1
|
Chen E, Mo Y, Yi J, Liu J, Luo T, Li Z, Lin Z, Hu Y, Zou Z, Liu J. A novel hepatocellular carcinoma-specific mTORC1-related signature for anticipating prognosis and immunotherapy. Aging (Albany NY) 2023; 15:7933-7955. [PMID: 37589508 PMCID: PMC10497017 DOI: 10.18632/aging.204862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
Tumor oncogenesis, cancer metastasis, and immune evasion were substantially impacted by the mammalian target of the rapamycin complex 1 (mTORC1) pathway. However, in hepatocellular carcinoma (HCC), no mTORC1 signaling-based gene signature has ever been published. mTORC1 scores were computed employing a single sample gene set enrichment analysis based on databases including the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). The PAG1, LHFPL2, and FABP5 expression levels were obtained to construct a mTORC1 pathway-related model. In two databases, the overall survival (OS) rate was shorter for high-mTORC1 score patients compared to those with low scores. The activation of TFs in the group with high risk was enhanced, such as the HIF-1 pathway. Additionally, it was discovered that a high mTORC1 score was linked to an immune exclusion phenotype and enhanced immunosuppressive cell infiltration. Notably, it was discovered that high-mTORC1 scores patients had poorer immunotherapeutic results and might not gain benefit from immunotherapy. When compared to the low HCC metastatic cell lines, the high HCC metastatic cell lines have overexpressed levels of PAG1, LHFPL2, and FABP5 expression. The expression of PAG1, LHFPL2, and FABP5 was inhibited by the MAPK and mTORC1 pathway inhibitors. Our study identified mTORC1 score signature can aid in the development of individualized immunotherapy protocols and predict the HCC patients' prognoses.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ting Luo
- Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zheng Li
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zewei Lin
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yibing Hu
- Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
4
|
Src Family Tyrosine Kinases in Intestinal Homeostasis, Regeneration and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082014. [PMID: 32717909 PMCID: PMC7464719 DOI: 10.3390/cancers12082014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/11/2023] Open
Abstract
Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.
Collapse
|
5
|
Mevizou R, Sirvent A, Roche S. Control of Tyrosine Kinase Signalling by Small Adaptors in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11050669. [PMID: 31091767 PMCID: PMC6562749 DOI: 10.3390/cancers11050669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinases (TKs) phosphorylate proteins on tyrosine residues as an intracellular signalling mechanism to coordinate intestinal epithelial cell communication and fate decision. Deregulation of their activity is ultimately connected with carcinogenesis. In colorectal cancer (CRC), it is still unclear how aberrant TK activities contribute to tumour formation because TK-encoding genes are not frequently mutated in this cancer. In vertebrates, several TKs are under the control of small adaptor proteins with potential important physiopathological roles. For instance, they can exert tumour suppressor functions in human cancer by targeting several components of the oncogenic TK signalling cascades. Here, we review how the Src-like adaptor protein (SLAP) and the suppressor of cytokine signalling (SOCS) adaptor proteins regulate the SRC and the Janus kinase (JAK) oncogenic pathways, respectively, and how their loss of function in the intestinal epithelium may influence tumour formation. We also discuss the potential therapeutic value of these adaptors in CRC.
Collapse
Affiliation(s)
- Rudy Mevizou
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| |
Collapse
|
6
|
Shen L, Ke Q, Chai J, Zhang C, Qiu L, Peng F, Deng X, Luo Z. PAG1 promotes the inherent radioresistance of laryngeal cancer cells via activation of STAT3. Exp Cell Res 2018; 370:127-136. [DOI: 10.1016/j.yexcr.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
|
7
|
Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne PH, Kim ES, Shohet JM. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget 2018; 7:24018-26. [PMID: 26993602 PMCID: PMC5029681 DOI: 10.18632/oncotarget.8116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
(NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rajib Ghosh
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Zaowen Chen
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anna Lakoma
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Preethi H Gunaratne
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Eugene S Kim
- Michael E. DeBakey, Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Surgery, Division of Pediatric Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center, and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Li F, Zhu Y, Wan Y, Xie X, Ke R, Zhai C, Pan Y, Yan X, Wang J, Shi W, Li M. Activation of PPARγ inhibits HDAC1-mediated pulmonary arterial smooth muscle cell proliferation and its potential mechanisms. Eur J Pharmacol 2017; 814:324-334. [DOI: 10.1016/j.ejphar.2017.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
9
|
Anbalagan M, Sheng M, Fleischer B, Zhang Y, Gao Y, Hoang V, Matossian M, Burks HE, Burow ME, Collins-Burow BM, Hangauer D, Rowan BG. Dual Src Kinase/Pretubulin Inhibitor KX-01, Sensitizes ERα-negative Breast Cancers to Tamoxifen through ERα Reexpression. Mol Cancer Res 2017; 15:1491-1502. [PMID: 28751463 DOI: 10.1158/1541-7786.mcr-16-0297-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/22/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Unlike breast cancer that is positive for estrogen receptor-α (ERα), there are no targeted therapies for triple-negative breast cancer (TNBC). ERα is silenced in TNBC through epigenetic changes including DNA methylation and histone acetylation. Restoring ERα expression in TNBC may sensitize patients to endocrine therapy. Expression of c-Src and ERα are inversely correlated in breast cancer suggesting that c-Src inhibition may lead to reexpression of ERα in TNBC. KX-01 is a peptide substrate-targeted Src/pretubulin inhibitor in clinical trials for solid tumors. KX-01 (1 mg/kg body weight-twice daily) inhibited growth of tamoxifen-resistant MDA-MB-231 and MDA-MB-157 TNBC xenografts in nude mice that was correlated with Src kinase inhibition. KX-01 also increased ERα mRNA and protein, as well as increased the ERα targets progesterone receptor (PR), pS2 (TFF1), cyclin D1 (CCND1), and c-myc (MYC) in MDA-MB-231 and MDA-MB-468, but not MDA-MB-157 xenografts. MDA-MB-231 and MDA-MB-468 tumors exhibited reduction in mesenchymal markers (vimentin, β-catenin) and increase in epithelial marker (E-cadherin) suggesting mesenchymal-to-epithelial transition (MET). KX-01 sensitized MDA-MB-231 and MDA-MB-468 tumors to tamoxifen growth inhibition and tamoxifen repression of the ERα targets pS2, cyclin D1, and c-myc. Chromatin immunoprecipitation (ChIP) of the ERα promoter in KX-01-treated tumors demonstrated enrichment of active transcription marks (acetyl-H3, acetyl-H3Lys9), dissociation of HDAC1, and recruitment of RNA polymerase II. Methylation-specific PCR and bisulfite sequencing demonstrated no alteration in ERα promoter methylation by KX-01. These data demonstrate that in addition to Src kinase inhibition, peptidomimetic KX-01 restores ERα expression in TNBC through changes in histone acetylation that sensitize tumors to tamoxifen.Implications: Src kinase/pretubulin inhibitor KX-01 restores functional ERα expression in ERα- breast tumors, a novel treatment strategy to treat triple-negative breast cancer. Mol Cancer Res; 15(11); 1491-502. ©2017 AACR.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mei Sheng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Brian Fleischer
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Yifang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Obstetrics and Gynecology, Affiliated Hospital of Taishan Medical University, Taishan, Shandong, China
| | - Yuanjun Gao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Van Hoang
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Margarite Matossian
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David Hangauer
- Athenex Pharmaceuticals LLC, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Brian G Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
10
|
Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun 2016; 7:11349. [PMID: 27094546 PMCID: PMC4842982 DOI: 10.1038/ncomms11349] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.
Collapse
|
11
|
Zhu M, Guo J, Li W, Lu Y, Fu S, Xie X, Xia H, Dong X, Chen Y, Quan M, Zheng S, Xie K, Li M. Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells. Oncotarget 2016; 6:12196-208. [PMID: 25682869 PMCID: PMC4494932 DOI: 10.18632/oncotarget.2906] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/11/2014] [Indexed: 12/28/2022] Open
Abstract
The hepatitis B virus (HBV)-X protein (HBx) induces malignant transformation of liver cells, and elevated expression of alpha-fetoprotein (AFP) is a significant biomarker of hepatocarcinogenesis. However, the role of AFP in HBV-related hepatocarcinogenesis is unclear. In this study, we investigated the regulatory impact of AFP expression on HBx-mediated malignant transformation of human hepatocytes. We found that HBV induced the expression of AFP before that of oncogenes, e.g., Src, Ras and chemokine (C-X-C motif) receptor 4 (CXCR4), and AFP activated protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in HBV-related HCC tissues and in human liver cells transfected with HBx. Cytoplasmic AFP interacted with and inhibited phosphatase and tensin homolog deleted on chromosome 10 (PTEN), activating the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway and promoting mTOR-mediated stimulation of the transcription factor hypoxia inducible factor-1α (HIF-1α), and therefore led to the activation of the promoters of Src, CXCR4, and Ras genes. On the contrary, reduced expression of AFP by siRNA resulted in the repression of p-mTOR, pAKT, Src, CXCR4, and Ras in human malignant liver cells. Taken together, for the first time our study indicates that HBx-induced AFP expression critically promote malignant transformation in liver cells through the activation of PI3K/mTOR signaling.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Shigan Fu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Xieju Xie
- Department of Physiology and Pathophysiology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Hua Xia
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| | - Ming Quan
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaojiang Zheng
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Tumor Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P. R. China
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan 571199, P. R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, Hainan 571199, P. R. China
| |
Collapse
|
12
|
Liu X, Wang JH, Li S, Li LL, Huang M, Zhang YH, Liu Y, Yang YT, Ding R, Ke YQ. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci 2015; 106:857-66. [PMID: 25940092 PMCID: PMC4520637 DOI: 10.1111/cas.12684] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/12/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to the process by which highly aggressive tumor cells mimic endothelial cells to form vessel-like structures that aid in supplying enough nutrients to rapidly growing tumors. Histone deacetylases (HDACs) regulate the expression and activity of numerous molecules involved in cancer initiation and progression. Notably, HDAC3 is overexpressed in the majority of carcinomas. However, thus far, no data are available to support the role of HDAC3 in VM. In this study, we subjected glioma specimens to immunohistochemical and histochemical double-staining methods and found that VM and HDAC3 expression were related to the pathological grade of gliomas. The presence of VM correlated with HDAC3 expression in glioma tissues. The formation of tubular structures, as determined by the tube formation assay to evaluate VM, was impaired in U87MG cells when transfected by siRNA or treated with an HDAC3 inhibitor. Importantly, the expression of VM-related molecules such as MMP-2/14 and laminin5γ2 was also affected when HDAC3 expression was altered. Furthermore, U87MG cells were treated with a phosphoinositide 3-kinase (PI3K) inhibitor or/and ERK inhibitor and found that the PI3K and ERK signaling pathways play key roles in VM; whereas, in VM, the two signaling pathways did not act upstream or downstream from each other. Taken together, our findings showed that HDAC3 contributed to VM in gliomas, possibly through the PI3K/ERK–MMPs–laminin5γ2 signaling pathway, which could potentially be a novel therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xiao Liu
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ji-Hui Wang
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Li
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin-Lin Li
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Min Huang
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Hong Zhang
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Liu
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan-Tao Yang
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Ding
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Quan Ke
- National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Kong KA, Lee JY, Oh JH, Lee Y, Kim MH. Akt1 mediates the posterior Hoxc gene expression through epigenetic modifications in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:793-9. [PMID: 24955524 DOI: 10.1016/j.bbagrm.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/09/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The evolutionarily conserved Hox genes are organized in clusters and expressed colinearly to specify body patterning during embryonic development. Previously, Akt1 has been identified as a putative Hox gene regulator through in silico analysis. Substantial upregulation of consecutive 5' Hoxc genes has been observed when Akt1 is absent in mouse embryonic fibroblast (MEF) cells. In this study, we provide evidence that Akt1 regulates the 5' Hoxc gene expression by epigenetic modifications. Enrichment of histone H3K9 acetylation and a low level of the H3K27me3 mark were detected at the posterior 5' Hoxc loci when Akt1 is absent. A histone deacetylase (HDAC) inhibitor de-repressed 5' Hoxc gene expression when Akt1 is present, and a DNA demethylating reagent synergistically upregulated HDAC-induced 5' Hoxc gene expression. A knockdown study revealed that Hdac6 is mediated in the Hoxc12 repression through direct binding to the transcription start site (TSS) in the presence of Akt1. Co-immunoprecipitation analysis revealed that endogenous Akt1 directly interacted with Hdac6. Furthermore, exogenous Akt1 was enriched at the promoter region of the posterior Hoxc genes such as Hoxc11 and Hoxc12, not the Akt1-independent Hoxc5 and Hoxd10 loci. The regulation of the H3K27me3 mark by Ezh2 and Kdm6b at the 5' Hoxc gene promoter turned out to be Akt1 dependent. Taken together, these results suggest that Akt1 mediates the posterior 5' Hoxc gene expression through epigenetic modification such as histone methylation and acetylation, and partly through a direct binding to the promoter region of the 5' Hoxc genes and/or Hdac6 in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Kyoung-Ah Kong
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youra Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Gargalionis AN, Karamouzis MV, Papavassiliou AG. The molecular rationale of Src inhibition in colorectal carcinomas. Int J Cancer 2014; 134:2019-2029. [PMID: 23733480 DOI: 10.1002/ijc.28299] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Src has been one of the most studied proto‐oncogenes. The cellular Src (c‐Src) holds a critical role in several human malignancies and has emerged as a key factor that promotes tumor progression during the multistep process of colorectal cancer (CRC) pathogenesis. The robust activation of Src in CRC of aggressive phenotype and poor prognosis seems to be a subsequent event of a strong link between its deregulated activity and the tumor's cell adhesion properties, invasiveness and metastatic potential. The rarely detected genetic defects drive interest in signaling networks that control Src kinase activity and integrate the association of Src with receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). Therefore, a dynamic crosstalk is being formed with oncogenic capacity and therapeutic applications, because Src inhibition seems to sensitize previously unresponsive cancer cells to chemotherapy and anti‐EGFR inhibitors. The present review explores the molecular basis behind Src inhibition in colorectal carcinomas. Furthermore, preclinical studies and clinical trials of Src inhibitors and combination regimens are discussed, providing new insights for further investigation and new therapeutic strategies.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Molecular Oncology Unit Department of Biological Chemistry, University of Athens Medical School Athens Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit Department of Biological Chemistry, University of Athens Medical School Athens Greece
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit Department of Biological Chemistry, University of Athens Medical School Athens Greece
| |
Collapse
|
15
|
Saitou T, Kajiwara K, Oneyama C, Suzuki T, Okada M. Roles of raft-anchored adaptor Cbp/PAG1 in spatial regulation of c-Src kinase. PLoS One 2014; 9:e93470. [PMID: 24675741 PMCID: PMC3968143 DOI: 10.1371/journal.pone.0093470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed.
Collapse
Affiliation(s)
- Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan
- * E-mail: (TS); (KK)
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail: (TS); (KK)
| | - Chitose Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Suzuki
- Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
16
|
Hrdinka M, Horejsi V. PAG - a multipurpose transmembrane adaptor protein. Oncogene 2013; 33:4881-92. [DOI: 10.1038/onc.2013.485] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/25/2022]
|
17
|
Kalakonda S, Nallar SC, Lindner DJ, Sun P, Lorenz RR, Lamarre E, Reddy SP, Kalvakolanu DV. GRIM-19 mutations fail to inhibit v-Src-induced oncogenesis. Oncogene 2013; 33:3195-204. [PMID: 23851499 PMCID: PMC3916943 DOI: 10.1038/onc.2013.271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022]
Abstract
The non-receptor tyrosine kinase Src is a major player in multiple physiological responses including growth, survival and differentiation. Overexpression and/or oncogenic mutation in the Src gene have been documented in human tumors. The v-Src protein is an oncogenic mutant of Src, which promotes cell survival, migration, invasion and division. GRIM-19 is an anti-oncogene isolated using a genome-wide knockdown screen. GRIM-19 binds to transcription factor STAT3 and ablates its pro-oncogenic effects while v-Src activates STAT3 to promote its oncogenic effects. However, we found that GRIM-19 inhibits the pro-oncogenic effects of v-Src independently of STAT3. Here, we report the identification of functionally inactivating GRIM-19 mutations in a set of Head and Neck cancer patients. While wild-type GRIM-19 strongly ablated v-Src-induced cell migration, cytoskeletal remodeling and tumor metastasis, the tumor-derived mutants (L71P, L91P and A95T) did not. These mutants were also incapable of inhibiting the drug resistance of v-Src-transformed cells. v-Src down regulated the expression of Pag1, a lipid raft-associated inhibitor of Src, which was restored by wild-type GRIM-19. The tumor-derived mutant GRIM-19 proteins failed to upregulate Pag1. These studies show a novel mechanism that deregulates Src activity in cancer cells.
Collapse
Affiliation(s)
- S Kalakonda
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S C Nallar
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - P Sun
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R R Lorenz
- Head & Neck Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - E Lamarre
- Head & Neck Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - S P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - D V Kalvakolanu
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Li M, Zhu M, Li W, Lu Y, Xie X, Wu Y, Zheng S. Alpha-fetoprotein receptor as an early indicator of HBx-driven hepatocarcinogenesis and its applications in tracing cancer cell metastasis. Cancer Lett 2013; 330:170-180. [PMID: 23211536 DOI: 10.1016/j.canlet.2012.11.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/23/2012] [Accepted: 11/25/2012] [Indexed: 01/30/2023]
Abstract
AFP and its receptor (AFPR) are early indicators of HBx-driven hepatocarcinogenesis. Clinical specimens, normal human liver cells L-02 and HCC cell lines were selected for analyzing the effects of HBx on expression of AFP, AFPR, Src, CXCR4, and Ras. Results showed that AFPR localized in the membranes of HCC samples. HBx upregulated the expression of AFPR and AFP prior to expression of Src, CXCR4, and Ras in L-02 cells and in liver specimens; Target-labeled AFPR was able to reveal the location and metastatic status of HCC in vivo. In this way, actuated expression of AFPR served as an indicator suitable for use in the early diagnosis of HBx-driven malignant transformation of hepatocytes. Labeled AFPR may be applied to trace primary and metastatic HCC.
Collapse
Affiliation(s)
- Mengsen Li
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders.
Collapse
|
20
|
Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S, Simeoni L, Brunner-Weinzierl MC, Suchanek M, Schraven B, Lindquist JA. PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Cell Commun Signal 2013; 11:28. [PMID: 23601194 PMCID: PMC3763844 DOI: 10.1186/1478-811x-11-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/03/2013] [Indexed: 11/12/2022] Open
Abstract
Background PAG/Cbp represents a ubiquitous mechanism for regulating Src family kinases
by recruiting Csk to the plasma membrane, thereby controlling cellular
activation. Since Src kinases are known oncogenes, we used RNA interference
in primary human T cells to test whether the loss of PAG resulted in
lymphocyte transformation. Results PAG-depletion enhanced Src kinase activity and augmented proximal T-cell
receptor signaling; exactly the phenotype expected for loss of this negative
regulator. Surprisingly, rather than becoming hyper-proliferative,
PAG-suppressed T cells became unresponsive. This was mediated by a
Fyn-dependent hyper-phosphorylation of the inhibitory receptor CTLA-4, which
recruited the protein tyrosine phosphatase Shp-1 to lipid rafts.
Co-suppression of CTLA-4 abrogates this inhibition and restores
proliferation to T cells. Conclusion We have identified a fail-safe mechanism as well as a novel contribution of
CTLA-4 to setting the activation threshold in T cells.
Collapse
Affiliation(s)
- Michal Smida
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rey-Barroso J, Colo GP, Alvarez-Barrientos A, Redondo-Muñoz J, Carvajal-González JM, Mulero-Navarro S, García-Pardo A, Teixidó J, Fernandez-Salguero PM. The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cell Signal 2013; 25:848-59. [DOI: 10.1016/j.cellsig.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
|
22
|
Campos LT, Brentani H, Roela RA, Katayama MLH, Lima L, Rolim CF, Milani C, Folgueira MAAK, Brentani MM. Differences in transcriptional effects of 1α,25 dihydroxyvitamin D3 on fibroblasts associated to breast carcinomas and from paired normal breast tissues. J Steroid Biochem Mol Biol 2013; 133:12-24. [PMID: 22939885 DOI: 10.1016/j.jsbmb.2012.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022]
Abstract
The effects of 1α,25 dihydroxyvitamin D3 (1,25D) on breast carcinoma associated fibroblasts (CAFs) are still unknown. This study aimed to identify genes whose expression was altered after 1,25D treatment in CAFs and matched adjacent normal mammary associated fibroblasts (NAFs). CAFs and NAFs (from 5 patients) were cultured with or without (control) 1,25D 100 nM. Both CAF and NAF expressed vitamin D receptor (VDR) and 1,25D induction of the genomic pathway was detected through up-regulation of the target gene CYP24A1. Microarray analysis showed that despite presenting 50% of overlapping genes, CAFs and NAFs exhibited distinct transcriptional profiles after 1,25D treatment (FDR<0.05). Functional analysis revealed that in CAFs, genes associated with proliferation (NRG1, WNT5A, PDGFC) were down regulated and those involved in immune modulation (NFKBIA, TREM-1) were up regulated, consistent with anti tumor activities of 1,25D in breast cancer. In NAFs, a distinct subset of genes was induced by 1,25D, involved in anti apoptosis, detoxification, antibacterial defense system and protection against oxidative stress, which may limit carcinogenesis. Co-expression network and interactome analysis of genes commonly regulated by 1,25D in NAFs and CAFs revealed differences in their co-expression values, suggesting that 1,25D effects in NAFs are distinct from those triggered in CAFs.
Collapse
Affiliation(s)
- Laura Tojeiro Campos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, Sala 4112, CEP 01246-903, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8:1385-97. [PMID: 23139636 PMCID: PMC3492796 DOI: 10.7150/ijbs.5141] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022] Open
Abstract
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.
Collapse
Affiliation(s)
- Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, JAPAN.
| |
Collapse
|
24
|
Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. Am J Cancer Res 2012; 2:357-371. [PMID: 22860228 PMCID: PMC3410585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023] Open
Abstract
The non-receptor tyrosine kinases of the SRC family (SFK) play important roles in signal transduction induced by a large variety of extracellular stimuli, including growth factors and Integrins. When deregulated, SFKs show oncogenic activity, as originally reported for v-Src, the transforming product of the avian retrovirus RSV, and then, in many human cancers, particularly colorectal cancer (CRC). In CRC, SFK deregulation largely occurs in the absence of mutations of the corresponding genes, but the underlying molecular mechanisms involved are still unclear. In addition to a role in early tumor progression, SFK deregulation may also be important in advanced CRC, as suggested by the association between increased SFK activity and poor clinical outcome. However, SFK contribution to CRC metastasis formation is still poorly documented. Here, we will review recent findings that broaden our understanding of the mechanisms underlying SFK deregulation and signaling in advanced CRC. We will also discuss the implication of these observations for SFK-based therapy in metastatic CRC.
Collapse
Affiliation(s)
- Audrey Sirvent
- CNRS UMR5237, University of Montpellier 1 and 2, CRBM 34000 Montpellier, France
| | | | | |
Collapse
|
25
|
Lee JY, Jeong W, Lim W, Kim J, Bazer FW, Han JY, Song G. Chicken pleiotrophin: regulation of tissue specific expression by estrogen in the oviduct and distinct expression pattern in the ovarian carcinomas. PLoS One 2012; 7:e34215. [PMID: 22496782 PMCID: PMC3319562 DOI: 10.1371/journal.pone.0034215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/23/2012] [Indexed: 01/05/2023] Open
Abstract
Pleiotrophin (PTN) is a developmentally-regulated growth factor which is widely distributed in various tissues and also detected in many kinds of carcinomas. However, little is known about the PTN gene in chickens. In the present study, we found chicken PTN to be highly conserved with respect to mammalian PTN genes (91–92.6%) and its mRNA was most abundant in brain, heart and oviduct. This study focused on the PTN gene in the oviduct where it was detected in the glandular (GE) and luminal (LE) epithelial cells. Treatment of young chicks with diethylstilbesterol induced PTN mRNA and protein in GE and LE, but not in other cell types of the oviduct. Further, several microRNAs, specifically miR-499 and miR-1709 were discovered to influence PTN expression via its 3′-UTR which suggests that post-transcriptional regulation influences PTN expression in chickens. We also compared expression patterns and CpG methylation status of the PTN gene in normal and cancerous ovaries from chickens. Our results indicated that PTN is most abundant in the GE of adenocarcinoma of cancerous, but not normal ovaries of hens. Bisulfite sequencing revealed that 30- and 40% of −1311 and −1339 CpG sites are demethylated in ovarian cancer cells, respectively. Collectively, these results indicate that chicken PTN is a novel estrogen-induced gene expressed mainly in the oviductal epithelia implicating PTN regulation of oviduct development and egg formation, and also suggest that PTN is a biomarker for epithelial ovarian carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease.
Collapse
Affiliation(s)
- Jin-Young Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Wooyoung Jeong
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Whasun Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jinyoung Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Fuller W. Bazer
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, United States of America
| | - Jae Yong Han
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gwonhwa Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
26
|
Lim W, Kim JH, Ahn SE, Jeong W, Kim J, Bazer FW, Han JY, Song G. Avian SERPINB11 gene: a marker for ovarian endometrioid cancer in chickens. Exp Biol Med (Maywood) 2012; 237:150-9. [PMID: 22289513 DOI: 10.1258/ebm.2011.011250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As serine and cysteine proteinase inhibitors, serpins, such as SERPINB5, cause ovarian, colorectal and pancreatic adenocarcinomas. We identified SERPINB11 as a novel estrogen-induced gene in chickens during oviduct development. The chicken is a unique animal model for research on human ovarian cancer, because it spontaneously develops epithelial cell-derived ovarian cancer as in women. Therefore, this study investigated the expression pattern, CpG methylation status, and miRNA regulation of the SERPINB11 gene in normal and cancerous ovaries from chickens. Our results indicate that SERPINB11 is most abundant in the glandular epithelium of endometrioid adenocarcinoma of cancerous, but not normal, ovaries of hens. In addition, bisulfite sequencing revealed that about 30% of -110 CpG sites are methylated in ovarian cancer cells, whereas -110 CpG sites are demethylated in normal ovarian cells. Next, we determined whether miR-1582 influences SERPINB11 expression via its 3'UTR and found that it does not directly target the 3'UTR of SERPINB11 mRNA. Therefore, it is unlikely that post-transcriptional regulation influences SERPINB11 expression in the chicken ovary. On the other hand, in human ovarian cancer cells such as OVCAR-3, SKOV-3 and PA-1 cells, immunoreactive SERPINB11 protein was predominant in the cytoplasm and had a similar expression pattern to that in chicken ovarian cancer cells. Collectively, these results suggest that SERPINB11 is a biomarker for chicken ovarian endometrioid carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease in women.
Collapse
Affiliation(s)
- Whasun Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chauhan S, Boyd DD. Regulation of u-PAR gene expression by H2A.Z is modulated by the MEK-ERK/AP-1 pathway. Nucleic Acids Res 2011; 40:600-13. [PMID: 21937508 PMCID: PMC3258129 DOI: 10.1093/nar/gkr725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The urokinase receptor (u-PAR) which is largely regulated at the transcriptional level has been implicated in tumor progression. In this study, we explored the epigenetic regulation of u-PAR and showed that the histone variant H2A.Z negatively regulates its expression in multiple cell lines. Chromatin immunoprecipitation assays revealed that H2A.Z was enriched at previously characterized u-PAR-regulatory regions (promoter and a downstream enhancer) and dissociates upon activation of gene expression by phorbol ester (PMA). Using specific chemical and dominant negative expression constructs, we show that the MEK–ERK signaling pathway terminating at AP-1 transcription factors intersects with the epigenetic control of u-PAR expression by H2A.Z. Furthermore, we demonstrate that two other AP-1 targets (MMP9 gene and miR-21 microRNA) are also H2A.Z regulated. In conclusion, our work demonstrates that (i) the expression of two genes and a microRNA all implicated in tumor progression are directly regulated by H2A.Z and (ii) MEK–ERK signaling terminating at AP-1 intersects with the epigenetic control of target gene expression by H2A.Z.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|