1
|
Patra SK, Randolph N, Kuhlman B, Dieckhaus H, Betts L, Douglas J, Wills PR, Carter CW. Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:024701. [PMID: 40290414 PMCID: PMC12033045 DOI: 10.1063/4.0000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
Protein design plays a key role in our efforts to work out how genetic coding began. That effort entails urzymes. Urzymes are small, conserved excerpts from full-length aminoacyl-tRNA synthetases that remain active. Urzymes require design to connect disjoint pieces and repair naked nonpolar patches created by removing large domains. Rosetta allowed us to create the first urzymes, but those urzymes were only sparingly soluble. We could measure activity, but it was hard to concentrate those samples to levels required for structural biology. Here, we used the deep learning algorithms ProteinMPNN and AlphaFold2 to redesign a set of optimized LeuAC urzymes derived from leucyl-tRNA synthetase. We select a balanced, representative subset of eight variants for testing using principal component analysis. Most tested variants are much more soluble than the original LeuAC. They also span a range of catalytic proficiency and amino acid specificity. The data enable detailed statistical analyses of the sources of both solubility and specificity. In that way, we show how to begin to unwrap the elements of protein chemistry that were hidden within the neural networks. Deep learning networks have thus helped us surmount several vexing obstacles to further investigations into the nature of ancestral proteins. Finally, we discuss how the eight variants might resemble a sample drawn from a population similar to one subject to natural selection.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | - Nicholas Randolph
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, University of Auckland, Auckland, New Zealand
| | - Peter R. Wills
- Department of Physics, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
2
|
Carter CW, Tang GQ, Patra SK, Betts L, Dieckhaus H, Kuhlman B, Douglas J, Wills PR, Bouckaert R, Popovic M, Ditzler MA. WITHDRAWN: Structural Enzymology, Phylogenetics, Differentiation, and Symbolic Reflexivity at the Dawn of Biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628912. [PMID: 39763899 PMCID: PMC11702779 DOI: 10.1101/2024.12.17.628912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This manuscript was posted without the final consent of all authors. The authors have therefore withdrawn it. The authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author, carter@med.unc.edu .
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Henry Dieckhaus
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jordan Douglas
- Department of Physics, Auckland University, Auckland, NZ
- Department of Computer Science, Auckland University, Auckland, NZ
| | - Peter R. Wills
- Department of Physics, Auckland University, Auckland, NZ
| | - Remco Bouckaert
- Department of Computer Science, Auckland University, Auckland, NZ
| | | | | |
Collapse
|
3
|
Douglas J, Cui H, Perona JJ, Vargas‐Rodriguez O, Tyynismaa H, Carreño CA, Ling J, Ribas de Pouplana L, Yang X, Ibba M, Becker H, Fischer F, Sissler M, Carter CW, Wills PR. AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases. IUBMB Life 2024; 76:1091-1105. [PMID: 39247978 PMCID: PMC11580382 DOI: 10.1002/iub.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| | - Haissi Cui
- Department of ChemistryUniversity of TorontoCanada
| | - John J. Perona
- Department of ChemistryPortland State UniversityPortlandOregonUSA
| | - Oscar Vargas‐Rodriguez
- Department of Molecular Biology and BiophysicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Lluís Ribas de Pouplana
- Institute for Research in BiomedicineThe Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Xiang‐Lei Yang
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Michael Ibba
- Biological SciencesChapman UniversityOrangeCaliforniaUSA
| | - Hubert Becker
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Marie Sissler
- Génétique Moléculaire, Génomique MicrobiologiqueUniversity of StrasbourgFrance
| | - Charles W. Carter
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Peter R. Wills
- Department of PhysicsUniversity of AucklandNew Zealand
- Centre for Computational EvolutionUniversity of AucklandNew Zealand
| |
Collapse
|
4
|
Patra S, Douglas J, Wills P, Betts L, Qing T, Carter C. A genomic database furnishes minimal functional glycyl-tRNA synthetases homologous to other, designed class II urzymes. Nucleic Acids Res 2024; 52:13305-13324. [PMID: 39494520 PMCID: PMC11602164 DOI: 10.1093/nar/gkae992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
The hypothesis that conserved core catalytic sites could represent ancestral aminoacyl-tRNA synthetases (AARS) drove the design of functional TrpRS, LeuRS, and HisRS 'urzymes'. We describe here new urzymes detected in the genomic record of the arctic fox, Vulpes lagopus. They are homologous to the α-subunit of bacterial heterotetrameric Class II glycyl-tRNA synthetase (GlyRS-B) enzymes. AlphaFold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to our designed HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment and the spliced open reading frame GlyCA1-2. Both exhibit robust single-turnover burst sizes and ATP consumption rates higher than those previously published for HisCA urzymes and comparable to those for LeuAC and TrpAC. GlyCA is more than twice as active in glycine activation by adenosine triphosphate as the full-length GlyRS-B α2 dimer. Michaelis-Menten rate constants for all three substrates reveal significant coupling between Exon2 and both substrates. GlyCA activation favors Class II amino acids that complement those favored by HisCA and LeuAC. Structural features help explain these results. These minimalist GlyRS catalysts are thus homologous to previously described urzymes. Their properties reinforce the notion that urzymes may have the requisite catalytic activities to implement a reduced, ancestral genetic coding alphabet.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, Auckland 1042, New Zealand
- Centre for Computational Evolution, University of Auckland, 1010, New Zealand
| | - Peter R Wills
- Department of Physics, The University of Auckland, Auckland 1042, New Zealand
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Tang Guo Qing
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
5
|
Tang GQ, Hu H, Douglas J, Carter C. Primordial aminoacyl-tRNA synthetases preferred minihelices to full-length tRNA. Nucleic Acids Res 2024; 52:7096-7111. [PMID: 38783009 PMCID: PMC11229368 DOI: 10.1093/nar/gkae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Hao Hu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
- Department of Computer Science, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
6
|
Douglas J, Carter CW, Wills PR. HetMM: A Michaelis-Menten model for non-homogeneous enzyme mixtures. iScience 2024; 27:108977. [PMID: 38333698 PMCID: PMC10850774 DOI: 10.1016/j.isci.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
The Michaelis-Menten model requires its reaction velocities to come from a preparation of homogeneous enzymes, with identical or near-identical catalytic activities. However, this condition is not always met. We introduce a kinetic model that relaxes this requirement, by assuming there are an unknown number of enzyme species drawn from a probability distribution whose standard deviation is estimated. Through simulation studies, we demonstrate the method accurately discriminates between homogeneous and heterogeneous data, even with moderate levels of experimental error. We applied this model to three homogeneous and three heterogeneous biological systems, showing that the standard and heterogeneous models outperform respectively. Lastly, we show that heterogeneity is not readily distinguished from negatively cooperative binding under the Hill model. These two distinct attributes-inequality in catalytic ability and interference between binding sites-yield similar Michaelis-Menten curves that are not readily resolved without further experimentation. Our user-friendly software package allows homogeneity testing and parameter estimation.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Peter R. Wills
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Carter CW. Base Pairing Promoted the Self-Organization of Genetic Coding, Catalysis, and Free-Energy Transduction. Life (Basel) 2024; 14:199. [PMID: 38398709 PMCID: PMC10890426 DOI: 10.3390/life14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
How Nature discovered genetic coding is a largely ignored question, yet the answer is key to explaining the transition from biochemical building blocks to life. Other, related puzzles also fall inside the aegis enclosing the codes themselves. The peptide bond is unstable with respect to hydrolysis. So, it requires some form of chemical free energy to drive it. Amino acid activation and acyl transfer are also slow and must be catalyzed. All living things must thus also convert free energy and synchronize cellular chemistry. Most importantly, functional proteins occupy only small, isolated regions of sequence space. Nature evolved heritable symbolic data processing to seek out and use those sequences. That system has three parts: a memory of how amino acids behave in solution and inside proteins, a set of code keys to access that memory, and a scoring function. The code keys themselves are the genes for cognate pairs of tRNA and aminoacyl-tRNA synthetases, AARSs. The scoring function is the enzymatic specificity constant, kcat/kM, which measures both catalysis and specificity. The work described here deepens the evidence for and understanding of an unexpected consequence of ancestral bidirectional coding. Secondary structures occur in approximately the same places within antiparallel alignments of their gene products. However, the polar amino acids that define the molecular surface of one are reflected into core-defining non-polar side chains on the other. Proteins translated from base-paired coding strands fold up inside out. Bidirectional genes thus project an inverted structural duality into the proteome. I review how experimental data root the scoring functions responsible for the origins of coding and catalyzed activation of unfavorable chemical reactions in that duality.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
8
|
Patra SK, Douglas J, Wills PR, Bouckeart R, Betts L, Qing TG, Carter CW. Genomic database furnishes a spontaneous example of a functional Class II glycyl-tRNA synthetase urzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575260. [PMID: 38260702 PMCID: PMC10802616 DOI: 10.1101/2024.01.11.575260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The chief barrier to studies of how genetic coding emerged is the lack of experimental models for ancestral aminoacyl-tRNA synthetases (AARS). We hypothesized that conserved core catalytic sites could represent such ancestors. That hypothesis enabled engineering functional "urzymes" from TrpRS, LeuRS, and HisRS. We describe here a fourth urzyme, GlyCA, detected in an open reading frame from the genomic record of the arctic fox, Vulpes lagopus. GlyCA is homologous to a bacterial heterotetrameric Class II GlyRS-B. Alphafold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to the HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment. Enzymatic characterization revealed a robust single-turnover burst size and a catalytic rate for ATP consumption well in excess of that previously published for HisCA1. Time-dependent aminoacylation of tRNAGly proceeds at a rate consistent with that observed for amino acid activation. In fact, GlyCA is actually 35 times more active in glycine activation by ATP than the full-length GlyRS-B α-subunit dimer. ATP-dependent activation of the 20 canonical amino acids favors Class II amino acids that complement those favored by HisCA and LeuAC. These properties reinforce the notion that urzymes represent the requisite ancestral catalytic activities to implement a reduced genetic coding alphabet.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
| | - Peter R. Wills
- Department of Physics, The University of Auckland, New Zealand
| | - Remco Bouckeart
- Centre for Computational Evolution, University of Auckland, New Zealand
- Department of Computer Science, The University of Auckland, New Zealand
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | | | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| |
Collapse
|
9
|
Tang GQ, Elder JJH, Douglas J, Carter CW. Domain acquisition by class I aminoacyl-tRNA synthetase urzymes coordinated the catalytic functions of HVGH and KMSKS motifs. Nucleic Acids Res 2023; 51:8070-8084. [PMID: 37470821 PMCID: PMC10450160 DOI: 10.1093/nar/gkad590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Leucyl-tRNA synthetase (LeuRS) is a Class I aminoacyl-tRNA synthetase (aaRS) that synthesizes leucyl-tRNAleu for codon-directed protein synthesis. Two signature sequences, HxGH and KMSKS help stabilize transition-states for amino acid activation and tRNA aminoacylation by all Class I aaRS. Separate alanine mutants of each signature, together with the double mutant, behave in opposite ways in Pyrococcus horikoshii LeuRS and the 129-residue urzyme ancestral model generated from it (LeuAC). Free energy coupling terms, Δ(ΔG‡), for both reactions are large and favourable for LeuRS, but unfavourable for LeuAC. Single turnover assays with 32Pα-ATP show correspondingly different internal products. These results implicate domain motion in catalysis by full-length LeuRS. The distributed thermodynamic cycle of mutational changes authenticates LeuAC urzyme catalysis far more convincingly than do single point mutations. Most importantly, the evolutionary gain of function induced by acquiring the anticodon-binding (ABD) and multiple insertion modules in the catalytic domain appears to be to coordinate the catalytic function of the HxGH and KMSKS signature sequences. The implication that backbone elements of secondary structures achieve a major portion of the overall transition-state stabilization by LeuAC is also consistent with coevolution of the genetic code and metabolic pathways necessary to produce histidine and lysine sidechains.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jessica J H Elder
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
- Department of Physics, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
10
|
Abstract
The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma-the process of biological translation and the universal genetic code-remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Dutta S, Chandra A. Free Energy Landscape of the Adenylation Reaction of the Aminoacylation Process at the Active Site of Aspartyl tRNA Synthetase. J Phys Chem B 2022; 126:5821-5831. [PMID: 35895864 DOI: 10.1021/acs.jpcb.2c03843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The process of protein biosynthesis is initiated by the aminoacylation process where a transfer ribonucleic acid (tRNA) is charged by the attachment of its cognate amino acid at the active site of the corresponding aminoacyl tRNA synthetase enzyme. The first step of the aminoacylation process, known as the adenylation reaction, involves activation of the cognate amino acid where it reacts with a molecule of adenosine triphosphate (ATP) at the active site of the enzyme to form the aminoacyl adenylate and inorganic pyrophosphate. In the current work, we have investigated the adenylation reaction between aspartic acid and ATP at the active site of the fully solvated aspartyl tRNA synthetase (AspRS) from Escherichia coli in aqueous medium at room temperature through hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with enhanced sampling methods of well-tempered and well-sliced metadynamics. The objective of the present work is to study the associated free energy landscape and reaction barrier and also to explore the effects of active site mutation on the free energy surface of the reaction. The current calculations include finite temperature effects on free energy profiles. In particular, apart from contributions of interaction energies, the current calculations also include contributions of conformational, vibrational, and translational entropy of active site residues, substrates, and also the rest of the solvated protein and surrounding water into the free energy calculations. The present QM/MM metadynamics simulations predict a free energy barrier of 23.35 and 23.5 kcal/mol for two different metadynamics methods used to perform the reaction at the active site of the wild type enzyme. The free energy barrier increases to 30.6 kcal/mol when Arg217, which is an important conserved residue of the wild type enzyme at its active site, is mutated by alanine. These free energy results including the effect of mutation compare reasonably well with those of kinetic experiments that are available in the literature. The current work also provides molecular details of structural changes of the reactants and surroundings as the system dynamically evolves along the reaction pathway from reactant to the product state through QM/MM metadynamics simulations.
Collapse
Affiliation(s)
- Saheb Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
12
|
A Leucyl-tRNA Synthetase Urzyme: Authenticity of tRNA Synthetase Catalytic Activities and Promiscuous Phosphorylation of Leucyl-5'AMP. Int J Mol Sci 2022; 23:ijms23084229. [PMID: 35457045 PMCID: PMC9026127 DOI: 10.3390/ijms23084229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
Aminoacyl-tRNA synthetase (aaRS)/tRNA cognate pairs translate the genetic code by synthesizing specific aminoacyl-tRNAs that are assembled on messenger RNA by the ribosome. Deconstruction of the two distinct aaRS superfamilies (Classes) has provided conceptual and experimental models for their early evolution. Urzymes, containing ~120–130 amino acids excerpted from regions where genetic coding sequence complementarities have been identified, are key experimental models motivated by the proposal of a single bidirectional ancestral gene. Previous reports that Class I and Class II urzymes accelerate both amino acid activation and tRNA aminoacylation have not been extended to other synthetases. We describe a third urzyme (LeuAC) prepared from the Class IA Pyrococcus horikoshii leucyl-tRNA synthetase. We adduce multiple lines of evidence for the authenticity of its catalysis of both canonical reactions, amino acid activation and tRNALeu aminoacylation. Mutation of the three active-site lysine residues to alanine causes significant, but modest reduction in both amino acid activation and aminoacylation. LeuAC also catalyzes production of ADP, a non-canonical enzymatic function that has been overlooked since it first was described for several full-length aaRS in the 1970s. Structural data suggest that the LeuAC active site accommodates two ATP conformations that are prominent in water but rarely seen bound to proteins, accounting for successive, in situ phosphorylation of the bound leucyl-5′AMP phosphate, accounting for ADP production. This unusual ATP consumption regenerates the transition state for amino acid activation and suggests, in turn, that in the absence of the editing and anticodon-binding domains, LeuAC releases leu-5′AMP unusually slowly, relative to the two phosphorylation reactions.
Collapse
|
13
|
Carter CW, Popinga A, Bouckaert R, Wills PR. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. Int J Mol Sci 2022; 23:ijms23031520. [PMID: 35163448 PMCID: PMC8835825 DOI: 10.3390/ijms23031520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The role of aminoacyl-tRNA synthetases (aaRS) in the emergence and evolution of genetic coding poses challenging questions concerning their provenance. We seek evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant “scaffold” shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics—mutation frequency, its uniformity, and row-by-row cladistic congruence—imply that the Class I scaffold is a mosaic assembled from successive genetic sources. Metrics for different modules vary in accordance with their presumed functionality. Sequences derived from the ATP– and amino acid– binding sites exhibit specific two-way coupling to those derived from Connecting Peptide 1, a third module whose metrics suggest later acquisition. The data help validate: (i) experimental fragmentations of the canonical Class I structure into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that the ancestral Class I aaRS gene also encoded a Class II ancestor in frame on the opposite strand. A 46-residue Class I “protozyme” roots the Class I tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting implies near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
- Correspondence: ; Tel.: +1-919-966-3263
| | - Alex Popinga
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
14
|
Furukawa R, Yokobori SI, Sato R, Kumagawa T, Nakagawa M, Katoh K, Yamagishi A. Amino Acid Specificity of Ancestral Aminoacyl-tRNA Synthetase Prior to the Last Universal Common Ancestor Commonote commonote. J Mol Evol 2022; 90:73-94. [PMID: 35084522 PMCID: PMC8821087 DOI: 10.1007/s00239-021-10043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
Extant organisms commonly use 20 amino acids in protein synthesis. In the translation system, aminoacyl-tRNA synthetase (ARS) selectively binds an amino acid and transfers it to the cognate tRNA. It is postulated that the amino acid repertoire of ARS expanded during the development of the translation system. In this study we generated composite phylogenetic trees for seven ARSs (SerRS, ProRS, ThrRS, GlyRS-1, HisRS, AspRS, and LysRS) which are thought to have diverged by gene duplication followed by mutation, before the evolution of the last universal common ancestor. The composite phylogenetic tree shows that the AspRS/LysRS branch diverged from the other five ARSs at the deepest node, with the GlyRS/HisRS branch and the other three ARSs (ThrRS, ProRS and SerRS) diverging at the second deepest node. ThrRS diverged next, and finally ProRS and SerRS diverged from each other. Based on the phylogenetic tree, sequences of the ancestral ARSs prior to the evolution of the last universal common ancestor were predicted. The amino acid specificity of each ancestral ARS was then postulated by comparison with amino acid recognition sites of ARSs of extant organisms. Our predictions demonstrate that ancestral ARSs had substantial specificity and that the number of amino acid types amino-acylated by proteinaceous ARSs was limited before the appearance of a fuller range of proteinaceous ARS species. From an assumption that 10 amino acid species are required for folding and function, proteinaceous ARS possibly evolved in a translation system composed of preexisting ribozyme ARSs, before the evolution of the last universal common ancestor.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.,Faculty of Human Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Shin-Ichi Yokobori
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Riku Sato
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Taimu Kumagawa
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Mizuho Nakagawa
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Kazutaka Katoh
- Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| |
Collapse
|
15
|
Kędzierski P, Moskal M, Sokalski WA. Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps. J Phys Chem B 2021; 125:11606-11616. [PMID: 34648705 PMCID: PMC8558854 DOI: 10.1021/acs.jpcb.1c05256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/19/2021] [Indexed: 11/29/2022]
Abstract
Catalytic fields representing the topology of the optimal molecular environment charge distribution that reduces the activation barrier have been used to examine alternative reaction variants and to determine the role of conserved catalytic residues for two consecutive reactions catalyzed by the same enzyme. Until now, most experimental and conventional top-down theoretical studies employing QM/MM or ONIOM methods have focused on the role of enzyme electric fields acting on broken bonds of reactants. In contrast, our bottom-up approach dealing with a small reactant and transition-state model allows the analysis of the opposite effects: how the catalytic field resulting from the charge redistribution during the enzyme reaction acts on conserved amino acid residues and contributes to the reduction of the activation barrier. This approach has been applied to the family of histidyl tRNA synthetases involved in the translation of the genetic code into the protein amino acid sequence. Activation energy changes related to conserved charged amino acid residues for 12 histidyl tRNA synthetases from different biological species allowed to compare on equal footing the catalytic residues involved in ATP aminoacylation and tRNA charging reactions and to analyze different reaction mechanisms proposed in the literature. A scan of the library of atomic multipoles for amino acid side-chain rotamers within the catalytic field pointed out the change in the Glu83 conformation as the critical catalytic effect, providing, at low computational cost, insight into the electrostatic preorganization of the enzyme catalytic site at a level of detail that has not yet been accessible in conventional experimental or theoretical methods. This opens the way for rational reverse biocatalyst design at a very limited computational cost without resorting to empirical methods.
Collapse
Affiliation(s)
- Paweł Kędzierski
- Department of Chemistry, Wrocław
University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Martyna Moskal
- Department of Chemistry, Wrocław
University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - W. Andrzej Sokalski
- Department of Chemistry, Wrocław
University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
16
|
Amino acid activation analysis of primitive aminoacyl-tRNA synthetases encoded by both strands of a single gene using the malachite green assay. Biosystems 2021; 208:104481. [PMID: 34245865 DOI: 10.1016/j.biosystems.2021.104481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Rodin-Ohno hypothesis postulates that two classes of aminoacyl-tRNA synthetases were encoded complementary to double-stranded DNA. Particularly, Geobacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS, belonging to class I) and Escherichia coli histidyl-tRNA synthetase (HisRS, belonging to class II) show high complementarity of the middle base of the codons in the mRNA sequence encoding each ATP binding site. Here, for the reported 46-residue peptides designed from the three-dimensional structures of TrpRS and HisRS, amino acid activation analysis was performed using the malachite green assay, which detects the pyrophosphate departing from ATP in the forward reaction of the first step of tRNA aminoacylation. A maltose-binding protein fusion with the 46 residues of TrpRS (TrpRS46mer) exhibited high activation capacity for several amino acids in the presence of ATP and amino acids, but the activity of an alanine substitution mutant of the first histidine in the HIGH motif (TrpRS46merH15A) was largely reduced. In contrast, pyrophosphate release by HisRS46mer in the histidine activation step was lower than that in the case of TrpRS46mer. Both HisRS46mer and the alanine mutant at the 113th arginine (HisRS46merR113A) showed slightly higher levels of pyrophosphate release than the maltose-binding protein alone. These results do not rule out the Rodin-Ohno hypothesis, but may suggest the necessity of establishing unique evolutionary models from different perspectives.
Collapse
|
17
|
Abstract
Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA;
| | - Peter R Wills
- Department of Physics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Carter CW, Wills PR. Reciprocally-Coupled Gating: Strange Loops in Bioenergetics, Genetics, and Catalysis. Biomolecules 2021; 11:265. [PMID: 33670192 PMCID: PMC7916928 DOI: 10.3390/biom11020265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bioenergetics, genetic coding, and catalysis are all difficult to imagine emerging without pre-existing historical context. That context is often posed as a "Chicken and Egg" problem; its resolution is concisely described by de Grasse Tyson: "The egg was laid by a bird that was not a chicken". The concision and generality of that answer furnish no details-only an appropriate framework from which to examine detailed paradigms that might illuminate paradoxes underlying these three life-defining biomolecular processes. We examine experimental aspects here of five examples that all conform to the same paradigm. In each example, a paradox is resolved by coupling "if, and only if" conditions for reciprocal transitions between levels, such that the consequent of the first test is the antecedent for the second. Each condition thus restricts fluxes through, or "gates" the other. Reciprocally-coupled gating, in which two gated processes constrain one another, is self-referential, hence maps onto the formal structure of "strange loops". That mapping uncovers two different kinds of forces that may help unite the axioms underlying three phenomena that distinguish biology from chemistry. As a physical analog for Gödel's logic, biomolecular strange-loops provide a natural metaphor around which to organize a large body of experimental data, linking biology to information, free energy, and the second law of thermodynamics.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
19
|
Carter CW. Simultaneous codon usage, the origin of the proteome, and the emergence of de-novo proteins. Curr Opin Struct Biol 2021; 68:142-148. [PMID: 33529785 DOI: 10.1016/j.sbi.2021.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Genetic coding generally uses only one of a gene's two strands; its complement serving as template for replication. Aminoacyl-tRNA synthetases, aaRS, apparently first emerged as pairs on bidirectional genes, in which anticodons in the template strand served as codons for an entirely different protein. Interpreting both strands in frame constrained such genes sufficiently that it was rapidly superseded, leaving only traces in the elevated pairing between codon middle bases in antiparallel alignments. Codon assignments actually promote using information from both strands in multiple reading frames. Related phenomena, known as overprinting, are widely associated with viruses. In-frame bidirectional coding and overprinting nevertheless imply different structural and functional relationships, and different roles in generating folded proteins throughout the evolution of the proteome.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry, Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, United States.
| |
Collapse
|
20
|
The evolution of aminoacyl-tRNA synthetases: From dawn to LUCA. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:11-37. [DOI: 10.1016/bs.enz.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Carter CW, Wills PR. Experimental solutions to problems defining the origin of codon-directed protein synthesis. Biosystems 2019; 183:103979. [PMID: 31176803 PMCID: PMC6693952 DOI: 10.1016/j.biosystems.2019.103979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
How genetic coding differentiated biology from chemistry is a long-standing challenge in Biology, for which there have been few experimental approaches, despite a wide-ranging speculative literature. We summarize five coordinated areas-experimental characterization of functional approximations to the minimal peptides (protozymes and urzymes) necessary to activate amino acids and acylate tRNA; showing that specificities of these experimental models match those expected from the synthetase Class division; population of disjoint regions of amino acid sequence space via bidirectional coding ancestry of the two synthetase Classes; showing that the phase transfer equilibria of amino acid side chains that form a two-dimensional basis set for protein folding are embedded in patterns of bases in the tRNA acceptor stem and anticodon; and identification of molecular signatures of ancestral synthetases and tRNAs necessary to define the earliest cognate synthetase:tRNA pairs-that now compose an extensive experimentally testable paradigm for progress toward understanding the coordinated emergence of the codon table and viable mRNA coding sequences. We briefly discuss recent progress toward identifying the remaining outstanding questions-the nature of the earliest amino acid alphabets and the origin of binding discrimination via distinct amino acid sequence-independent protein secondary structures-and how these, too, might be addressed experimentally.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, United States
| | - Peter R Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| |
Collapse
|
22
|
Carter CW, Wills PR. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding. IUBMB Life 2019; 71:1088-1098. [PMID: 31190358 DOI: 10.1002/iub.2094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
The genetic code likely arose when a bidirectional gene replicating as a quasi-species began to produce ancestral aminoacyl-tRNA synthetases (aaRS) capable of distinguishing between two distinct sets of amino acids. The synthetase class division therefore necessarily implies a mechanism by which the two ancestral synthetases could also discriminate between two different kinds of tRNA substrates. We used regression methods to uncover the possible patterns of base sequences capable of such discrimination and find that they appear to be related to thermodynamic differences in the relative stabilities of a hairpin necessary for recognition of tRNA substrates by Class I aaRS. The thermodynamic differences appear to be exploited by secondary structural differences between models for the ancestral aaRS called synthetase Urzymes and reinforced by packing of aromatic amino acid side chains against the nonpolar face of the ribose of A76 if and only if the tRNA CCA sequence forms a hairpin. The patterns of bases 1, 2, and 73 and stabilization of the hairpin by structural complementarity with Class I, but not Class II, aaRS Urzymes appear to be necessary and sufficient to have enabled the generation of the first two aaRS-tRNA cognate pairs, and the launch of a rudimentary binary genetic coding related recognizably to contemporary cognate pairs. As a consequence, it seems likely that nonrandom aminoacylation of tRNAs preceded the advent of the tRNA anticodon stem-loop. Consistent with this suggestion, coding rules in the acceptor-stem bases also reveal a palimpsest of the codon-anticodon interaction, as previously proposed. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1088-1098, 2019.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter R Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Abstract
Abundant and essential motifs, such as phosphate-binding loops (P-loops), are presumed to be the seeds of modern enzymes. The Walker-A P-loop is absolutely essential in modern NTPase enzymes, in mediating binding, and transfer of the terminal phosphate groups of NTPs. However, NTPase function depends on many additional active-site residues placed throughout the protein's scaffold. Can motifs such as P-loops confer function in a simpler context? We applied a phylogenetic analysis that yielded a sequence logo of the putative ancestral Walker-A P-loop element: a β-strand connected to an α-helix via the P-loop. Computational design incorporated this element into de novo designed β-α repeat proteins with relatively few sequence modifications. We obtained soluble, stable proteins that unlike modern P-loop NTPases bound ATP in a magnesium-independent manner. Foremost, these simple P-loop proteins avidly bound polynucleotides, RNA, and single-strand DNA, and mutations in the P-loop's key residues abolished binding. Binding appears to be facilitated by the structural plasticity of these proteins, including quaternary structure polymorphism that promotes a combined action of multiple P-loops. Accordingly, oligomerization enabled a 55-aa protein carrying a single P-loop to confer avid polynucleotide binding. Overall, our results show that the P-loop Walker-A motif can be implemented in small and simple β-α repeat proteins, primarily as a polynucleotide binding motif.
Collapse
|
24
|
Palacios-Pérez M, Andrade-Díaz F, José MV. A Proposal of the Ur-proteome. ORIGINS LIFE EVOL B 2018; 48:245-258. [PMID: 29127550 DOI: 10.1007/s11084-017-9553-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
Herein we outline a plausible proteome, encoded by assuming a primeval RNY genetic code. We unveil the primeval phenotype by using only the RNA genotype; it means that we recovered the most ancestral proteome, mostly made of the 8 amino acids encoded by RNY triplets. By looking at those fragments, it is noticeable that they are positioned, not at catalytic sites, but in the cofactor binding sites. It implies that the stabilization of a molecule appeared long before its catalytic activity, and therefore the Ur-proteome comprised a set of proteins modules that corresponded to Cofactor Stabilizing Binding Sites (CSBSs), which we call the primitive bindome. With our method, we reconstructed the structures of the "first protein modules" that Sobolevsky and Trifonov (2006) found by using only RMSD. We also examine the probable cofactors that bound to them. We discuss the notion of CSBSs as the first proteins modules in progenotes in the context of several proposals about the primitive forms of life.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Fernando Andrade-Díaz
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México CDMX, Mexico.
| |
Collapse
|
25
|
Carter CW, Wills PR. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding. Mol Biol Evol 2018; 35:269-286. [PMID: 29077934 PMCID: PMC5850816 DOI: 10.1093/molbev/msx265] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma's emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene-replicase-translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Peter R Wills
- Department of Physics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Opuu V, Silvert M, Simonson T. Computational design of fully overlapping coding schemes for protein pairs and triplets. Sci Rep 2017; 7:15873. [PMID: 29158504 PMCID: PMC5696523 DOI: 10.1038/s41598-017-16221-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 11/26/2022] Open
Abstract
Gene pairs that overlap in their coding regions are rare except in viruses. They may occur transiently in gene creation and are of biotechnological interest. We have examined the possibility to encode an arbitrary pair of protein domains as a dual gene, with the shorter coding sequence completely embedded in the longer one. For 500 × 500 domain pairs (X, Y), we computationally designed homologous pairs (X', Y') coded this way, using an algorithm that provably maximizes the sequence similarity between (X', Y') and (X, Y). Three schemes were considered, with X' and Y' coded on the same or complementary strands. For 16% of the pairs, an overlapping coding exists where the level of homology of X', Y' to the natural proteins represents an E-value of 10-10 or better. Thus, for an arbitrary domain pair, it is surprisingly easy to design homologous sequences that can be encoded as a fully-overlapping gene pair. The algorithm is general and was used to design 200 triple genes, with three proteins encoded by the same DNA segment. The ease of design suggests overlapping genes may have occurred frequently in evolution and could be readily used to compress or constrain artificial genomes.
Collapse
Affiliation(s)
- Vaitea Opuu
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Martin Silvert
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France.
| |
Collapse
|
27
|
Carter CW, Chandrasekaran SN, Weinreb V, Li L, Williams T. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032101. [PMID: 28191480 PMCID: PMC5272822 DOI: 10.1063/1.4974218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
We measured and cross-validated the energetics of networks in Bacillus stearothermophilus Tryptophanyl-tRNA synthetase (TrpRS) using both multi-mutant and modular thermodynamic cycles. Multi-dimensional combinatorial mutagenesis showed that four side chains from this "molecular switch" move coordinately with the active-site Mg2+ ion as the active site preorganizes to stabilize the transition state for amino acid activation. A modular thermodynamic cycle consisting of full-length TrpRS, its Urzyme, and the Urzyme plus each of the two domains deleted in the Urzyme gives similar energetics. These dynamic linkages, although unlikely to stabilize the transition-state directly, consign the active-site preorganization to domain motion, assuring coupled vectorial behavior.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Srinivas Niranj Chandrasekaran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Violetta Weinreb
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Li Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| | - Tishan Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, USA
| |
Collapse
|
28
|
Carter CW. High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction. Annu Rev Biophys 2017; 46:433-453. [PMID: 28375734 DOI: 10.1146/annurev-biophys-070816-033811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding how distinct parts of proteins produce coordinated behavior has driven and continues to drive advances in protein science and enzymology. However, despite consensus about the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general approaches. Computational methods can identify conformational transition states from structural changes, revealing common switching mechanisms that impose multistate behavior. Thermodynamic cycles use factorial perturbations to measure coupling energies between side chains in molecular switches that mediate shear during domain motion. Such cycles have now been complemented by modular cycles that measure energetic coupling between separable domains. For one model system, energetic coupling between domains has been shown to be quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain movement, confirming an essential yet neglected aspect of free energy transduction and suggesting the potential generality of these studies.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514;
| |
Collapse
|
29
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|
30
|
Sapienza PJ, Li L, Williams T, Lee AL, Carter CW. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures. ACS Chem Biol 2016; 11:1661-8. [PMID: 27008438 PMCID: PMC5461432 DOI: 10.1021/acschembio.5b01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urzymes-short, active core modules derived from enzyme superfamilies-prepared from the two aminoacyl-tRNA synthetase (aaRS) classes contain only the modules shared by all related family members. They have been described as models for ancestral forms. Understanding them currently depends on inferences drawn from the crystal structures of the full-length enzymes. As aaRS Urzymes lack much of the mass of modern aaRS's, retaining only a small portion of the hydrophobic cores of the full-length enzymes, it is desirable to characterize their structures. We report preliminary characterization of (15)N tryptophanyl-tRNA synthetase Urzyme by heteronuclear single quantum coherence (HSQC) NMR spectroscopy supplemented by circular dichroism, thermal melting, and induced fluorescence of bound dye. The limited dispersion of (1)H chemical shifts (0.5 ppm) is inconsistent with a narrow ensemble of well-packed structures in either free or substrate-bound forms, although the number of resonances from the bound state increases, indicating a modest, ligand-dependent gain in structure. Circular dichroism spectroscopy shows the presence of helices and evidence of cold denaturation, and all ligation states induce Sypro Orange fluorescence at ambient temperatures. Although the term "molten globule" is difficult to define precisely, these characteristics are consistent with most such definitions. Active-site titration shows that a majority of molecules retain ∼60% of the transition state stabilization free energy observed in modern synthetases. In contrast to the conventional view that enzymes require stable tertiary structures, we conclude that a highly flexible ground-state ensemble can nevertheless bind tightly to the transition state for amino acid activation.
Collapse
Affiliation(s)
- Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Li Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Tishan Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| |
Collapse
|
31
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
32
|
Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L, Weinreb V, Collier M, Chandrasekaran SN, Ambroggio X, Kuhlman B, Carter CW. Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene. J Biol Chem 2015; 290:19710-25. [PMID: 26088142 DOI: 10.1074/jbc.m115.642876] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 01/11/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene. We have characterized wild-type 46-residue peptides containing ATP-binding sites of Class I and II synthetases and those coded by a gene designed by Rosetta to encode the corresponding peptides on opposite strands. Catalysis by WT and designed peptides is saturable, and the designed peptides are sensitive to active-site residue mutation. All have comparable apparent second-order rate constants 2.9-7.0E-3 M(-1) s(-1) or ∼750,000-1,300,000 times the uncatalyzed rate. The activities of the two complementary peptides demonstrate that the unique information in a gene can have two functional interpretations, one from each complementary strand. The peptides contain phylogenetic signatures of longer, more sophisticated catalysts we call Urzymes and are short enough to bridge the gap between them and simpler uncoded peptides. Thus, they directly substantiate the sense/antisense coding ancestry of Class I and II aaRS. Furthermore, designed 46-mers achieve similar catalytic proficiency to wild-type 46-mers by significant increases in both kcat and Km values, supporting suggestions that the earliest peptide catalysts activated ATP for biosynthetic purposes.
Collapse
Affiliation(s)
- Luis Martinez-Rodriguez
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Ozgün Erdogan
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Mariel Jimenez-Rodriguez
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Katiria Gonzalez-Rivera
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Tishan Williams
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Li Li
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Violetta Weinreb
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Martha Collier
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Srinivas Niranj Chandrasekaran
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Xavier Ambroggio
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Brian Kuhlman
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Charles W Carter
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
33
|
tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proc Natl Acad Sci U S A 2015; 112:7489-94. [PMID: 26034281 DOI: 10.1073/pnas.1507569112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3' acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water.
Collapse
|
34
|
Carter CW. What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life (Basel) 2015; 5:294-320. [PMID: 25625599 PMCID: PMC4390853 DOI: 10.3390/life5010294] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
We review arguments that biology emerged from a reciprocal partnership in which small ancestral oligopeptides and oligonucleotides initially both contributed rudimentary information coding and catalytic rate accelerations, and that the superior information-bearing qualities of RNA and the superior catalytic potential of proteins emerged from such complexes only with the gradual invention of the genetic code. A coherent structural basis for that scenario was articulated nearly a decade before the demonstration of catalytic RNA. Parallel hierarchical catalytic repertoires for increasingly highly conserved sequences from the two synthetase classes now increase the likelihood that they arose as translation products from opposite strands of a single gene. Sense/antisense coding affords a new bioinformatic metric for phylogenetic relationships much more distant than can be reconstructed from multiple sequence alignments of a single superfamily. Evidence for distinct coding properties in tRNA acceptor stems and anticodons, and experimental demonstration that the two synthetase family ATP binding sites can indeed be coded by opposite strands of the same gene supplement these biochemical and bioinformatic data, establishing a solid basis for key intermediates on a path from simple, stereochemically coded, reciprocally catalytic peptide/RNA complexes through the earliest peptide catalysts to contemporary aminoacyl-tRNA synthetases. That scenario documents a path to increasing complexity that obviates the need for a single polymer to act both catalytically and as an informational molecule.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| |
Collapse
|
35
|
Carter CW. Urzymology: experimental access to a key transition in the appearance of enzymes. J Biol Chem 2014; 289:30213-30220. [PMID: 25210034 DOI: 10.1074/jbc.r114.567495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Urzymes are catalysts derived from invariant cores of protein superfamilies. Urzymes from both aminoacyl-tRNA synthetase classes possess sophisticated catalytic mechanisms: pre-steady state bursts, significant transition-state stabilization of both amino acid activation, and tRNA acylation. However, they have insufficient specificity to ensure a fully developed genetic code, suggesting that they participated in synthesizing statistical proteins. They represent a robust experimental platform from which to articulate and test hypotheses both about their own ancestors and about how they, in turn, evolved into modern enzymes. They help reshape numerous paradigms from the RNA World hypothesis to protein structure databases and allostery.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
36
|
Carter CW, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Chandrasekharan SN. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 2014; 9:11. [PMID: 24927791 PMCID: PMC4082485 DOI: 10.1186/1745-6150-9-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/19/2014] [Indexed: 01/19/2023] Open
Abstract
Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, CB 7260 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Carter C, Weinreb V, Li L, Collier M, Chandrasekaran S, Fried H. Urzymology: experimental access to the origins of catalytic activity and translation (967.8). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.967.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Charles Carter
- Biochemistry and Biophysics University of North Carolina at CHAPEL HILLChapel HillNCUnited States
| | - Violetta Weinreb
- Biochemistry and Biophysics University of North Carolina at CHAPEL HILLChapel HillNCUnited States
| | - Li Li
- Biochemistry and Biophysics University of North Carolina at CHAPEL HILLChapel HillNCUnited States
| | - Martha Collier
- Biochemistry and Biophysics University of North Carolina at CHAPEL HILLChapel HillNCUnited States
| | - Srinivas Chandrasekaran
- Biochemistry and Biophysics University of North Carolina at CHAPEL HILLChapel HillNCUnited States
| | - Howard Fried
- Biochemistry and Biophysics University of North Carolina at CHAPEL HILLChapel HillNCUnited States
| |
Collapse
|
38
|
Smith JI, Steel M, Hordijk W. Autocatalytic sets in a partitioned biochemical network. ACTA ACUST UNITED AC 2014; 5:2. [PMID: 24883116 PMCID: PMC4034171 DOI: 10.1186/1759-2208-5-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/23/2014] [Indexed: 11/23/2022]
Abstract
Background In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two “independent” polymer sets, where catalysis occurs within and between the sets, but there are no reactions combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides observed in modern cells and proposed forms of early life. Results We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such a system is an NP-complete problem. Conclusions Recent experimental work has challenged the necessity of an RNA world by suggesting that peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible alternative worthy of investigation.
Collapse
Affiliation(s)
- Joshua I Smith
- Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Mike Steel
- Biomathematics Research Centre, Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
39
|
Abstract
Although more than 10(9) years have passed since the existence of the last universal common ancestor, proteins have yet to reach the limits of divergence. As a result, metabolic complexity is ever expanding. Identifying and understanding the mechanisms that drive and limit the divergence of protein sequence space impact not only evolutionary biologists investigating molecular evolution but also synthetic biologists seeking to design useful catalysts and engineer novel metabolic pathways. Investigations over the past 50 years indicate that the recruitment of enzymes for new functions is a key event in the acquisition of new metabolic capacity. In this review, we outline the genetic mechanisms that enable recruitment and summarize the present state of knowledge regarding the functional characteristics of extant catalysts that facilitate recruitment. We also highlight recent examples of enzyme recruitment, both from the historical record provided by phylogenetics and from enzyme evolution experiments. We conclude with a look to the future, which promises fruitful consequences from the convergence of molecular evolutionary theory, laboratory-directed evolution, and synthetic biology.
Collapse
Affiliation(s)
- Cindy Schulenburg
- Laboratory of Organic Chemistry, ETH-Zürich , Zürich CH-8093, Switzerland
| | | |
Collapse
|
40
|
Wild-type and molten globular chorismate mutase achieve comparable catalytic rates using very different enthalpy/entropy compensations. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5021-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Li L, Carter CW. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. J Biol Chem 2013; 288:34736-45. [PMID: 24142809 DOI: 10.1074/jbc.m113.510958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA Synthetase (TrpRS) Urzyme (fragments A and C), a 130-residue construct containing only secondary structures positioning the HIGH and KMSKS active site signatures and the specificity helix, accelerates tRNA(Trp) aminoacylation with ∼10-fold specificity toward tryptophan, relative to structurally related tyrosine. We proposed that including the 76-residue connecting peptide 1 insertion (Fragment B) might enhance tryptophan affinity and hence amino acid specificity, because that subdomain constrains the orientation of the specificity helix. We test that hypothesis by characterizing two new constructs: the catalytic domain (fragments A-C) and the Urzyme supplemented with the anticodon-binding domain (fragments A, C, and D). The three constructs, together with the full-length enzyme (fragments A-D), comprise a factorial experiment from which we deduce individual and combined contributions of the two modules to the steady-state kinetics parameters for tryptophan-dependent (32)PPi exchange, specificity for tryptophan versus tyrosine, and aminoacylation of tRNA(Trp). Factorial design directly measures the energetic coupling between the two more recent modules in the contemporary enzyme and demonstrates its functionality. Combining the TrpRS Urzyme individually in cis with each module affords an analysis of long term evolution of amino acid specificity and tRNA aminoacylation, both essential for expanding the genetic code. Either module significantly enhances tryptophan activation but unexpectedly eliminates amino acid specificity for tryptophan, relative to tyrosine, and significantly reduces tRNA aminoacylation. Exclusive dependence of both enhanced functionalities of full-length TrpRS on interdomain coupling energies between the two new modules argues that independent recruitment of connecting peptide 1 and the anticodon-binding domain during evolutionary development of Urzymes would have entailed significant losses of fitness.
Collapse
Affiliation(s)
- Li Li
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | | |
Collapse
|
42
|
Caetano-Anollés G, Wang M, Caetano-Anollés D. Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLoS One 2013; 8:e72225. [PMID: 23991065 PMCID: PMC3749098 DOI: 10.1371/journal.pone.0072225] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the 'operational' RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| | - Minglei Wang
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Derek Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
43
|
Li L, Francklyn C, Carter CW. Aminoacylating urzymes challenge the RNA world hypothesis. J Biol Chem 2013; 288:26856-63. [PMID: 23867455 DOI: 10.1074/jbc.m113.496125] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We describe experimental evidence that ancestral peptide catalysts substantially accelerated development of genetic coding. Structurally invariant 120-130-residue Urzymes (Ur = primitive plus enzyme) derived from Class I and Class II aminoacyl-tRNA synthetases (aaRSs) acylate tRNA far faster than the uncatalyzed rate of nonribosomal peptide bond formation from activated amino acids. These new data allow us to demonstrate statistically indistinguishable catalytic profiles for Class I and II aaRSs in both amino acid activation and tRNA acylation, over a time period extending to well before the assembly of full-length enzymes and even further before the Last Universal Common Ancestor. Both Urzymes also exhibit ∼60% of the contemporary catalytic proficiencies. Moreover, they are linked by ancestral sense/antisense genetic coding, and their evident modularities suggest descent from even simpler ancestral pairs also coded by opposite strands of the same gene. Thus, aaRS Urzymes substantially pre-date modern aaRS but are, nevertheless, highly evolved. Their unexpectedly advanced catalytic repertoires, sense/antisense coding, and ancestral modularities imply considerable prior protein-tRNA co-evolution. Further, unlike ribozymes that motivated the RNA World hypothesis, Class I and II Urzyme·tRNA pairs represent consensus ancestral forms sufficient for codon-directed synthesis of nonrandom peptides. By tracing aaRS catalytic activities back to simpler ancestral peptides, we demonstrate key steps for a simpler and hence more probable peptide·RNA development of rapid coding systems matching amino acids with anticodon trinucleotides.
Collapse
Affiliation(s)
- Li Li
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260 and
| | | | | |
Collapse
|
44
|
Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Mol Biol Evol 2013; 30:1588-604. [PMID: 23576570 PMCID: PMC3684856 DOI: 10.1093/molbev/mst070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We tested the idea that ancestral class I and II aminoacyl-tRNA synthetases arose on opposite strands of the same gene. We assembled excerpted 94-residue Urgenes for class I tryptophanyl-tRNA synthetase (TrpRS) and class II Histidyl-tRNA synthetase (HisRS) from a diverse group of species, by identifying and catenating three blocks coding for secondary structures that position the most highly conserved, active-site residues. The codon middle-base pairing frequency was 0.35 ± 0.0002 in all-by-all sense/antisense alignments for 211 TrpRS and 207 HisRS sequences, compared with frequencies between 0.22 ± 0.0009 and 0.27 ± 0.0005 for eight different representations of the null hypothesis. Clustering algorithms demonstrate further that profiles of middle-base pairing in the synthetase antisense alignments are correlated along the sequences from one species-pair to another, whereas this is not the case for similar operations on sets representing the null hypothesis. Most probable reconstructed sequences for ancestral nodes of maximum likelihood trees show that middle-base pairing frequency increases to approximately 0.42 ± 0.002 as bacterial trees approach their roots; ancestral nodes from trees including archaeal sequences show a less pronounced increase. Thus, contemporary and reconstructed sequences all validate important bioinformatic predictions based on descent from opposite strands of the same ancestral gene. They further provide novel evidence for the hypothesis that bacteria lie closer than archaea to the origin of translation. Moreover, the inverse polarity of genetic coding, together with a priori α-helix propensities suggest that in-frame coding on opposite strands leads to similar secondary structures with opposite polarity, as observed in TrpRS and HisRS crystal structures.
Collapse
|
45
|
Internally deleted human tRNA synthetase suggests evolutionary pressure for repurposing. Structure 2013; 20:1470-7. [PMID: 22958643 DOI: 10.1016/j.str.2012.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/28/2012] [Accepted: 08/03/2012] [Indexed: 12/11/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze aminoacylation of tRNAs in the cytoplasm. Surprisingly, AARSs also have critical extracellular and nuclear functions. Evolutionary pressure for new functions might be manifested by splice variants that skip only an internal catalytic domain (CD) and link noncatalytic N- and C-terminal polypeptides. Using disease-associated histidyl-tRNA synthetase (HisRS) as an example, we found an expressed 171-amino acid protein (HisRSΔCD) that deleted the entire CD, and joined an N-terminal WHEP to the C-terminal anticodon-binding domain (ABD). X-ray crystallography and three-dimensional NMR revealed the structures of human HisRS and HisRSΔCD. In contrast to homodimeric HisRS, HisRSΔCD is monomeric, where rupture of the ABD's packing with CD resulted in a dumbbell-like structure of flexibly linked WHEP and ABD domains. In addition, the ABD of HisRSΔCD presents a distinct local conformation. This natural internally deleted HisRS suggests evolutionary pressure to reshape AARS tertiary and quaternary structures for repurposing.
Collapse
|
46
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|
47
|
Carter CW, Li L, Niranj Chandrasekaran S, Rivera KG, Collier ML. 14 What RNA world ?? Ancestral polypeptides likely participated in the origins of translation. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
49
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
50
|
Banik SD, Nandi N. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases. J Biomol Struct Dyn 2012; 30:701-15. [PMID: 22731388 DOI: 10.1080/07391102.2012.689701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.
Collapse
Affiliation(s)
- Sindrila Dutta Banik
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | | |
Collapse
|