1
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Gan Y, Li C, Peng X, Wu S, Li Y, Tan JPK, Yang YY, Yuan P, Ding X. Fight bacteria with bacteria: Bacterial membrane vesicles as vaccines and delivery nanocarriers against bacterial infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102398. [PMID: 33901646 DOI: 10.1016/j.nano.2021.102398] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
Bacterial membrane vesicles (MVs) are particles secreted by bacteria with diameter of 20-400 nm. The pathogen-associated molecular patterns (PAMPs) present on the surface of MVs are capable of activating human immune system, leading to non-specific immune response and specific immune response. Due to the immunostimulatory properties and proteoliposome nanostructures, MVs have been increasingly explored as vaccines or delivery systems for the prevention and treatment of bacterial infections. Herein, the recent progresses of MVs for antibacterial applications are reviewed to provide an overview of MVs vaccines and MVs-related delivery systems. In addition, the safety issues of bacterial MVs are discussed to demonstrate their potential for clinical translation. In the end of this review, the challenges of bacterial MVs as vaccines and delivery systems for clinical applications are highlighted with the purpose of predicting future research directions in this field.
Collapse
Affiliation(s)
- Yingying Gan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shuang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jeremy P K Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Feng S, Xiong C, Wang G, Wang S, Jin G, Gu G. Exploration of Recombinant Fusion Proteins YAPO and YAPL as Carrier Proteins for Glycoconjugate Vaccine Design against Streptococcus pneumoniae Infection. ACS Infect Dis 2020; 6:2181-2191. [PMID: 32687317 DOI: 10.1021/acsinfecdis.0c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pneumolysin (Ply), pneumococcal surface protein A (PspA), and pneumococcal surface adhesin A (PsaA) are promising cell surface protein antigen targets for Streptococcus pneumoniae (Spn) vaccine development. Herein, we designed and recombined two fusion proteins, named YAPO and YAPL, which contained the main antigenic epitopes of Ply, PspA, and PsaA. In-depth immunological evaluations revealed that YAPO and YAPL had strong immunocompetence to be well-qualified potential carrier proteins. To verify this possibility, a serotype 3 Spn (ST3) CPS pentasaccharide was conjugated to each fusion protein to generate the resultant glycoconjugates. Immunological studies in mice revealed that, as compared with TT conjugate, YAPO and YAPL conjugates provoked robust T-cell dependent immune responses that could provide better recognition, in vitro efficient opsonophagocytosis, and in vivo effective protection against various serotypes of Spn. Collectively, YAPO and YAPL were identified as immunopotentiating carriers that could help convert immunologically inactive ST3 pentasaccharide into a T cell-dependent antigen and provide efficient and broad spectrum of immunoprotection coverage so as to formulate functional glycoconjugate vaccines against Spn infections.
Collapse
Affiliation(s)
- Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua Dong Lu, Jinan 250014, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Thanawastien A, Joyce KE, Cartee RT, Haines LA, Pelton SI, Tweten RK, Killeen KP. Preclinical in vitro and in vivo profile of a highly-attenuated, broadly efficacious pneumolysin genetic toxoid. Vaccine 2020; 39:1652-1660. [PMID: 32532546 PMCID: PMC8237519 DOI: 10.1016/j.vaccine.2020.04.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 02/05/2023]
Abstract
Pneumolysin is a highly conserved, cholesterol-dependent cytolysin that is an important Streptococcus pneumoniae virulence factor and an attractive target for vaccine development. To attenuate pneumolysin toxicity, a genetic toxoid was constructed with two amino acid changes, G293S and L460D, termed PLY-D, that reduced cytolytic activity > 125,000-fold. In mice, PLY-D elicited high anti-PLY IgG antibody titers that neutralized the cytolytic activity of the wild-type toxin in vitro. To evaluate the protective efficacy of PLY-D, mice were immunized intramuscularly and then challenged intranasally with a lethal dose of 28 clinical isolates of S. pneumoniae originating from different geographical locations, disease states (i.e. bacteremia, pneumonia), or body sites (i.e. sputum, blood). PLY-D immunization conferred significant protection from challenge with 17 of 20 serotypes (85%) and 22 of 28 strains (79%). Further, we demonstrated that immunization with PLY-D provided statistically significant improvement in survival against challenge with serotype 4 and 18C strains compared to mice immunized with a pneumococcal conjugate vaccine Prevnar 13® (PCV13). Co-administration of PLY-D and PCV13 conferred greater protection against challenge with a serotype 6B strain than immunization with either vaccine alone. These data indicate that PLY-D is a broadly protective antigen with the potential to serve as a serotype-independent vaccine against invasive pneumococcal disease either alone or in combination with PCVs.
Collapse
Affiliation(s)
- Ann Thanawastien
- Matrivax Research & Development Corporation, Boston, MA, United States
| | - Kelsey E Joyce
- Matrivax Research & Development Corporation, Boston, MA, United States
| | - Robert T Cartee
- Matrivax Research & Development Corporation, Boston, MA, United States
| | - Laurel A Haines
- Matrivax Research & Development Corporation, Boston, MA, United States
| | - Stephen I Pelton
- Boston University Schools of Medicine and Public Health, Boston Medical Center, Boston, MA, United States
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Kevin P Killeen
- Matrivax Research & Development Corporation, Boston, MA, United States.
| |
Collapse
|
5
|
González-Miró M, Radecker AM, Rodríguez-Noda LM, Fariñas-Medina M, Zayas-Vignier C, Hernández-Cedeño M, Serrano Y, Cardoso F, Santana-Mederos D, García-Rivera D, Valdés-Balbín Y, Vérez-Bencomo V, Rehm BHA. Design and Biological Assembly of Polyester Beads Displaying Pneumococcal Antigens as Particulate Vaccine. ACS Biomater Sci Eng 2018; 4:3413-3424. [DOI: 10.1021/acsbiomaterials.8b00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Majela González-Miró
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
- Institute of Fundamental Sciences, Massey University, Colombo Road, Palmerston North 4422, New Zealand
| | - Anna-Maria Radecker
- Institute of Fundamental Sciences, Massey University, Colombo Road, Palmerston North 4422, New Zealand
| | - Laura M. Rodríguez-Noda
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Mildrey Fariñas-Medina
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Caridad Zayas-Vignier
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Mabel Hernández-Cedeño
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Yohana Serrano
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Félix Cardoso
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Darielys Santana-Mederos
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Dagmar García-Rivera
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Yury Valdés-Balbín
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Vicente Vérez-Bencomo
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, Nathan, Queensland 4111, Australia
| |
Collapse
|
6
|
Immunodominance in T cell responses elicited against different domains of detoxified pneumolysin PlyD1. PLoS One 2018; 13:e0193650. [PMID: 29509778 PMCID: PMC5839544 DOI: 10.1371/journal.pone.0193650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/15/2018] [Indexed: 12/05/2022] Open
Abstract
Detoxified pneumolysin, PlyD1, is a protein vaccine candidate that induces protection against infections with Streptococcus pneumoniae in mouse models. Despite extensive knowledge on antibody responses against PlyD1, limited information is available about PlyD1 induced T cell recognition. Here we interrogated epitope breadth and functional characteristics of the T cell response to PlyD1 in two mouse strains. BALB/c (H-2d) and C57BL/6 (H-2b) mice were vaccinated with Al(OH)3-adjuvanted or non-adjuvanted PlyD1, or placebo, on day 0, 21 and 42 and were sacrificed at day 56 for collection of sera and spleens. Vaccination with adjuvanted and non-adjuvanted PlyD1 induced anti-pneumolysin IgG antibodies with neutralizing capacity in both mouse strains. Adjuvantation of PlyD1 enhanced the serological responses in both strains. In vitro restimulation of splenocytes with PlyD1 and 18-mer synthetic peptides derived from pneumolysin revealed specific proliferative and cytokine responses. For both mouse strains, one immunodominant and three subdominant natural epitopes were identified. Overlap between H-2d and H-2b restricted T cell epitopes was limited, yet similarities were found between epitopes processed in mice and predicted to be immunogenic in humans. H-2d restricted T cell epitopes were localized in pneumolysin domains 2 and 3, whereas H-2b epitopes were scattered over the protein. Cytokine responses show mostly a Th2 profile, with low levels of Th1 cytokines, in both mouse strains. In conclusion, PlyD1 evokes T cell responses in mice directed against multiple epitope regions, that is dependent on Major Histocompatibility Complex (MHC) background. These results are important to understand human PlyD1 T cell immunogenicity, to guide cell mediated immunity studies in the context of vaccine development.
Collapse
|
7
|
Visan L, Rouleau N, Proust E, Peyrot L, Donadieu A, Ochs M. Antibodies to PcpA and PhtD protect mice against Streptococcus pneumoniae by a macrophage- and complement-dependent mechanism. Hum Vaccin Immunother 2017; 14:489-494. [PMID: 29135332 PMCID: PMC5806646 DOI: 10.1080/21645515.2017.1403698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Currently marketed Streptococcus pneumoniae (Spn) vaccines, which contain polysaccharide capsular antigens from the most common Spn serotypes, have substantially reduced pneumococcal disease rates but have limited coverage. A trivalent pneumococcal protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad protein D (PhtD), and detoxified pneumolysin is being developed to provide broader, cross-serotype protection. Antibodies against detoxified pneumolysin protect against bacterial pneumonia by neutralizing Spn-produced pneumolysin, but how anti-PhtD and anti-PcpA antibodies protect against Spn has not been established. Here, we used a murine passive protection sepsis model to investigate the mechanism of protection by anti-PhtD and anti-PcpA antibodies. Depleting complement using cobra venom factor eliminated protection by anti-PhtD and anti-PcpA monoclonal antibodies (mAbs). Consistent with a requirement for complement, complement C3 deposition on Spn in vitro was enhanced by anti-PhtD and anti-PcpA mAbs and by sera from PhtD- and PcpA-immunized rabbits and humans. Moreover, in the presence of complement, anti-PhtD and anti-PcpA mAbs increased uptake of Spn by human granulocytes. Depleting neutrophils using anti-Ly6G mAbs, splenectomy, or a combination of both did not affect passive protection against Spn, whereas depleting macrophages using clodronate liposomes eliminated protection. These results suggest anti-PhtD and anti-PcpA antibodies induced by pneumococcal protein vaccines protect against Spn by a complement- and macrophage-dependent opsonophagocytosis.
Collapse
Affiliation(s)
- Lucian Visan
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Nicolas Rouleau
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Emilie Proust
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Loïc Peyrot
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Arnaud Donadieu
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Martina Ochs
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| |
Collapse
|
8
|
Lu J, Hou H, Wang D, Leenhouts K, Roosmalen MLV, Sun T, Gu T, Song Y, Jiang C, Kong W, Wu Y. Systemic and mucosal immune responses elicited by intranasal immunization with a pneumococcal bacterium-like particle-based vaccine displaying pneumolysin mutant Plym2. Immunol Lett 2017; 187:41-46. [PMID: 28487097 DOI: 10.1016/j.imlet.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
Pneumolysin (Ply) is an important virulence factor in pneumococcal infection and a conserved cholesterol-binding cytotoxin expressed by all serotypes of Streptococcus pneumoniae. We previously developed a highly detoxified Ply mutant designated Plym2 by replacement of two amino acids (C428G and W433F), which lost cytotoxicity but retained the ability to induce neutralizing antibodies. In the present work, we applied bacterium-like particles (BLPs) as a carrier and immunostimulant for the development of a Plym2 intranasal vaccine, in which the Plym2 protein was displayed on the surface of BLPs. Intranasal immunization of mice with BLP-Plym2 not only induced a high level of serum IgG antibodies but also a high level of mucosal SIgA antibodies in lung lavages. Antiserum induced by the BLP-Plym2 vaccine elicited high-titer neutralization activity which could inhibit the hemolysis of wild-type Ply. In conclusion, the BLP-Plym2 vaccine was demonstrated to be a promising strategy for intranasal immunization to enhance both systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; Changchun BCHT Biotechnology Co., Changchun 130012, China
| | - Hongjia Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China
| | - Dandan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China
| | - Kees Leenhouts
- Mucosis B.V., L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | | | - Tianxu Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China
| | - Yueshuang Song
- Changchun BCHT Biotechnology Co., Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Otitis-Prone Children Produce Functional Antibodies to Pneumolysin and Pneumococcal Polysaccharides. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00497-16. [PMID: 28031178 PMCID: PMC5339643 DOI: 10.1128/cvi.00497-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
The pneumococcus is a major otitis media (OM) pathogen, but data are conflicting regarding whether otitis-prone children have impaired humoral immunity to pneumococcal antigens. We and others have shown that otitis-prone and healthy children have similar antibody titers to pneumococcal proteins and polysaccharides (vaccine and nonvaccine types); however, the quality of antibodies from otitis-prone children has not been investigated. Antibody function, rather than titer, is considered to be a better correlate of protection from pneumococcal disease. Therefore, we compared the capacities of antibodies from otitis-prone (cases) and healthy (controls) children to neutralize pneumolysin, the pneumococcal toxin currently in development as a vaccine antigen, and to opsonize pneumococcal vaccine and nonvaccine serotypes. A pneumolysin neutralization assay was conducted on cholesterol-depleted complement-inactivated sera from 165 cases and 61 controls. A multiplex opsonophagocytosis assay (MOPA) was conducted on sera from 20 cases and 20 controls. Neutralizing and opsonizing titers were calculated with antigen-specific IgG titers to determine antibody potency for pneumolysin, pneumococcal conjugate vaccine (PCV) polysaccharides, and non-PCV polysaccharides. There was no significant difference in antibody potencies between cases and controls for the antigens tested. Antipneumolysin neutralizing titers increased with the number of episodes of acute OM, but antibody potency did not. Pneumolysin antibody potency was lower in children colonized with pneumococci than in noncarriers, and this was significant for the otitis-prone group (P < 0.05). The production of functional antipneumococcal antibodies in otitis-prone children demonstrates that they respond to the current PCV and are likely to respond to pneumolysin-based vaccines as effectively as healthy children.
Collapse
|
10
|
Hermand P, Vandercammen A, Mertens E, Di Paolo E, Verlant V, Denoël P, Godfroid F. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen. Hum Vaccin Immunother 2016; 13:220-228. [PMID: 27768518 PMCID: PMC5287308 DOI: 10.1080/21645515.2016.1234553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of protein antigens able to protect against the majority of Streptococcus pneumoniae serotypes is envisaged as stand-alone and/or complement to the current capsular polysaccharide-based pneumococcal vaccines. Pneumolysin (Ply) is a key virulence factor that is highly conserved in amino acid sequence across pneumococcal serotypes, and therefore may be considered as a vaccine target. However, native Ply cannot be used in vaccines due to its intrinsic cytolytic activity. In the present work a completely, irreversibly detoxified pneumolysin (dPly) has been generated using an optimized formaldehyde treatment. Detoxi-fication was confirmed by dPly challenge in mice and histological analysis of the injection site in rats. Immunization with dPly elicited Ply-specific functional antibodies that were able to inhibit Ply activity in a hemolysis assay. In addition, immunization with dPly protected mice against lethal intranasal challenge with Ply, and intranasal immunization inhibited nasopharyngeal colonization after intranasal challenge with homologous or heterologous pneumococcal strain. Our findings supported dPly as a valid candidate antigen for further pneumococcal vaccine development.
Collapse
|
11
|
Bittaye M, Cash P. Streptococcus pneumoniae proteomics: determinants of pathogenesis and vaccine development. Expert Rev Proteomics 2015; 12:607-21. [PMID: 26524107 DOI: 10.1586/14789450.2015.1108844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae is a major pathogen that is responsible for a variety of invasive diseases. The bacteria gain entry initially by establishing a carriage state in the nasopharynx from where they migrate to other sites in the body. The worldwide distribution of the bacteria and the severity of the diseases have led to a significant level of interest in the development of vaccines against the bacteria. Current vaccines, based on the bacterial polysaccharide, have a number of limitations including poor immunogenicity and limited effectiveness against all pneumococcal serotypes. There are many challenges in developing vaccines that will be effective against the diverse range of isolates and serotypes for this highly variable bacterial pathogen. This review considers how proteomic technologies have extended our understanding of the pathogenic mechanisms of nasopharyngeal colonization and disease development as well as the critical areas in developing protein-based vaccines.
Collapse
Affiliation(s)
- Mustapha Bittaye
- a Division of Applied Medicine , University of Aberdeen , Aberdeen , Scotland
| | - Phil Cash
- a Division of Applied Medicine , University of Aberdeen , Aberdeen , Scotland
| |
Collapse
|
12
|
Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation. Sci Rep 2015; 5:14352. [PMID: 26403197 PMCID: PMC4585913 DOI: 10.1038/srep14352] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface.
Collapse
|
13
|
Kuipers K, Daleke-Schermerhorn MH, Jong WSP, ten Hagen-Jongman CM, van Opzeeland F, Simonetti E, Luirink J, de Jonge MI. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 2015; 33:2022-9. [PMID: 25776921 DOI: 10.1016/j.vaccine.2015.03.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/24/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) are attractive vaccine formulations because they have intrinsic immunostimulatory properties. In principle, heterologous antigens incorporated into OMVs will elicit specific immune responses, especially if presented at the vesicle surface and thus optimally exposed to the immune system. In this study, we explored the feasibility of our recently developed autotransporter Hbp platform, designed to efficiently and simultaneously display multiple antigens at the surface of bacterial OMVs, for vaccine development. Using two Streptococcus pneumoniae proteins as model antigens, we showed that intranasally administered Salmonella OMVs displaying high levels of antigens at the surface induced strong protection in a murine model of pneumococcal colonization, without the need for a mucosal adjuvant. Importantly, reduction in bacterial recovery from the nasal cavity was correlated with local production of antigen-specific IL-17A. Furthermore, the protective efficacy and the production of antigen-specific IL-17A, and local and systemic IgGs, were all improved at increased concentrations of the displayed antigen. This discovery highlights the importance of an adequate antigen expression system for development of recombinant OMV vaccines. In conclusion, our findings demonstrate the suitability of the Hbp platform for development of a new generation of OMV vaccines, and illustrate the potential of using this approach to develop a broadly protective mucosal pneumococcal vaccine.
Collapse
Affiliation(s)
- Kirsten Kuipers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria H Daleke-Schermerhorn
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Wouter S P Jong
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Corinne M ten Hagen-Jongman
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Fred van Opzeeland
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elles Simonetti
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden.
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae. Infect Immun 2014; 82:5069-75. [PMID: 25245804 DOI: 10.1128/iai.02124-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were purified and Fab fragments generated. Fabs were used to test inhibition of adherence of TIGR4 and nonencapsulated strain RX1 to A549 lung HECs. The roles of individual proteins in adherence were tested using isogenic mutants of strain TIGR4. Anti-PhtD, -PcpA, and -Ply human antibodies were assessed for their ability to inhibit NP colonization in vivo by passive transfer of human antibody in a murine model. Human antibodies generated against PhtD and PcpA caused a decrease in adherence to A549 cells (P < 0.05). Anti-PhtD but not anti-PcpA antibodies showed a protective role against mouse NP colonization. To our surprise, anti-Ply antibodies also caused a significant (P < 0.05) reduction in S. pneumoniae colonization. Our results support the potential of PhtD, PcpA, and Ply protein vaccine candidates as alternatives to conjugate vaccines to prevent non-serotype-specific S. pneumoniae colonization and invasive infection.
Collapse
|
15
|
Tarahomjoo S. Recent Approaches in Vaccine Development against Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2014; 24:215-27. [DOI: 10.1159/000365052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput Biol 2014; 10:e1003791. [PMID: 25144725 PMCID: PMC4140638 DOI: 10.1371/journal.pcbi.1003791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Cholesterol Dependent Cytolysins (CDCs) are important bacterial virulence factors that form large (200–300 Å) membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM) experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig; Domain 4). Membrane bound oligomers then assemble into a prepore oligomeric form, following which the prepore assembly collapses towards the membrane surface, with concomitant release and insertion of the membrane spanning subunits. During this rearrangement it is proposed that Domain 2, a region comprising three β-strands that links the pore forming region (Domains 1 and 3) and the Ig domain, must undergo a significant yet currently undetermined, conformational change. Here we address this problem through a systematic molecular modeling and structural bioinformatics approach. Our work shows that simple rigid body rotations may account for the observed collapse of the prepore towards the membrane surface. Support for this idea comes from analysis of published cryo-EM maps of the pneumolysin pore, available crystal structures and molecular dynamics simulations. The latter data in particular reveal that Domains 1, 2 and 4 are able to undergo significant rotational movements with respect to each other. Together, our data provide new and testable insights into the mechanism of pore formation by CDCs. Pore formation is central to the ability of cholesterol dependent cytolysins (CDCs) to act as important bacterial virulence factors. Secreted by numerous pathogens the toxins assemble into a circular ring and then perforate the target membrane to form the largest self-assembling proteinaceous pores known. In this paper we investigated computationally the conformational properties of the CDC molecule and deduced a new structural model of pore formation and membrane insertion that reconciles all experimental data. The mechanism of membrane perforation by CDCs put forward here reveals concerted and unsuspected domains motion of large amplitude, which conflicts with the currently proposed model. The work presented here procures a plausible structural mechanism of CDC oligomeric transition and furthers our understanding of pore formation by these important toxins.
Collapse
|
17
|
Lu J, Sun T, Hou H, Xu M, Gu T, Dong Y, Wang D, Chen P, Wu C, Liang C, Sun S, Jiang C, Kong W, Wu Y. Detoxified pneumolysin derivative plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines. Immunol Invest 2014; 43:717-26. [DOI: 10.3109/08820139.2014.930478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Verhoeven D, Xu Q, Pichichero ME. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine 2014; 32:3205-10. [PMID: 24731814 DOI: 10.1016/j.vaccine.2014.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae infections continue to cause significant worldwide morbidity and mortality despite the availability of efficacious serotype-dependent vaccines. The need to incorporate emergent strains expressing additional serotypes into pneumococcal polysaccharide conjugate vaccines has led to an identified need for a pneumococcal protein-based vaccine effective against a broad scope of serotypes. A vaccine consisting of several conserved proteins with different functions during pathogenesis would be preferred. Here, we investigated the efficacy of a trivalent recombinant protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad D (PhtD), and genetically detoxified pneumolysin (PlyD1) in an infant mouse model. We found the trivalent vaccine conferred protection from lethal pneumonia challenges using serotypes 6A and 3. The observed protection with trivalent PcpA, PhtD, and PlyD1 vaccine in infant mice supports the ongoing study of this candidate vaccine in human infant clinical trials.
Collapse
Affiliation(s)
- David Verhoeven
- Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621, United States
| | - Qingfu Xu
- Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621, United States
| | - Michael E Pichichero
- Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621, United States.
| |
Collapse
|
19
|
Pelton SI, Pettigrew MM, Barenkamp SJ, Godfroid F, Grijalva CG, Leach A, Patel J, Murphy TF, Selak S, Bakaletz LO. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2013; 148:E90-101. [PMID: 23536534 DOI: 10.1177/0194599812466535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To update progress on the effectiveness of vaccine for prevention of acute otitis media (AOM) and identification of promising candidate antigens against Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis. REVIEW METHODS Literature searches were performed in OvidSP and PubMed restricted to articles published between June 2007 and September 2011. Search terms included otitis media, vaccines, vaccine antigens, and each of the otitis pathogens and candidate antigens identified in the ninth conference report. CONCLUSIONS The current report provides further evidence for the effectiveness of pneumococcal conjugate vaccines (PCVs) in the prevention of otitis media. Observational studies demonstrate a greater decline in AOM episodes than reported in clinical efficacy trials. Unmet challenges include extending protection to additional serotypes and additional pathogens, the need to prevent early episodes, the development of correlates of protection for protein antigens, and the need to define where an otitis media vaccine strategy fits with priorities for child health. IMPLICATIONS FOR PRACTICE Acute otitis media continues to be a burden on children and families, especially those who suffer from frequent recurrences. The 7-valent PCV (PCV7) has reduced the burden of disease as well as shifted the pneumococcal serotypes and the distribution of otopathogens currently reported in children with AOM. Antibiotic resistance remains an ongoing challenge. Multiple candidate antigens have demonstrated the necessary requirements of conservation, surface exposure, immunogenicity, and protection in animal models. Further research on the role of each antigen in pathogenesis, in the development of correlates of protection in animal models, and in new adjuvants to elicit responses in the youngest infants is likely to be productive and permit more antigens to move into human clinical trials.
Collapse
Affiliation(s)
- Stephen I Pelton
- Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu L, Joshi SB, Liyanage MR, Pansalawatta M, Alderson MR, Tate A, Robertson G, Maisonneuve J, Volkin DB, Middaugh CR. Physical characterization and formulation development of a recombinant pneumolysoid protein-based pneumococcal vaccine. J Pharm Sci 2012; 102:387-400. [PMID: 23161162 DOI: 10.1002/jps.23375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
Abstract
Streptococcus pneumoniae is a major cause of death in children worldwide. There are more than 90 known pneumococcus serotypes that vary by geographical location. Pneumolysin is a protein toxin produced by virtually all invasive strains of S. pneumoniae and is considered an important virulence factor. Pneumolysin is immunogenic and has the potential to be a new vaccine antigen offering broad serotype-independent coverage. To develop a stable vaccine formulation, the conformational stability of a recombinant pneumolysin mutant (pneumolysoid L460D) was characterized by various techniques. Three data visualization diagrams were constructed to summarize the biophysical data of the L460D pneumolysoid; the protein is most stable in solution at pH 6-7, and loses conformational integrity above 48°C. Excipient screening assays were performed and sugars such as trehalose and sucrose stabilized the pneumolysin mutant with respect to improving thermal transition temperatures and minimizing aggregation. In addition, the protein antigen showed efficient binding to aluminum hydroxide adjuvant. The conformational stability of the L460D pneumolysoid on the surface of alhydrogel adjuvant was little affected by adsorption, either with or without excipients. These studies provide important preformulation characterization information useful for the development of a stable pneumolysin mutant-based vaccine.
Collapse
Affiliation(s)
- Lei Hu
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kamtchoua T, Bologa M, Hopfer R, Neveu D, Hu B, Sheng X, Corde N, Pouzet C, Zimmermann G, Gurunathan S. Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD1 in a single-antigen protein vaccine candidate in adults. Vaccine 2012; 31:327-33. [PMID: 23153437 DOI: 10.1016/j.vaccine.2012.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/24/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Pneumococcal vaccines based on conserved protein antigens have the potential to offer expanded protection against Streptococcus pneumoniae. OBJECTIVE This study examined the safety and immunogenicity in adults of three doses of a pneumococcal single-antigen protein vaccine candidate formulated with aluminum hydroxide adjuvant and recombinantly derived, highly detoxified, genetically mutated pneumolysin protein (PlyD1). METHODS This phase I, randomized, placebo-controlled, observer-blinded, dose-escalating study enrolled adults (18-50 years). In a pilot safety study, participants received a single injection of 10 μg PlyD1 and were observed for 24 h. Following review of the pilot safety data, participants were randomized (2:1) to receive two injections of PlyD1 at one of three doses or placebo 30 days apart. Assignment of second injection and successive dose cohorts was made after blinded safety reviews after each injection at each dose level. Safety endpoints included rates of solicited injection site reactions, solicited systemic reactions, unsolicited adverse events (AEs), serious AEs (SAEs), and safety laboratory tests. Immunogenicity endpoints included geometric mean concentrations of anti-PlyD1 IgG as determined by ELISA and functional assessment in an in vitro toxin neutralization assay. RESULTS The study included a total of 100 participants, including 10 in the pilot study and 90 in the randomized study. None of the participants in the pilot study had SAEs, allergic reactions, or other safety concerns. Ninety participants received two doses of or placebo (n=30) or active vaccine candidate at 10 (n=20), 25 (n=20), or 50 μg (n=20). No vaccine-related SAE or discontinuation due to an AE occurred. Most solicited reactions were mild and transient. The most frequently reported solicited reactions were pain at the injection site and myalgia. Antigen-specific IgG levels and functional activity showed dose-related increases. When comparing the three dose levels, a plateau effect was observed at the 25 μg dose. CONCLUSIONS All dose levels were safe and immunogenic. Repeat vaccination significantly increased the level of anti-PlyD1 antibodies. Functional antibody activity was demonstrated in sera from vaccinated individuals (ClinicalTrials.gov no. NCT01444352).
Collapse
Affiliation(s)
- Thierry Kamtchoua
- Covance Clinical Research Unit AG, SPC 327-10, Lettenweg 118, CH-4123 Allschwil, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury. Infect Immun 2012; 80:2212-20. [PMID: 22473606 DOI: 10.1128/iai.06348-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.
Collapse
|
23
|
Ljutic B, Ochs M, Messham B, Ming M, Dookie A, Harper K, Ausar SF. Formulation, stability and immunogenicity of a trivalent pneumococcal protein vaccine formulated with aluminum salt adjuvants. Vaccine 2012; 30:2981-8. [PMID: 22381074 DOI: 10.1016/j.vaccine.2012.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 01/19/2023]
Abstract
We investigated the immunogenicity, stability and adsorption properties of an experimental pneumococcal vaccine composed of three protein vaccine antigens; Pneumococcal histidine triad protein D, (PhtD), Pneumococcal choline-binding protein A (PcpA) and genetically detoxified pneumolysin D1 (PlyD1) formulated with aluminum salt adjuvants. Immunogenicity studies conducted in BALB/c mice showed that antibody responses to each antigen adjuvanted with aluminum hydroxide (AH) were significantly higher than when adjuvanted with aluminum phosphate (AP) or formulated without adjuvant. Lower microenvironment pH and decreased strength of antigen adsorption significantly improved the stability of antigens. The stability of PcpA and PlyD1 assessed by RP-HPLC correlated well with the immunogenicity of these antigens in mice and showed that pretreatment of the aluminum hydroxide adjuvant with phosphate ions improved their stability. Adjuvant dose-ranging studies showed that 28 μg Al/dose to be the concentration of adjuvant resulting in optimal immunogenicity of the trivalent vaccine formulation. Taken together, the results of theses studies suggest that the type of aluminum salt, strength of adsorption and microenvironment pH have a significant impact on the immunogenicity and chemical stability of an experimental vaccine composed of the three pneumococcal protein antigens, PhtD, PcpA, and PlyD1.
Collapse
Affiliation(s)
- Belma Ljutic
- Product Concept and Development, Sanofi Pasteur, Toronto, ON, M2R 3T4, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Cockeran R, Steel HC, Theron AJ, Mitchell TJ, Feldman C, Anderson R. Characterization of the interactions of the pneumolysoid, Δ6 PLY, with human neutrophils in vitro. Vaccine 2011; 29:8780-2. [PMID: 21968446 DOI: 10.1016/j.vaccine.2011.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
The pneumolysin toxoid, Δ6 PLY, is a prototype pneumococcal protein vaccine candidate. However, its potentially detrimental residual pro-inflammatory interactions with human neutrophils are unknown. In the current study the effects of the toxoid (8-1000 ng/ml) have been compared with those of wild-type pneumolysin (WT/PLY, 8 ng/ml) on neutrophil cytosolic Ca(2+) fluxes, generation of leukotriene B(4) (LTB(4)), and release of matrix metalloproteinase-9 (MMP-9), using spectrofluorimetric, and ELISA procedures (LTB(4) and MMP-9) respectively. Exposure of neutrophils to WT/PLY resulted in influx of Ca(2+) and significant (P<0.05) release of MMP-9 and generation of LTB(4). However, treatment of the cells with Δ6 PLY at concentrations of up to 1000 ng/ml had only trivial effects on Ca(2+) influx and no effects on either release of MMP-9 or LTB(4) production. The observed absence of pro-inflammatory interactions of Δ6 PLY with neutrophils is clearly an important property of this pneumococcal protein vaccine candidate.
Collapse
Affiliation(s)
- R Cockeran
- MRC Unit for Inflammation and Immunity, Department of Immunology, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | | | | | | | | | | |
Collapse
|