of laser-mediated, long-wavelength UV-irradiation of Saccharomyces cerevisiae by RNAseq analysis at times T15, T30, and T60 min after recovery in growth medium. Laser-irradiated cells were viable, and the transcriptional response was transient, with over 400 genes differentially expressed at T15 or T30, returning to basal level transcription by T60. Identification of transcripts exhibiting enhanced differential expression that were unique to UV laser-irradiation were identified by imposing a stringent significance cut-off (P < 0.05, log2 difference >2) then filtering out genes known as environmental stress response (ESR) genes. Using these rigorous criteria, 56 genes were differentially expressed at T15; at T30 differential expression was observed for 57 genes, some of which persisted from T15. Among the highly up-regulated genes were those supporting amino acid metabolic processes sulfur amino acids, methionine, aspartate, cysteine, serine), sulfur regulation (hydrogen sulfite metabolic processes, sulfate assimilation, sulfate reduction), proteasome components, amino acid transporters, and the iron regulon. At T30, the expression profile shifted to expression of transcripts related to catabolic processes (oxidoreductase activity, peptidase activity). Transcripts common to both T15 and T30 suggested an up-regulation of catabolic events, including UV damage response genes, and protein catabolism via proteasome and peptidase activity. Specific genes encoding tRNAs were among the down-regulated genes adding to the suggestion that control of protein biosynthesis was a major response to long-wave UV laser irradiation. These transcriptional responses highlight the remarkable ability of the yeast cell to respond to a UV-induced environmental insult.
Collapse
|
14
|
Zhang K, Zheng DQ, Sui Y, Qi L, Petes T. Genome-wide analysis of genomic alterations induced by oxidative DNA damage in yeast. Nucleic Acids Res 2019; 47:3521-3535. [PMID: 30668788 PMCID: PMC6468167 DOI: 10.1093/nar/gkz027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative DNA damage is a threat to genome stability. Using a genetic system in yeast that allows detection of mitotic recombination, we found that the frequency of crossovers is greatly elevated when cells are treated with hydrogen peroxide (H2O2). Using a combination of microarray analysis and genomic sequencing, we mapped the breakpoints of mitotic recombination events and other chromosome rearrangements at a resolution of about 1 kb. Gene conversions and crossovers were the two most common types of events, but we also observed deletions, duplications, and chromosome aneuploidy. In addition, H2O2-treated cells had elevated rates of point mutations (particularly A to T/T to A and C to G/G to C transversions) and small insertions/deletions (in/dels). In cells that underwent multiple rounds of H2O2 treatments, we identified a genetic alteration that resulted in improved H2O2 tolerance by amplification of the CTT1 gene that encodes cytosolic catalase T. Lastly, we showed that cells grown in the absence of oxygen have reduced levels of recombination. This study provided multiple novel insights into how oxidative stress affects genomic instability and phenotypic evolution in aerobic cells.
Collapse
Affiliation(s)
- Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Hanna DA, Hu R, Kim H, Martinez-Guzman O, Torres MP, Reddi AR. Heme bioavailability and signaling in response to stress in yeast cells. J Biol Chem 2018; 293:12378-12393. [PMID: 29921585 DOI: 10.1074/jbc.ra118.002125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
Protoheme (hereafter referred to as heme) is an essential cellular cofactor and signaling molecule that is also potentially cytotoxic. To mitigate heme toxicity, heme synthesis and degradation are tightly coupled to heme utilization in order to limit the intracellular concentration of "free" heme. Such a model, however, would suggest that a readily accessible steady-state, bioavailable labile heme (LH) pool is not required for supporting heme-dependent processes. Using the yeast Saccharomyces cerevisiae as a model and fluorescent heme sensors, site-specific heme chelators, and molecular genetic approaches, we found here that 1) yeast cells preferentially use LH in heme-depleted conditions; 2) sequestration of cytosolic LH suppresses heme signaling; and 3) lead (Pb2+) stress contributes to a decrease in total heme, but an increase in LH, which correlates with increased heme signaling. We also observed that the proteasome is involved in the regulation of the LH pool and that loss of proteasomal activity sensitizes cells to Pb2+ effects on heme homeostasis. Overall, these findings suggest an important role for LH in supporting heme-dependent functions in yeast physiology.
Collapse
Affiliation(s)
| | - Rebecca Hu
- From the School of Chemistry and Biochemistry
| | - Hyojung Kim
- From the School of Chemistry and Biochemistry.,School of Biological Sciences, and
| | | | - Matthew P Torres
- School of Biological Sciences, and.,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- From the School of Chemistry and Biochemistry, .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
16
|
Hsu FF, Chiang MT, Li FA, Yeh CT, Lee WH, Chau LY. Acetylation is essential for nuclear heme oxygenase-1-enhanced tumor growth and invasiveness. Oncogene 2017; 36:6805-6814. [PMID: 28846111 DOI: 10.1038/onc.2017.294] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
Overexpression of heme oxygenase-1 (HO-1), an endoplasmic reticulum-anchored enzyme, is observed in many cancers. HO-1 nuclear translocation has been shown to correlate with progression of several cancers. We recently reported that HO-1 is susceptible to intramembrane proteolysis and translocates to the nucleus to promote cancer growth and invasiveness without depending on its enzymatic activity. In the present study, we show that the HO-1 lacking C-terminal transmembrane segment (t-HO-1) was susceptible to acetylation by p300 and CREB-binding protein (CBP) histone acetyltransferase in the nucleus. Mass spectrometry analysis of HO-1 isolated from human embryonic kidney cells 293T (HEK293T) cells overexpressing CBP and t-HO-1 revealed two acetylation sites located at K243 and K256. Mutation of both lysine residues to arginine (R) abolished t-HO-1-enhanced tumor cell growth, migration and invasion. However, mutation of the lysine residues to glutamine (Q), a mimic of acetylated lysine, had no significant effect on t-HO-1-mediated tumorigenicity. Mechanistic studies demonstrated that transcriptional factor JunD interacted with wild-type (WT) t-HO-1 and mutant carrying K243/256Q but not K243/256 R mutation. Moreover, JunD-induced AP-1 transcriptional activity was significantly enhanced by coexpression with WT and acetylation-mimic but not acetylation-defective t-HO-1. Consistent with the in vitro observations, the implication of K243/256 acetylation in t-HO-1-enhanced tumorigenicity was also demonstrated in xenograft models. Immunohistochemistry performed with a specific antibody against acetyl-HO-1 showed the positive acetyl-HO-1 nuclear staining in human lung cancer tissues but not in the corresponding non-tumor tissues, supporting its clinical significance. Collectively, our findings highlight the importance of nuclear HO-1 post-translational modification in the induction of cancer progression.
Collapse
Affiliation(s)
- F-F Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M-T Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - F-A Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-T Yeh
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - W-H Lee
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - L-Y Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Mezzetti F, Fay JC, Giudici P, De Vero L. Genetic variation and expression changes associated with molybdate resistance from a glutathione producing wine strain of Saccharomyces cerevisiae. PLoS One 2017; 12:e0180814. [PMID: 28683117 PMCID: PMC5500363 DOI: 10.1371/journal.pone.0180814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/21/2017] [Indexed: 12/30/2022] Open
Abstract
Glutathione (GSH) production during wine fermentation is a desirable trait as it can limit must and wine oxidation and protect various aromatic compounds. UMCC 2581 is a Saccharomyces cerevisiae wine strain with enhanced GSH content at the end of wine fermentation. This strain was previously derived by selection for molybdate resistance following a sexual cycle of UMCC 855 using an evolution-based strategy. In this study, we examined genetic and gene expression changes associated with the derivation of UMCC 2581. For genetic analysis we sporulated the diploid UMCC 855 parental strain and found four phenotype classes of segregants related to molybdate resistance, demonstrating the presence of segregating variation from the parental strain. Using bulk segregant analysis we mapped molybdate traits to two loci. By sequencing both the parental and evolved strain genomes we identified candidate mutations within the two regions as well as an extra copy of chromosome 1 in UMCC 2581. Combining the mapped loci with gene expression profiles of the evolved and parental strains we identified a number of candidate genes with genetic and/or gene expression changes that could underlie molybdate resistance and increased GSH levels. Our results provide insight into the genetic basis of GSH production relevant to winemaking and highlight the value of enhancing wine strains using existing variation present in wine strains.
Collapse
Affiliation(s)
- Francesco Mezzetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Justin C. Fay
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University, St. Louis, Missouri, United States of America
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Luciana De Vero
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
18
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
19
|
Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions. PLoS One 2016; 11:e0148204. [PMID: 26824473 PMCID: PMC4732752 DOI: 10.1371/journal.pone.0148204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.
Collapse
|
20
|
Ke K, Safder MA, Sul OJ, Kim WK, Suh JH, Joe Y, Chung HT, Choi HS. Hemeoxygenase-1 maintains bone mass via attenuating a redox imbalance in osteoclast. Mol Cell Endocrinol 2015; 409:11-20. [PMID: 25841764 DOI: 10.1016/j.mce.2015.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 01/28/2023]
Abstract
Heme oxygenase-1 (HO-1) has long been considered to be an endogenous antioxidant. However, the role of HO-1 is highly controversial in developing metabolic diseases. We hypothesized that HO-1 plays a role in maintaining bone mass by alleviating a redox imbalance. We investigated its role in bone remodeling. The absence of HO-1 in mice led to decreased bone mass with elevated activity and number of OCs, as well as higher serum levels of reactive oxygen species (ROS). HO-1, which is constitutively expressed at a high level in osteoclast (OC) precursors, was down-regulated during OC differentiation. HO-1 deficiency in bone marrow macrophages (BMM) in vitro resulted in increased numbers and activity of OCs due to enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. This was associated with increased activation of nuclear factor-κB and of nuclear factor of activated T-cells, cytoplasmic 1 along with elevated levels of intracellular calcium and ROS. Decreased bone mass in the absence of HO-1 appears to be mainly due to increased osteoclastogenesis and bone resorption resulting from elevated RANKL signaling in OCs. Our data highlight the potential role of HO-1 in maintaining bone mass by negatively regulating OCs.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - M A Safder
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Ok-Joo Sul
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Woon-Ki Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 682-714, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hun-Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
21
|
Schallner N, Pandit R, LeBlanc R, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE, Hanafy KA. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 2015; 125:2609-25. [PMID: 26011640 DOI: 10.1172/jci78443] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) carries a 50% mortality rate. The extravasated erythrocytes that surround the brain contain heme, which, when released from damaged red blood cells, functions as a potent danger molecule that induces sterile tissue injury and organ dysfunction. Free heme is metabolized by heme oxygenase (HO), resulting in the generation of carbon monoxide (CO), a bioactive gas with potent immunomodulatory capabilities. Here, using a murine model of SAH, we demonstrated that expression of the inducible HO isoform (HO-1, encoded by Hmox1) in microglia is necessary to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral blood burden. Initiation of CO inhalation after SAH rescued the absence of microglial HO-1 and reduced injury by enhancing erythrophagocytosis. Evaluation of correlative human data revealed that patients with SAH have markedly higher HO-1 activity in cerebrospinal fluid (CSF) compared with that in patients with unruptured cerebral aneurysms. Furthermore, cisternal hematoma volume correlated with HO-1 activity and cytokine expression in the CSF of these patients. Collectively, we found that microglial HO-1 and the generation of CO are essential for effective elimination of blood and heme after SAH that otherwise leads to neuronal injury and cognitive dysfunction. Administration of CO may have potential as a therapeutic modality in patients with ruptured cerebral aneurysms.
Collapse
|
22
|
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme catalyzing oxidative degradation of cellular heme to liberate free iron, carbon monoxide (CO) and biliverdin in mammalian cells. In addition to its primary role in heme catabolism, HO-1 exhibits anti-oxidative and anti-inflammatory functions via the actions of biliverdin and CO, respectively. HO-1 is highly induced in various disease states, including cancer. Several lines of evidence have supported the implication of HO-1 in carcinogenesis and tumor progression. HO-1 deficiency in normal cells enhances DNA damage and carcinogenesis. Nevertheless, HO-1 overexpression in cancer cells promotes proliferation and survival. Moreover, HO-1 induces angiogenesis through modulating expression of angiogenic factors. Although HO-1 is an endoplasmic reticulum resident protein, HO-1 nuclear localization is evident in tumor cells of cancer tissues. It has been shown that HO-1 is susceptible to proteolytic cleavage and translocates to nucleus to facilitate tumor growth and invasion independent of its enzymatic activity. HO-1 also impacts cancer progression through modulating tumor microenvironment. This review summarizes the current understanding of the protumorigenic role of HO-1 and its potential as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
23
|
Ruth C, Buchetics M, Vidimce V, Kotz D, Naschberger S, Mattanovich D, Pichler H, Gasser B. Pichia pastoris Aft1--a novel transcription factor, enhancing recombinant protein secretion. Microb Cell Fact 2014; 13:120. [PMID: 25205197 PMCID: PMC4161868 DOI: 10.1186/s12934-014-0120-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The methylotrophic yeast Pichia pastoris is frequently used for the production of recombinant proteins. However, expression levels can vary depending on the target protein. Allowing for simultaneous regulation of many genes, which may elicit a desired phenotype like increased protein production, overexpression of transcription factors can be used to overcome expression bottlenecks. Here, we present a novel P. pastoris transcription factor currently annotated as Aft1, activator of ferrous transport. RESULTS The promoter regions of key secretory P. pastoris genes were screened for fungal transcription factor binding sites, revealing Aft1 as an interesting candidate for improving secretion. Genome wide analysis of transcription factor binding sites suggested Aft1 to be involved in the regulation of many secretory genes, but also indicated possible novel functions in carbohydrate metabolism. No Aft binding sites were found in promoters of characteristic iron homeostasis genes in P. pastoris. Microarrays were used to study the Aft1 regulon in detail, confirming Aft1 involvement in the regulation of carbon-responsive genes, and showing that iron regulation is dependent on FEP1, but not AFT1 expression levels. The positive effect of AFT1 overexpression on recombinant protein secretion was demonstrated for a carboxylesterase from Sphingopyxis sp. MTA144, for which secretion was improved 2.5-fold in fed batch bioreactor cultivations. CONCLUSION This study demonstrates that the transcription factor Aft1 can be used to improve recombinant protein secretion in P. pastoris. Furthermore, we discovered possible novel functions of Aft1 in carbohydrate metabolism and provide evidence arguing against a direct role of Aft1 in P. pastoris iron regulation.
Collapse
|
24
|
Hsu FF, Yeh CT, Sun YJ, Chiang MT, Lan WM, Li FA, Lee WH, Chau LY. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 2014; 34:2360-70. [PMID: 24931165 DOI: 10.1038/onc.2014.166] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/27/2022]
Abstract
Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.
Collapse
Affiliation(s)
- F-F Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-T Yeh
- 1] Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan [2] Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Y-J Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M-T Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - W-M Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - F-A Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - W-H Lee
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - L-Y Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Nguyen TTM, Kitajima S, Izawa S. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 2014; 118:263-9. [PMID: 24725964 DOI: 10.1016/j.jbiosc.2014.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Vanillin is derived from lignocellulosic biomass and, as one of the major biomass conversion inhibitors, inhibits yeast growth and fermentation. Vanillin was recently shown to induce the mitochondrial fragmentation and formation of mRNP granules such as processing bodies and stress granules in Saccharomyces cerevisiae. Furfural, another major biomass conversion inhibitor, also induces oxidative stress and is reduced in an NAD(P)H-dependent manner to its less toxic alcohol derivative. Therefore, the pentose phosphate pathway (PPP), through which most NADPH is generated, plays a role in tolerance to furfural. Although vanillin also induces oxidative stress and is reduced to vanillyl alcohol in a NADPH-dependent manner, the relationship between vanillin and PPP has not yet been investigated. In the present study, we examined the importance of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the rate-limiting NADPH-producing step in PPP, for yeast tolerance to vanillin. The growth of the null mutant of G6PDH gene (zwf1Δ) was delayed in the presence of vanillin, and vanillin was efficiently reduced in the culture of wild-type cells but not in the culture of zwf1Δ cells. Furthermore, zwf1Δ cells easily induced the activation of Yap1, an oxidative stress responsive transcription factor, mitochondrial fragmentation, and P-body formation with the vanillin treatment, which indicated that zwf1Δ cells were more susceptible to vanillin than wild type cells. These findings suggest the importance of G6PDH and PPP in the response of yeast to vanillin.
Collapse
Affiliation(s)
- Trinh Thi My Nguyen
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Inflammation and immunity can be associated with varying degrees of heme release from hemoproteins, eventually leading to cellular and tissue iron (Fe) overload, oxidative stress, and tissue damage. Presumably, these deleterious effects contribute to the pathogenesis of systemic infections. RECENT ADVANCES Heme release from hemoglobin sensitizes parenchyma cells to undergo programmed cell death in response to proinflammatory cytokines, such as tumor necrosis factor. This cytotoxic effect is driven by a mechanism involving intracellular accumulation of free radicals, which sustain the activation of the c-Jun N-terminal kinase (JNK) signaling transduction pathway. While heme catabolism by heme oxygenase-1 (HO-1) prevents programmed cell death, this cytoprotective effect requires the co-expression of ferritin H (heart/heavy) chain (FTH), which controls the pro-oxidant effect of labile Fe released from the protoporphyrin IX ring of heme. This antioxidant effect of FTH restrains JNK activation, whereas JNK activation inhibits FTH expression, a cross talk that controls metabolic adaptation to cellular Fe overload associated with systemic infections. CRITICAL ISSUES AND FUTURE DIRECTIONS Identification and characterization of the mechanisms via which FTH provides metabolic adaptation to tissue Fe overload should provide valuable information to our current understanding of the pathogenesis of systemic infections as well as other immune-mediated inflammatory diseases.
Collapse
|
27
|
Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R. New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 2014; 20:1723-42. [PMID: 24180287 PMCID: PMC3961787 DOI: 10.1089/ars.2013.5675] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/01/2013] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HMOX1) plays a critical role in the protection of cells, and the inducible enzyme is implicated in a spectrum of human diseases. The increasing prevalence of cardiovascular and metabolic morbidities, for which current treatment approaches are not optimal, emphasizes the necessity to better understand key players such as HMOX1 that may be therapeutic targets. RECENT ADVANCES HMOX1 is a dynamic protein that can undergo post-translational and structural modifications which modulate HMOX1 function. Moreover, trafficking from the endoplasmic reticulum to other cellular compartments, including the nucleus, highlights that HMOX1 may play roles other than the catabolism of heme. CRITICAL ISSUES The ability of HMOX1 to be induced by a variety of stressors, in an equally wide variety of tissues and cell types, represents an obstacle for the therapeutic exploitation of the enzyme. Any capacity to modulate HMOX1 in cardiovascular and metabolic diseases should be tempered with an appreciation that HMOX1 may have an impact on cancer. Moreover, the potential for heme catabolism end products, such as carbon monoxide, to amplify the HMOX1 stress response should be considered. FUTURE DIRECTIONS A more complete understanding of HMOX1 modifications and the properties that they impart is necessary. Delineating these parameters will provide a clearer picture of the opportunities to modulate HMOX1 in human disease.
Collapse
Affiliation(s)
- Louise L. Dunn
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | | | - Jun Ni
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hafizah A. Hamid
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Christopher R. Parish
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Roland Stocker
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Nguyen TTM, Iwaki A, Ohya Y, Izawa S. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng 2014; 117:33-8. [DOI: 10.1016/j.jbiosc.2013.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 11/26/2022]
|
29
|
Barone E, Di Domenico F, Butterfield DA. Statins more than cholesterol lowering agents in Alzheimer disease: their pleiotropic functions as potential therapeutic targets. Biochem Pharmacol 2013; 88:605-16. [PMID: 24231510 DOI: 10.1016/j.bcp.2013.10.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 02/05/2023]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative and nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
30
|
Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 2013; 12:87. [PMID: 24083827 PMCID: PMC3817835 DOI: 10.1186/1475-2859-12-87] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 11/11/2022] Open
Abstract
Background Production of bioethanol from lignocellulosic biomass requires the development of robust microorganisms that can tolerate the stressful conditions prevailing in lignocellulosic hydrolysates. Several inhibitors are known to affect the redox metabolism of cells. In this study, Saccharomyces cerevisiae was engineered for increased robustness by modulating the redox state through overexpression of GSH1, CYS3 and GLR1, three genes involved in glutathione (GSH) metabolism. Results Overexpression constructs were stably integrated into the genome of the host strains yielding five strains overexpressing GSH1, GSH1/CYS3, GLR1, GSH1/GLR1 and GSH1/CYS3/GLR1. Overexpression of GSH1 resulted in a 42% increase in the total intracellular glutathione levels compared to the wild type. Overexpression of GSH1/CYS3, GSH1/GLR1 and GSH1/CYS3/GLR1 all resulted in equal or less intracellular glutathione concentrations than overexpression of only GSH1, although higher than the wild type. GLR1 overexpression resulted in similar total glutathione levels as the wild type. Surprisingly, all recombinant strains had a lower [reduced glutathione]:[oxidized glutathione] ratio (ranging from 32–67) than the wild type strain (88), suggesting a more oxidized intracellular environment in the engineered strains. When considering the glutathione half-cell redox potential (Ehc), the difference between the strains was less pronounced. Ehc for the recombinant strains ranged from -225 to -216 mV, whereas for the wild type it was estimated to -225 mV. To test whether the recombinant strains were more robust in industrially relevant conditions, they were evaluated in simultaneous saccharification and fermentation (SSF) of pretreated spruce. All strains carrying the GSH1 overexpression construct performed better than the wild type in terms of ethanol yield and conversion of furfural and HMF. The strain overexpressing GSH1/GLR1 produced 14.0 g L-1 ethanol in 48 hours corresponding to an ethanol yield on hexoses of 0.17 g g-1; while the wild type produced 8.2 g L-1 ethanol in 48 hours resulting in an ethanol yield on hexoses of 0.10 g g-1. Conclusions In this study, we showed that engineering of the redox state by modulating the levels of intracellular glutathione results in increased robustness of S. cerevisiae in SSF of pretreated spruce.
Collapse
|
31
|
Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P. Different response to acetic acid stress inSaccharomyces cerevisiaewild-type andl-ascorbic acid-producing strains. Yeast 2013; 30:365-78. [DOI: 10.1002/yea.2969] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
|
32
|
Dhar R, Sägesser R, Weikert C, Wagner A. Yeast Adapts to a Changing Stressful Environment by Evolving Cross-Protection and Anticipatory Gene Regulation. Mol Biol Evol 2012; 30:573-88. [DOI: 10.1093/molbev/mss253] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
33
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
34
|
Chen H, Li H, Cao F, Zhen L, Bai J, Yuan S, Mei Y. 1,2,3,4,6-penta-O-galloyl-β-D-glucose protects PC12 Cells from MPP+-mediated cell death by inducing heme oxygenase-1 in an ERK- and Akt-dependent manner. ACTA ACUST UNITED AC 2012; 32:737-745. [DOI: 10.1007/s11596-012-1027-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 02/06/2023]
|
35
|
Atorvastatin treatment in a dog preclinical model of Alzheimer's disease leads to up-regulation of haem oxygenase-1 and is associated with reduced oxidative stress in brain. Int J Neuropsychopharmacol 2012; 15:981-7. [PMID: 21767440 DOI: 10.1017/s1461145711001118] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Only acetylcholinesterase inhibitors and the NMDA antagonist memantine are approved for AD treatment. Recent preclinical and epidemiological studies proposed statins as novel therapeutics for AD, but the mechanisms of action are still unknown. Here, we demonstrate that atorvastatin (80 mg/d for 14.5 months) treatment resulted in an up-regulation of the inducible isoform of haem oxygenase (HO-1), an enzyme with significant neuroprotective activity. Atorvastatin selectively increased HO-1 in the parietal cortex but not cerebellum. In contrast, HO-2 was increased in cerebellum but not parietal cortex. No changes were observed in HO-1 or HO-2 in the liver. Significant negative correlations between HO-1 and oxidative stress indices and positive correlations with glutathione levels in parietal cortex were found. HO-1 up-regulation significantly correlated with lower discrimination learning error scores in aged beagles. Reference to therapeutic applications of atorvastatin in AD is discussed.
Collapse
|
36
|
Taka E, Mazzio E, Soliman KFA, Renee Reams R. Microarray genomic profile of mitochondrial and oxidant response in manganese chloride treated PC12 cells. Neurotoxicology 2012; 33:162-8. [PMID: 22281203 DOI: 10.1016/j.neuro.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
Abstract
Environmental or occupational exposure to high levels of manganese (Mn) can lead to manganism, a symptomatic neuro-degenerative disorder similar to idiopathic Parkinson's disease. The underlying mechanism of Mn neurotoxicity remains unclear. In this study, we evaluate the primary toxicological events associated with MnCl(2) toxicity in rat PC12 cells using whole genome cDNA microarray, RT-PCR, Western blot and functional studies. The results show that a sub-lethal dose range (38-300 μM MnCl(2)) initiated slight metabolic stress evidenced by heightened glycolytic rate and induction of enolase/aldolase - gene expression. The largest shift observed in the transcriptome was MnCl(2) induction of heme-oxygenase 1 (HO-1) [7.7 fold, p<0.001], which was further corroborated by RT-PCR and Western blot studies. Concentrations in excess of 300 μM corresponded to dose dependent loss of cell viability which was associated with enhanced production of H(2)O(2) concomitant to elevation of gene expression for diverse antioxidant enzymes; biliverdin reductase, arsenite inducible RNA associated protein, dithiolethione-inducible gene-1 (DIG-1) and thioredoxin reductase 1. Moreover, Mn initiated significant reduction of gene expression of mitochondrial glutaryl-coenzyme A dehydrogenase (GCDH), an enzyme involved with glutaric acidemia, oxidative stress, lipid peroxidation and striatal degeneration observed in association with severe dystonic-dyskinetic movement disorder. Future research will be required to elucidate a defined role for HO-1 and GCDH in Mn toxicity.
Collapse
Affiliation(s)
- Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL 32307, USA
| | | | | | | |
Collapse
|
37
|
Hunt NH. Redox pioneer: professor Roland Stocker. Antioxid Redox Signal 2011; 15:3101-5. [PMID: 21609251 DOI: 10.1089/ars.2010.3842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dr. Roland Stocker (Ph.D. 1985) is recognized here as a Redox Pioneer, because he has published one article on antioxidant/redox biology as first author that has been cited over 1000 times and has published another 32 articles, each cited over 100 times. Dr. Stocker received his undergraduate education at the Federal Institute of Technology Zürich, Switzerland (1975-1981), followed by postgraduate training at the Australian National University Canberra, Australia (1982-1985) and postdoctoral training at the University of California, Berkeley (1986-1987), and the University of Berne, Switzerland (1987-1988). Dr. Stocker's top scientific contributions are in the following areas: (i) molecular action and interaction of nonproteinaceous antioxidants, particularly bilirubin, α-tocopherol, and ubiquinol-10; (ii) lipoprotein lipid oxidation and its inhibition, with a particular focus on how α-tocopherol affects these processes; (iii) the role of arterial lipoprotein lipid oxidation in atherosclerosis and related diseases; (iv) modes of antiatherosclerotic action of probucol and the involvement of heme oxygenase-1 in vascular protection; and (v) the regulation of indoleamine 2,3-dioxygenase and its contribution to vascular tone and blood pressure in inflammatory diseases.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
38
|
Reeve VE, Allanson M, Domanski D, Painter N. Gender differences in UV-induced inflammation and immunosuppression in mice reveal male unresponsiveness to UVA radiation. Photochem Photobiol Sci 2011; 11:173-9. [PMID: 21968628 DOI: 10.1039/c1pp05224a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunosuppression attributed mainly to the UVB (290-320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320-400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290-400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|