1
|
Yue L, Lu Z, Guo T, Liu J, Yang B, Yuan C. Key genes and metabolites that regulate wool fibre diameter identified by combined transcriptome and metabolome analysis. Genomics 2024; 116:110886. [PMID: 38880312 DOI: 10.1016/j.ygeno.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Fibre diameter is an important economic trait of wool fibre. As the fibre diameter decreases, the economic value of wool increases. Therefore, understanding the mechanism of wool fibre diameter regulation is important in improving the value of wool. RESULTS In this study, we used non-targeted metabolome and reference transcriptome data to detect differences in metabolites and genes in groups of Alpine Merino sheep with different wool fibre diameter gradients, and integrated metabolome and transcriptome data to identify key genes and metabolites that regulate wool fibre diameter. We found 464 differentially abundant metabolites (DAMs) and 901 differentially expressed genes (DEGs) in four comparisons of groups with different wool fibre diameters. Approximately 25% of the differentially abundant metabolites were lipid and lipid-like molecules. These molecules were predicted to be associated with skin development and keratin filament by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Key genes, including COL5A2, COL5A3, CREB3L4, COL1A1, and SFRP4, were identified by gene set enrichment analysis. CONCLUSIONS Key genes regulating wool fibre diameter were identified, the effects of lipid molecules on wool performance were investigated, and potential synergies between genes and metabolites were postulated, providing a theoretical framework for fine wool sheep breeding.
Collapse
Affiliation(s)
- Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
2
|
Henne SK, Aldisi R, Sivalingam S, Hochfeld LM, Borisov O, Krawitz PM, Maj C, Nöthen MM, Heilmann-Heimbach S. Analysis of 72,469 UK Biobank exomes links rare variants to male-pattern hair loss. Nat Commun 2023; 14:5492. [PMID: 37737258 PMCID: PMC10517150 DOI: 10.1038/s41467-023-41186-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Male-pattern hair loss (MPHL) is common and highly heritable. While genome-wide association studies (GWAS) have generated insights into the contribution of common variants to MPHL etiology, the relevance of rare variants remains unclear. To determine the contribution of rare variants to MPHL etiology, we perform gene-based and single-variant analyses in exome-sequencing data from 72,469 male UK Biobank participants. While our population-level risk prediction suggests that rare variants make only a minor contribution to general MPHL risk, our rare variant collapsing tests identified a total of five significant gene associations. These findings provide additional evidence for previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes at and beyond GWAS loci (HEPH, CEPT1, EIF3F). Furthermore, MPHL-associated genes are enriched for genes considered causal for monogenic trichoses. Together, our findings broaden the MPHL-associated allelic spectrum and provide insights into MPHL pathobiology and a shared basis with monogenic hair loss disorders.
Collapse
Affiliation(s)
- Sabrina Katrin Henne
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Lara Maleen Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Yamamoto K, Hakoi H, Nomura S, Murakami M. The Roles of sPLA 2s in Skin Homeostasis and Disease. Biomolecules 2023; 13:biom13040668. [PMID: 37189415 DOI: 10.3390/biom13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Among the phospholipase A2 (PLA2) family, the secreted PLA2 (sPLA2) family in mammals contains 11 members that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using knockout and/or transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. Individual sPLA2s exert specific functions within tissue microenvironments, likely through the hydrolysis of extracellular phospholipids. Lipids are an essential biological component for skin homeostasis, and disturbance of lipid metabolism by deletion or overexpression of lipid-metabolizing enzymes or lipid-sensing receptors often leads to skin abnormalities that are easily visible on the outside. Over the past decades, our studies using knockout and transgenic mice for various sPLA2s have uncovered several new aspects of these enzymes as modulators of skin homeostasis and disease. This article summarizes the roles of several sPLA2s in skin pathophysiology, providing additional insight into the research fields of sPLA2s, lipids, and skin biology.
Collapse
Affiliation(s)
- Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Haruka Hakoi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Saki Nomura
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
5
|
Yin D, Hao J, Jin R, Yi Y, Bodduluri SR, Hua Y, Anand A, Deng Y, Haribabu B, Egilmez NK, Sauter ER, Li B. Epidermal Fatty Acid Binding Protein Mediates Depilatory-Induced Acute Skin Inflammation. J Invest Dermatol 2021; 142:1824-1834.e7. [DOI: 10.1016/j.jid.2021.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
|
6
|
Kuksis A, Pruzanski W. Hydrolysis of glycerophosphocholine epoxides by human group IIA, V, and X secretory phospholipases A 2. Lipids 2021; 56:521-535. [PMID: 34278577 DOI: 10.1002/lipd.12320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
This study was prompted by recent reports that epoxyeicosatrienoic (EET) and epoxyeicosatetraenoic (EEQ) acids accelerate tumor growth and metastasis by stimulation of angiogenesis, while eicosapentaenoic (EPA) and epoxydocosapentaenoic (EDP) acids inhibit angiogenesis, tumor growth, and metastasis. Cytochrome P450 epoxygenases convert arachidonic to EET, eicosapentaenoic acid to EEQ, and docosahexaenoic acid to EDP, which are found both in free form and esterified to glycerophosphocholine (GPC). Both free and esterified epoxy (EP) acids are also formed during lipid autoxidation. For biological activity, the GPC-EP requires hydrolysis, which we presumed could occur by sPLA2 s located in proximity of lipoproteins carrying the lipid epoxides. The plasma lipoproteins were isolated by ultracentrifugation and analyzed by LC/ESI-MS. The GPC-EPs were identified by reference to standards and to retention times of phospholipid masses. The GPC-EP monoepoxides (corrected for isobaric ether overlaps) in stored human LDL, HDL, HDL3 , or APHDL ranged from 0 to 1 nmol/mg protein, but during 4-h incubation at 37°C increased to 1-5 nmol/mg protein. An incubation of autoxidized LDL, HDL, or HDL3 with 1 μg/ml of group V or X sPLA2 resulted in complete hydrolysis of diacyl GPC epoxide esters. Group IIA sPLA2 at 1 μg/ml failed to produce significant hydrolysis in 4 h, but at 2.5 μg/ml in 8 h yielded almost 80% hydrolysis, which represented complete diacyl GPC-EP hydrolysis. The present study shows that group IIA, V, and X sPLA2 s are capable of extensive hydrolysis of PtdCho epoxides of autoxidized plasma lipoproteins. Therefore, all three human sPLA2 s were potentially capable of inducing epoxide biological activity in vivo.
Collapse
Affiliation(s)
- Arnis Kuksis
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Waldemar Pruzanski
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Lisbjerg K, Andersen MKG, Bertelsen M, Brost AG, Buchvald FF, Jensen RB, Bisgaard AM, Rosenberg T, Tümer Z, Kessel L. Oliver McFarlane syndrome: two new cases and a review of the literature. Ophthalmic Genet 2021; 42:464-473. [PMID: 33818269 DOI: 10.1080/13816810.2021.1904419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Oliver McFarlane syndrome is a rare syndrome. Clinical presentations include trichomegaly, chorioretinal degeneration, pituitary hormone deficits, and neurological manifestations. Genetic analysis has recently placed this syndrome within the group of PNPLA6-related disorders. Here, we describe two new individuals and review the previously published cases. MATERIALS AND METHODS Clinical investigations were carried out in accordance with local guidelines and clinical information was retrieved from medical records. Genetic studies were carried out using next-generation sequencing based clinical exome sequencing. A PubMed literature search was performed with a review of the published clinical cases of Oliver McFarlane syndrome. RESULTS Our first individual was a 36-year-old woman with 32 years of follow up and our second individual was a 3-year-old boy. Both individuals were born preterm and presented with prolonged neonatal respiratory distress, trichomegaly, early growth retardation, retinopathy and sparse depigmented hair. So far, none of our cases have demonstrated cognitive impairment or progressive neurological symptoms, but the child revealed persistent abnormal lung structure. Both individuals were compound heterozygous for pathogenic PNPLA6 variants, one of which was novel. We found other 31 clinically documented published cases. CONCLUSIONS Our two new unrelated cases of Oliver McFarlane Syndrome demonstrate early ophthalmological and systemic findings of this rare syndrome and the progressive nature of the retinopathy with a long follow-up. PNPLA6-related disorders are a phenotypically highly heterogenous group where alterations in the phosphatidylcholine metabolism can lead to manifestations in different tissues with no clear genotype-phenotype correlation.
Collapse
Affiliation(s)
- Kristian Lisbjerg
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet , Copenhagen, Denmark
| | - Mette K G Andersen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet , Copenhagen, Denmark
| | - Mette Bertelsen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Agnes G Brost
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet , Copenhagen, Denmark
| | - Frederik F Buchvald
- Center for Pulmonary Diseases, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke B Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne-Marie Bisgaard
- Center for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Rosenberg
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet , Copenhagen, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet , Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Watanabe K, Taketomi Y, Miki Y, Kugiyama K, Murakami M. Group V secreted phospholipase A 2 plays a protective role against aortic dissection. J Biol Chem 2020; 295:10092-10111. [PMID: 32482892 DOI: 10.1074/jbc.ra120.013753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and MS-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan.,Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,FORCE, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
9
|
Context-dependent effect of sPLA 2-IIA induced proliferation on murine hair follicle stem cells and human epithelial cancer. EBioMedicine 2019; 48:364-376. [PMID: 31521610 PMCID: PMC6838435 DOI: 10.1016/j.ebiom.2019.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tissue stem cells (SCs) and cancer cells proliferation is regulated by many common signalling mechanisms. These mechanisms temporally balance proliferation and differentiation events during normal tissue homeostasis and repair. However, the effect of these aberrant signalling mechanisms on the ultimate fate of SCs and cancer cells remains obscure. METHODS To evaluate the functional effects of Secretory Phospholipase A2-IIA (sPLA2-IIA) induced abnormal signalling on normal SCs and cancer cells, we have used K14-sPLA2-IIA transgenic mice hair follicle stem cells (HFSCs), DMBA/TPA induced mouse skin tumour tissues, human oral squamous cell carcinoma (OSCC) and skin squamous cell carcinoma (SCC) derived cell lines. FINDINGS Our study demonstrates that sPLA2-IIA induces rapid proliferation of HFSCs, thereby altering the proliferation dynamics leading to a complete loss of the slow cycling H2BGFP positive HFSCs. Interestingly, in vivo reversion study by JNK inhibition exhibited a significant delay in post depilation hair growth, confirming that sPLA2-IIA promotes HFSCs proliferation through JNK/c-Jun signalling. In a different cellular context, we showed increased expression of sPLA2-IIA in human OSCC and mouse skin cancer tissues. Importantly, a xenograft of sPLA2-IIA knockdown cells of OSCC and SCC cell lines showed a concomitant reduction of tumour volume in NOD-SCID mice and decreased JNK/c-Jun signalling. INTERPRETATION This study unravels how an increased proliferation induced by a common proliferation inducer (sPLA2-IIA) alters the fate of normal SCs and cancer cells distinctively through common JNK/c-Jun signalling. Thus, sPLA2-IIA can be a potential target for various diseases including cancer. FUND: This work was partly supported by the Indian Council of Medical Research (ICMR-3097) and ACTREC (42) grants.
Collapse
|
10
|
Murakami M, Yamamoto K, Taketomi Y. Phospholipase A 2 in skin biology: new insights from gene-manipulated mice and lipidomics. Inflamm Regen 2018; 38:31. [PMID: 30546811 PMCID: PMC6284315 DOI: 10.1186/s41232-018-0089-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023] Open
Abstract
The skin represents one of the tissues that are most profoundly influenced by alterations in the quality of lipids (lipoquality). Lipids not only constitute cellular membranes, but also serve as bioactive lipid mediators and essential components of the skin barrier. Phospholipase A2 (PLA2) enzymes supply fatty acids and lysophospholipids from membrane phospholipids, thereby variably affecting cutaneous homeostasis. Accordingly, perturbation of particular PLA2-driven lipid pathways can be linked to various forms of skin disease. In this review article, we highlight the roles of several PLA2 subtypes in cutaneous pathophysiology, as revealed by transgenic/knockout studies in combination with comprehensive lipidomics. We focus mainly on secreted PLA2 group IIF (sPLA2-IIF), which is associated with epidermal hyperplasia through mobilization of a unique lipid metabolite. We also address the distinct roles of sPLA2-IIE in hair follicles and sPLA2-IID in lymphoid immune cells that secondarily affect cutaneous inflammation, and provide some insights into species differences in sPLA2s. Additionally, we briefly overview the patatin-like phospholipase PNPLA1, which belongs to the Ca2+-independent PLA2 (iPLA2) family, as a key regulator of skin barrier function through catalysis of a unique non-PLA2 reaction. These knowledges on lipid metabolism driven by various PLA2 subtypes will open novel opportunities for translated studies toward diagnosis and therapy of human skin diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- 1Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan.,2AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan
| | - Kei Yamamoto
- 3PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan.,4Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513 Japan
| | - Yoshitaka Taketomi
- 1Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
11
|
Murakami M, Miki Y, Sato H, Murase R, Taketomi Y, Yamamoto K. Group IID, IIE, IIF and III secreted phospholipase A 2s. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:803-818. [PMID: 30905347 PMCID: PMC7106514 DOI: 10.1016/j.bbalip.2018.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/02/2022]
Abstract
Among the 11 members of the secreted phospholipase A2 (sPLA2) family, group IID, IIE, IIF and III sPLA2s (sPLA2-IID, -IIE, -IIF and -III, respectively) are “new” isoforms in the history of sPLA2 research. Relative to the better characterized sPLA2s (sPLA2-IB, -IIA, -V and -X), the enzymatic properties, distributions, and functions of these “new” sPLA2s have remained obscure until recently. Our current studies using knockout and transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed unique and distinct roles of these “new” sPLA2s in specific biological events. Thus, sPLA2-IID is involved in immune suppression, sPLA2-IIE in metabolic regulation and hair follicle homeostasis, sPLA2-IIF in epidermal hyperplasia, and sPLA2-III in male reproduction, anaphylaxis, colonic diseases, and possibly atherosclerosis. In this article, we overview current understanding of the properties and functions of these sPLA2s and their underlying lipid pathways in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Remi Murase
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Yamamoto
- PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
12
|
Fibroproliferative genes are preferentially expressed in central centrifugal cicatricial alopecia. J Am Acad Dermatol 2018; 79:904-912.e1. [PMID: 29913259 DOI: 10.1016/j.jaad.2018.05.1257] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Central centrifugal cicatricial alopecia (CCCA) is a primary cicatricial alopecia that most commonly affects women of African descent. Like CCCA, fibroproliferative disorders (FPDs) such as keloids, atherosclerosis, and fibroids are characterized by low-grade inflammation and irritation, resulting in end-stage fibrosis. OBJECTIVE We sought to determine whether fibroproliferative genes were up-regulated in patients with CCCA. METHODS A total of 5 patients with biopsy-proven CCCA were recruited for this study. Two scalp biopsy specimens were obtained from each patient; 1 from CCCA-affected vertex scalp and 1 from the unaffected occipital scalp. Microarray analysis was performed to determine the differential gene expression patterns. RESULTS There was an upregulation of genes implicated in FPDs in patients with CCCA. Specifically, we noted increased expression of platelet derived growth factor gene (PDGF), collagen I gene (COL I), collagen III gene (COL III), matrix metallopeptidase 1 gene (MMP1), matrix metallopeptidase 2 gene (MMP2), matrix metallopeptidase 7 gene (MMP7), and matrix metallopeptidase 9 gene (MMP9) in affected scalp compared with in unaffected scalp. Significant overlap in the canonic pathways was noted between patients with CCCA and patients with both atherosclerosis and hepatic fibrosis (P < .001). LIMITATIONS Small sample size and the use of whole skin tissue for analysis. CONCLUSION We have identified the upregulation of critical genes implicated in FPDs in the gene expression profile of patients with CCCA. These findings may help identify future therapeutic targets for this otherwise difficult-to-treat condition.
Collapse
|
13
|
Secretory phospholipase A 2-IIA overexpressing mice exhibit cyclic alopecia mediated through aberrant hair shaft differentiation and impaired wound healing response. Sci Rep 2017; 7:11619. [PMID: 28912581 PMCID: PMC5599634 DOI: 10.1038/s41598-017-11830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2-IIA) is involved in lipid catabolism and growth promoting activity. sPLA2-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA2-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs). Our data showed that overexpression of sPLA2-IIA in homozygous mice results in hyperproliferation and terminal epidermal differentiation followed by hair follicle cycle being halted at anagen like stage. In addition, sPLA2-IIA induced hyperproliferation leads to complete exhaustion of hair follicle stem cell pool at PD28 (Postnatal day). Importantly, sPLA2-IIA overexpression affects the hair shaft differentiation leading to development of cyclic alopecia. Molecular investigation study showed aberrant expression of Sox21, Msx2 and signalling modulators necessary for proper differentiation of inner root sheath (IRS) and hair shaft formation. Further, full-thickness skin wounding on dorsal skin of K14-sPLA2-IIA homozygous mice displayed impaired initial healing response. Our results showed the involvement of sPLA2-IIA in regulation of matrix cells differentiation, hair shaft formation and complete loss of HFSCs mediated impaired wound healing response. These novel functions of sPLA2-IIA may have clinical implications in alopecia, cancer development and ageing.
Collapse
|
14
|
Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The Roles of the Secreted Phospholipase A 2 Gene Family in Immunology. Adv Immunol 2016; 132:91-134. [PMID: 27769509 PMCID: PMC7112020 DOI: 10.1016/bs.ai.2016.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the phospholipase A2 (PLA2) family that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, secreted PLA2 (sPLA2) enzymes comprise the largest group containing 11 isoforms in mammals. Individual sPLA2s exhibit unique tissue or cellular distributions and enzymatic properties, suggesting their distinct biological roles. Although PLA2 enzymes, particularly cytosolic PLA2 (cPLA2α), have long been implicated in inflammation by driving arachidonic acid metabolism, the precise biological roles of sPLA2s have remained a mystery over the last few decades. Recent studies employing mice gene-manipulated for individual sPLA2s, in combination with mass spectrometric lipidomics to identify their target substrates and products in vivo, have revealed their roles in diverse biological events, including immunity and associated disorders, through lipid mediator-dependent or -independent processes in given microenvironments. In this review, we summarize our current knowledge of the roles of sPLA2s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- M Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - K Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Y Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - R Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
15
|
Yamamoto K, Miki Y, Sato H, Nishito Y, Gelb MH, Taketomi Y, Murakami M. Expression and Function of Group IIE Phospholipase A2 in Mouse Skin. J Biol Chem 2016; 291:15602-13. [PMID: 27226633 DOI: 10.1074/jbc.m116.734657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Indexed: 11/06/2022] Open
Abstract
Recent studies using knock-out mice for various secreted phospholipase A2 (sPLA2) isoforms have revealed their non-redundant roles in diverse biological events. In the skin, group IIF sPLA2 (sPLA2-IIF), an "epidermal sPLA2" expressed in the suprabasal keratinocytes, plays a fundamental role in epidermal-hyperplasic diseases such as psoriasis and skin cancer. In this study, we found that group IIE sPLA2 (sPLA2-IIE) was expressed abundantly in hair follicles and to a lesser extent in basal epidermal keratinocytes in mouse skin. Mice lacking sPLA2-IIE exhibited skin abnormalities distinct from those in mice lacking sPLA2-IIF, with perturbation of hair follicle ultrastructure, modest changes in the steady-state expression of a subset of skin genes, and no changes in the features of psoriasis or contact dermatitis. Lipidomics analysis revealed that sPLA2-IIE and -IIF were coupled with distinct lipid pathways in the skin. Overall, two skin sPLA2s, hair follicular sPLA2-IIE and epidermal sPLA2-IIF, play non-redundant roles in distinct compartments of mouse skin, underscoring the functional diversity of multiple sPLA2s in the coordinated regulation of skin homeostasis and diseases.
Collapse
Affiliation(s)
- Kei Yamamoto
- From the Lipid Metabolism Project and the Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan, PRIME and
| | | | | | - Yasumasa Nishito
- Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michael H Gelb
- the Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, and
| | | | - Makoto Murakami
- From the Lipid Metabolism Project and AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
16
|
Sato H, Taketomi Y, Murakami M. Metabolic regulation by secreted phospholipase A 2. Inflamm Regen 2016; 36:7. [PMID: 29259680 PMCID: PMC5725825 DOI: 10.1186/s41232-016-0012-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
Within the phospholipase A2 (PLA2) superfamily that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 isoforms in mammals. Individual sPLA2s exhibit unique distributions and specific enzymatic properties, suggesting their distinct biological roles. While sPLA2s have long been implicated in inflammation and atherosclerosis, it has become evident that they are involved in diverse biological events through lipid mediator-dependent or mediator-independent processes in a given microenvironment. In recent years, new biological aspects of sPLA2s have been revealed using their transgenic and knockout mouse models in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In this review, we summarize our current knowledge of the roles of sPLA2s in metabolic disorders including obesity, hepatic steatosis, diabetes, insulin resistance, and adipose tissue inflammation.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004 Japan
| |
Collapse
|
17
|
Murase R, Sato H, Yamamoto K, Ushida A, Nishito Y, Ikeda K, Kobayashi T, Yamamoto T, Taketomi Y, Murakami M. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility. J Biol Chem 2016; 291:6895-911. [PMID: 26828067 DOI: 10.1074/jbc.m116.715672] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 12/31/2022] Open
Abstract
Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.
Collapse
Affiliation(s)
- Remi Murase
- From the Lipid Metabolism Project and School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | | | | | - Ayako Ushida
- From the Lipid Metabolism Project and Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yasumasa Nishito
- Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan, and
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | | | | | - Makoto Murakami
- From the Lipid Metabolism Project and AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
18
|
Yamamoto K, Miki Y, Sato M, Taketomi Y, Nishito Y, Taya C, Muramatsu K, Ikeda K, Nakanishi H, Taguchi R, Kambe N, Kabashima K, Lambeau G, Gelb MH, Murakami M. The role of group IIF-secreted phospholipase A2 in epidermal homeostasis and hyperplasia. ACTA ACUST UNITED AC 2015; 212:1901-19. [PMID: 26438362 PMCID: PMC4612087 DOI: 10.1084/jem.20141904] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
Yamamoto et al. report that PLA2G2F represents a previously unrecognized regulator of skin pathophysiology, and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases. Epidermal lipids are important for skin homeostasis. However, the entire picture of the roles of lipids, particularly nonceramide lipid species, in epidermal biology still remains obscure. Here, we report that PLA2G2F, a functionally orphan-secreted phospholipase A2 expressed in the suprabasal epidermis, regulates skin homeostasis and hyperplasic disorders. Pla2g2f−/− mice had a fragile stratum corneum and were strikingly protected from psoriasis, contact dermatitis, and skin cancer. Conversely, Pla2g2f-overexpressing transgenic mice displayed psoriasis-like epidermal hyperplasia. Primary keratinocytes from Pla2g2f−/− mice showed defective differentiation and activation. PLA2G2F was induced by calcium or IL-22 in keratinocytes and preferentially hydrolyzed ethanolamine plasmalogen-bearing docosahexaenoic acid secreted from keratinocytes to give rise to unique bioactive lipids (i.e., protectin D1 and 9S-hydroxyoctadecadienoic acid) that were distinct from canonical arachidonate metabolites (prostaglandins and leukotrienes). Ethanolamine lysoplasmalogen, a PLA2G2F-derived marker product, rescued defective activation of Pla2g2f−/− keratinocytes both in vitro and in vivo. Our results highlight PLA2G2F as a previously unrecognized regulator of skin pathophysiology and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Mariko Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Choji Taya
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuaki Muramatsu
- School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, Institute of Physical and Chemical Research (RIKEN) Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan
| | - Ryo Taguchi
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan
| | - Naotomo Kambe
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique et Université de Nice-Sophia-Antipolis, 06560 Valbonne, France
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Agency for Medical Research and Development (AMED) and Japan Science and Technology Agency (JST), Tokyo 100-0004, Japan
| |
Collapse
|
19
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
20
|
Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet 2014; 52:85-94. [PMID: 25480986 DOI: 10.1136/jmedgenet-2014-102856] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oliver-McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence-Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. METHODS Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. RESULTS Eight mutations in six families with Oliver-McFarlane or Laurence-Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver-McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver-McFarlane and Laurence-Moon syndromes revealed extensive cerebellar degeneration and atrophy. CONCLUSIONS Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon-Holmes syndrome and Boucher-Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Gavin Arno
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Nichole D Hein
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Megana Prasad
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France
| | - Yvonne Anderson
- Department of Paediatrics, Taranaki Base Hospital, New Plymouth, New Zealand Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Laura A Krueger
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Louise C Gregory
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - Corinne Stoetzel
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France
| | - Thomas J Jaworek
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| | - Sarah Hull
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Abi Li
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Vincent Plagnol
- Department of Statistical Genetics, University College London, London, UK
| | - Christi M Willen
- Department of Pediatric Ophthalmology, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas M Morgan
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Cynthia A Prows
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rashmi S Hegde
- Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rudy J Richardson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus Dieterich
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble and Grenoble Institut des Neurosciences, Equipe Muscle et Pathologie, Grenoble, France
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Tamas Revesz
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J P Martinez-Barbera
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - Robert A Sisk
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - Craig Jefferies
- Department of Paediatric Endocrinology, Starship Children's Hospital, Auckland, New Zealand
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mehul T Dattani
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Helene Dollfus
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France Centre de référence pour les Affections Rares Ophtalmologiques CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anthony T Moore
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Murakami M, Taketomi Y, Miki Y, Sato H, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: the 3rd edition. Biochimie 2014; 107 Pt A:105-13. [PMID: 25230085 DOI: 10.1016/j.biochi.2014.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022]
Abstract
Within the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 to 12 mammalian isoforms with a conserved His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting distinct biological roles. Individual sPLA2s are involved in diverse biological events through lipid mediator-dependent or -independent processes and act redundantly or non-redundantly in a given microenvironment. In the past few years, new biological aspects of sPLA2s have been clarified using their transgenic and knockout mouse lines in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In the 3rd edition of this review series, we highlight the newest understanding of the in vivo functions of sPLA2s in pathophysiological conditions in the context of immunity and metabolism. We will also describe the latest knowledge on PLA2R1, the best known sPLA2 receptor, which may serve either as a clearance or signaling receptor for sPLA2 or may even act independently of sPLA2 function.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Centre National de la Recherche Scientifique - Université Nice Sophia Antipolis, Valbonne 06560, France
| |
Collapse
|
22
|
Ilic D, Bollinger JM, Gelb M, Mauro TM. sPLA2 and the epidermal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:416-21. [PMID: 24269828 DOI: 10.1016/j.bbalip.2013.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022]
Abstract
The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F(-/-) mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College London School of Medicine, London, UK.
| | - James M Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA.
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco Veterans Medical Center, San Francisco, CA, USA.
| |
Collapse
|
23
|
Miki Y, Yamamoto K, Taketomi Y, Sato H, Shimo K, Kobayashi T, Ishikawa Y, Ishii T, Nakanishi H, Ikeda K, Taguchi R, Kabashima K, Arita M, Arai H, Lambeau G, Bollinger JM, Hara S, Gelb MH, Murakami M. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators. ACTA ACUST UNITED AC 2013; 210:1217-34. [PMID: 23690440 PMCID: PMC3674707 DOI: 10.1084/jem.20121887] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PLA2G2D ameliorates skin inflammation through mobilizing pro-resolving lipid mediators. Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c+ dendritic cells (DCs) and macrophages and displays a pro-resolving function. In hapten-induced contact dermatitis, resolution, not propagation, of inflammation was compromised in skin and LNs of PLA2G2D-deficient mice (Pla2g2d−/−), in which the immune balance was shifted toward a proinflammatory state over an antiinflammatory state. Bone marrow-derived DCs from Pla2g2d−/− mice were hyperactivated and elicited skin inflammation after intravenous transfer into mice. Lipidomics analysis revealed that PLA2G2D in the LNs contributed to mobilization of a pool of polyunsaturated fatty acids that could serve as precursors for antiinflammatory/pro-resolving lipid mediators such as resolvin D1 and 15-deoxy-Δ12,14-prostaglandin J2, which reduced Th1 cytokine production and surface MHC class II expression in LN cells or DCs. Altogether, our results highlight PLA2G2D as a “resolving sPLA2” that ameliorates inflammation through mobilizing pro-resolving lipid mediators and points to a potential use of this enzyme for treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Emerging roles of secreted phospholipase A2 enzymes: An update. Biochimie 2013; 95:43-50. [DOI: 10.1016/j.biochi.2012.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/11/2012] [Indexed: 01/18/2023]
|
25
|
Dan P, Rosenblat G, Yedgar S. Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol 2012; 691:1-8. [DOI: 10.1016/j.ejphar.2012.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 01/22/2023]
|
26
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
27
|
Sato H, Isogai Y, Masuda S, Taketomi Y, Miki Y, Kamei D, Hara S, Kobayashi T, Ishikawa Y, Ishii T, Ikeda K, Taguchi R, Ishimoto Y, Suzuki N, Yokota Y, Hanasaki K, Suzuki-Yamamoto T, Yamamoto K, Murakami M. Physiological roles of group X-secreted phospholipase A2 in reproduction, gastrointestinal phospholipid digestion, and neuronal function. J Biol Chem 2011; 286:11632-48. [PMID: 21266581 PMCID: PMC3064216 DOI: 10.1074/jbc.m110.206755] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/17/2011] [Indexed: 01/04/2023] Open
Abstract
Although the secreted phospholipase A(2) (sPLA(2)) family has been generally thought to participate in pathologic events such as inflammation and atherosclerosis, relatively high and constitutive expression of group X sPLA(2) (sPLA(2)-X) in restricted sites such as reproductive organs, the gastrointestinal tract, and peripheral neurons raises a question as to the roles played by this enzyme in the physiology of reproduction, digestion, and the nervous system. Herein we used mice with gene disruption or transgenic overexpression of sPLA(2)-X to clarify the homeostatic functions of this enzyme at these locations. Our results suggest that sPLA(2)-X regulates 1) the fertility of spermatozoa, not oocytes, beyond the step of flagellar motility, 2) gastrointestinal phospholipid digestion, perturbation of which is eventually linked to delayed onset of a lean phenotype with reduced adiposity, decreased plasma leptin, and improved muscle insulin tolerance, and 3) neuritogenesis of dorsal root ganglia and the duration of peripheral pain nociception. Thus, besides its inflammatory action proposed previously, sPLA(2)-X participates in physiologic processes including male fertility, gastrointestinal phospholipid digestion linked to adiposity, and neuronal outgrowth and sensing.
Collapse
Affiliation(s)
- Hiroyasu Sato
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Yuki Isogai
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610
| | - Seiko Masuda
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Yoshitaka Taketomi
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Yoshimi Miki
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Daisuke Kamei
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Shuntaro Hara
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Tetsuyuki Kobayashi
- the Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610
| | - Yukio Ishikawa
- the Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540
| | - Toshiharu Ishii
- the Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540
| | - Kazutaka Ikeda
- the Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
- the Department of Neutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Kuboki 111, Souja, Okayama 719-1197, and
| | - Ryo Taguchi
- the Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
- CREST and
| | - Yoshikazu Ishimoto
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Noriko Suzuki
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Yasunori Yokota
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Kohji Hanasaki
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Toshiko Suzuki-Yamamoto
- the Department of Neutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Kuboki 111, Souja, Okayama 719-1197, and
| | - Kei Yamamoto
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
| | - Makoto Murakami
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Murakami M, Sato H, Taketomi Y, Yamamoto K. Integrated lipidomics in the secreted phospholipase A(2) biology. Int J Mol Sci 2011; 12:1474-95. [PMID: 21673902 PMCID: PMC3111613 DOI: 10.3390/ijms12031474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A(2)s (PLA(2)s) or related enzymes, which are subdivided into several subgroups based on their structures, catalytic mechanisms, localizations and evolutionary relationships. More than one third of the PLA(2) enzymes belong to the secreted PLA(2) (sPLA(2)) family, which consists of low-molecular-weight, Ca(2+)-requiring extracellular enzymes, with a His-Asp catalytic dyad. Individual sPLA(2) isoforms exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Recent studies using transgenic and knockout mice for several sPLA(2) isoforms, in combination with lipidomics approaches, have revealed their distinct contributions to various biological events. Herein, we will describe several examples of sPLA(2)-mediated phospholipid metabolism in vivo, as revealed by integrated analysis of sPLA(2) transgenic/knockout mice and lipid mass spectrometry. Knowledge obtained from this approach greatly contributes to expanding our understanding of the sPLA(2) biology and pathophysiology.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| |
Collapse
|