1
|
Ali S, Ren S, Agsaoa A, Mir S, Mir MA. The Nucleocapsid protein of Crimean Congo hemorrhagic fever virus interacts with eIF4A to promote the translation of viral mRNA in cells. J Biol Chem 2025:110173. [PMID: 40328362 DOI: 10.1016/j.jbc.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tickborne nairovirus in the Bunyavirales order. Unlike many viral infections, CCHFV does not induce a host translation shutdown, posing the question of how its mRNAs are efficiently translated amidst competing host transcripts. Here, we show that the CCHFV nucleocapsid protein (N protein) enhances the translation of luciferase reporter mRNA with the help of the viral S-segment mRNA-derived 5' UTR. Chemical inhibition of eIF4E did not affect the N protein-mediated preferential translation of the reporter mRNA. However, translation shutdowns caused by either proteolytic cleavage of eIF4G or chemical inhibition of eIF4A abolished the N protein-mediated preferential translation of the reporter mRNA. These findings demonstrate that the CCHFV N protein requires both eIF4A and eIF4G to facilitate mRNA translation with the assistance of the viral mRNA 5' UTR. Randomization of the viral 5' UTR significantly reduced the translation efficiency of viral S-segment mRNA in cells. Our results demonstrate that wild type S-segment mRNA was heavily engaged with ribosomes, and N protein likely remained associated with the wild type 5' UTR, continuously facilitating ribosome loading, promoting polysome formation, and enhancing protein production. In contrast, most S-segment mRNA with a randomized 5' UTR was largely free from ribosome engagement, explaining the lower protein production from this transcript. Our results demonstrate that the N protein binds to eIF4A and likely reserves a population of eIF4A-eIF4G complexes that remain dedicated to selectively boost the translation of viral S-segment mRNA, thus avoiding competition from host cell transcripts for the same translation machinery.
Collapse
Affiliation(s)
- Saima Ali
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Songyang Ren
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Alexis Agsaoa
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California.
| | - Mohammad A Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
2
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Pal D, De K, Yates TB, Kolape J, Muchero W. Mutating novel interaction sites in NRP1 reduces SARS-CoV-2 spike protein internalization. iScience 2023; 26:106274. [PMID: 36910328 PMCID: PMC9957656 DOI: 10.1016/j.isci.2023.106274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The global pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a severe global health problem because of its rapid spread. Both Ace2 and NRP1 provide initial viral binding sites for SARS-CoV-2. Here, we show that cysteine residues located in the vestigial plasminogen-apple-nematode (PAN) domain of NRP1 are necessary for SARS-CoV-2 spike protein internalization. Mutating novel cysteine residues in the PAN altered NRP1 stability and downstream activation of extracellular signal-regulated kinase (ERK) signaling pathway and impaired its interaction with the spike protein. This resulted in a significant reduction in spike protein abundance in Vero-E6 cells for the original, alpha, and delta SARS-CoV-2 variants even in the presence of the Ace2. Moreover, mutating these cysteine residues in NRP1 significantly lowered its association with Plexin-A1. As the spike protein is a critical component for targeted therapy, our biochemical study may represent a distinct mechanism to develop a path for future therapeutic discovery.
Collapse
Affiliation(s)
- Debjani Pal
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Timothy B. Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
| | - Jaydeep Kolape
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
- Corresponding author
| |
Collapse
|
4
|
Zhang L, Lin J, Weng M, Wen Y, Zhang Y, Deng W. RPLP1, an NS4B-interacting protein, enhances production of CSFV through promoting translation of viral genome. Virulence 2022; 13:370-386. [PMID: 35129423 PMCID: PMC8824197 DOI: 10.1080/21505594.2022.2033500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Classical swine fever virus (CSFV), the etiological agent of classical swine fever (CSF), causes serious financial losses to the pig industry. Using yeast two-hybrid screening, we have previously identified ribosomal protein RPLP1 as a potential binding partner of CSFV NS4B. In this study, the interaction between host RPLP1 and CSFV NS4B was further characterized by co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and confocal microscopy. In addition, lentivirus-mediated shRNA knockdown of RPLP1 drastically attenuated CSFV growth, while stable overexpression of RPLP1 markedly enhanced CSFV production. Moreover, cellular RPLP1 expression was found to be significantly up-regulated along with CSFV infection. Dual-luciferase reporter assay showed that depletion of RPLP1 had no effects on the activity of CSFV internal ribosome entry site (IRES). In the first life cycle of CSFV, further studies revealed that RPLP1 depletion did not influence the intracellular viral RNA abundance but diminished the intracellular and extracellular progeny virus titers as well as the viral E2 protein expression, which indicates that RPLP1 is crucial for CSFV genome translation. In summary, this study demonstrated that RPLP1 interacts with CSFV NS4B and enhances virus production via promoting translation of viral genome.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jihui Lin
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Maoyang Weng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Chen Z, Wang C, Feng X, Nie L, Tang M, Zhang H, Xiong Y, Swisher SK, Srivastava M, Chen J. Interactomes of SARS-CoV-2 and human coronaviruses reveal host factors potentially affecting pathogenesis. EMBO J 2021; 40:e107776. [PMID: 34232536 PMCID: PMC8447597 DOI: 10.15252/embj.2021107776] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Host-virus protein-protein interactions play key roles in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity-labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Further characterization of these interactions and comparison to other large-scale study of cellular responses to SARS-CoV-2 infection elucidated how distinct SARS-CoV-2 viral proteins participate in its life cycle. With these data mining, we discovered potential drug targets for the treatment of COVID-19. The interactomes of two key SARS-CoV-2-encoded viral proteins, NSP1 and N, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of SARS-CoV-2 provides valuable resources for the understanding and treating of this disease.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel K Swisher
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Guan J, Han S, Wu J, Zhang Y, Bai M, Abdullah SW, Sun S, Guo H. Ribosomal Protein L13 Participates in Innate Immune Response Induced by Foot-and-Mouth Disease Virus. Front Immunol 2021; 12:616402. [PMID: 34093518 PMCID: PMC8173215 DOI: 10.3389/fimmu.2021.616402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
In addition to ribosomal protein synthesis and protein translation, ribosomal proteins also participate in tumorigenesis and tumor progression, immune responses, and viral replication. Here, we show that ribosomal protein L13 (RPL13) participates in the antiviral immune response induced by foot-and-mouth disease virus (FMDV), inhibiting FMDV replication. The overexpression of RPL13 promoted the induction and activation of the promoters of the nuclear factor-κB (NF-κB) and interferon-β (IFN-β) genes, and the expression and protein secretion of the antiviral factor IFN-β and proinflammatory cytokine interleukin-6 (IL-6). The knockdown of RPL13 had the opposite effects. We also found that the FMDV 3Cpro protease interacts with RPL13, and that its activity reduces the expression of RPL13, thus antagonizing the RPL13-mediated antiviral activity. This study extends our knowledge of the extraribosomal functions of ribosomal proteins and provides new scientific information on cellular antiviral defenses and virus-antagonizing mechanisms.
Collapse
Affiliation(s)
- Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Manyuan Bai
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Dong HJ, Zhang R, Kuang Y, Wang XJ. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol 2020; 203:1021-1032. [PMID: 33124672 PMCID: PMC7594972 DOI: 10.1007/s00203-020-02094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yu Kuang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
9
|
Hiltbrunner M, Heckel G. Assessing Genome-Wide Diversity in European Hantaviruses through Sequence Capture from Natural Host Samples. Viruses 2020; 12:v12070749. [PMID: 32664593 PMCID: PMC7412162 DOI: 10.3390/v12070749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Research on the ecology and evolution of viruses is often hampered by the limitation of sequence information to short parts of the genomes or single genomes derived from cultures. In this study, we use hybrid sequence capture enrichment in combination with high-throughput sequencing to provide efficient access to full genomes of European hantaviruses from rodent samples obtained in the field. We applied this methodology to Tula (TULV) and Puumala (PUUV) orthohantaviruses for which analyses from natural host samples are typically restricted to partial sequences of their tri-segmented RNA genome. We assembled a total of ten novel hantavirus genomes de novo with very high coverage (on average >99%) and sequencing depth (average >247×). A comparison with partial Sanger sequences indicated an accuracy of >99.9% for the assemblies. An analysis of two common vole (Microtus arvalis) samples infected with two TULV strains each allowed for the de novo assembly of all four TULV genomes. Combining the novel sequences with all available TULV and PUUV genomes revealed very similar patterns of sequence diversity along the genomes, except for remarkably higher diversity in the non-coding region of the S-segment in PUUV. The genomic distribution of polymorphisms in the coding sequence was similar between the species, but differed between the segments with the highest sequence divergence of 0.274 for the M-segment, 0.265 for the S-segment, and 0.248 for the L-segment (overall 0.258). Phylogenetic analyses showed the clustering of genome sequences consistent with their geographic distribution within each species. Genome-wide data yielded extremely high node support values, despite the impact of strong mutational saturation that is expected for hantavirus sequences obtained over large spatial distances. We conclude that genome sequencing based on capture enrichment protocols provides an efficient means for ecological and evolutionary investigations of hantaviruses at an unprecedented completeness and depth.
Collapse
Affiliation(s)
- Melanie Hiltbrunner
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland;
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland;
- Swiss Institute of Bioinformatics, Quartier Sorge, 1011 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Li S. Regulation of Ribosomal Proteins on Viral Infection. Cells 2019; 8:E508. [PMID: 31137833 PMCID: PMC6562653 DOI: 10.3390/cells8050508] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins (RPs), in conjunction with rRNA, are major components of ribosomes involved in the cellular process of protein biosynthesis, known as "translation". The viruses, as the small infectious pathogens with limited genomes, must recruit a variety of host factors to survive and propagate, including RPs. At present, more and more information is available on the functional relationship between RPs and virus infection. This review focuses on advancements in my own understanding of critical roles of RPs in the life cycle of viruses. Various RPs interact with viral mRNA and proteins to participate in viral protein biosynthesis and regulate the replication and infection of virus in host cells. Most interactions are essential for viral translation and replication, which promote viral infection and accumulation, whereas the minority represents the defense signaling of host cells by activating immune pathway against virus. RPs provide a new platform for antiviral therapy development, however, at present, antiviral therapeutics with RPs involving in virus infection as targets is limited, and exploring antiviral strategy based on RPs will be the guides for further study.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
11
|
Hantavirus RdRp Requires a Host Cell Factor for Cap Snatching. J Virol 2019; 93:JVI.02088-18. [PMID: 30541836 DOI: 10.1128/jvi.02088-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
The hantavirus RNA-dependent RNA polymerase (RdRp) snatches 5' capped mRNA fragments from the host cell transcripts and uses them as primers to initiate transcription and replication of the viral genome in the cytoplasm of infected cells. Hantavirus nucleocapsid protein (N protein) binds to the 5' caps of host cell mRNA and protects them from the attack of cellular decapping machinery. N protein rescues long capped mRNA fragments in cellular P bodies that are later processed by an unknown mechanism to generate 10- to 14-nucleotide-long capped RNA primers with a 3' G residue. Hantavirus RdRp has an N-terminal endonuclease domain and a C-terminal uncharacterized domain that harbors a binding site for the N protein. The purified endonuclease domain of RdRp nonspecifically degraded RNA in vitro It is puzzling how such nonspecific endonuclease activity generates primers of appropriate length and specificity during cap snatching. We fused the N-terminal endonuclease domain with the C-terminal uncharacterized domain of the RdRp. The resulting NC mutant, with the assistance of N protein, generated capped primers of appropriate length and specificity from a test mRNA in cells. Bacterially expressed and purified NC mutant and N protein required further incubation with the lysates of human umbilical vein endothelial cells (HUVECs) for the specific endonucleolytic cleavage of a test mRNA to generate capped primers of appropriate length and defined 3' terminus in vitro Our results suggest that an unknown host cell factor facilitates the interaction between N protein and NC mutant and brings the N protein-bound capped RNA fragments in close proximity to the endonuclease domain of the RdRp for specific cleavage at a precise length from the 5' cap. These studies provide critical insights into the cap-snatching mechanism of cytoplasmic viruses and have revealed potential new targets for their therapeutic intervention.IMPORTANCE Humans acquire hantavirus infection by the inhalation of aerosolized excreta of infected rodent hosts. Hantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with mortality rates of 15% and 50%, respectively (1). Annually 150,000 to 200,000 cases of hantavirus infections are reported worldwide, for which there is no treatment at present. Cap snatching is an early event in the initiation of virus replication in infected hosts. Interruption in cap snatching will inhibit virus replication and will likely improve the prognosis of the hantavirus disease. Our studies provide mechanistic insight into the cap-snatching mechanism and demonstrate the requirement of a host cell factor for successful cap snatching. Identification of this host cell factor will reveal a novel therapeutic target for combating this viral illness.
Collapse
|
12
|
Wang B, Duan X, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. The association of ribosomal protein L18 (RPL18) with infectious bursal disease virus viral protein VP3 enhances viral replication. Virus Res 2017; 245:69-79. [PMID: 29273342 DOI: 10.1016/j.virusres.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). IBDV VP3 is a multifunctional protein playing a key role in virus assembly and pathogenesis. To investigate the role of VP3 in pathogenesis, we transfected DF-1 cells with pRK5-FLAG-vp3 and found that VP3 enhanced type I interferon expression and suppressed IBDV replication. Furthermore we found that VP3 interacted with chicken Ribosomal Protein L18 (chRPL18) in host cells and knockdown of chRPL18 by RNAi significantly promoted Type I interferon expression and inhibited IBDV replication. Moreover, our data show that chicken double-stranded RNA-activated protein kinase (chPKR) interacted with both VP3 and chRPL18. Thus chRPL18 in association with VP3 and chPKR affects viral replication.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Reuter M, Krüger DH. The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein. Virus Genes 2017; 54:5-16. [PMID: 29159494 DOI: 10.1007/s11262-017-1522-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
The nucleocapsid (N) protein of hantaviruses represents an impressive example of a viral multifunctional protein. It encompasses properties as diverse as genome packaging, RNA chaperoning, intracellular protein transport, DNA degradation, intervention in host translation, and restricting host immune responses. These functions all rely on the capability of N to interact with RNA and other viral and cellular proteins. We have compiled data on the N protein of different hantavirus species together with information of the recently published three-dimensional structural data of the protein. The array of diverse functional activities accommodated in the hantaviral N protein goes far beyond to be a static structural protein and makes it an interesting target in the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Detlev H Krüger
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
14
|
Crimean-Congo hemorrhagic fever virus nucleocapsid protein has dual RNA binding modes. PLoS One 2017; 12:e0184935. [PMID: 28922369 PMCID: PMC5602631 DOI: 10.1371/journal.pone.0184935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Crimean Congo hemorrhagic fever, a zoonotic viral disease, has high mortality rate in humans. There is currently no vaccine for Crimean Congo hemorrhagic fever virus (CCHFV) and chemical interventions are limited. The three negative sense genomic RNA segments of CCHFV are specifically encapsidated by the nucleocapsid protein into three ribonucleocapsids, which serve as templates for the viral RNA dependent RNA polymerase. Here we demonstrate that CCHFV nucleocapsid protein has two distinct binding modes for double and single strand RNA. In the double strand RNA binding mode, the nucleocapsid protein preferentially binds to the vRNA panhandle formed by the base pairing of complementary nucleotides at the 5’ and 3’ termini of viral genome. The CCHFV nucleocapsid protein does not have RNA helix unwinding activity and hence does not melt the duplex vRNA panhandle after binding. In the single strand RNA binding mode, the nucleocapsid protein does not discriminate between viral and non-viral RNA molecules. Binding of both vRNA panhandle and single strand RNA induce a conformational change in the nucleocapsid protein. Nucleocapsid protein remains in a unique conformational state due to simultaneously binding of structurally distinct vRNA panhandle and single strand RNA substrates. Although the role of dual RNA binding modes in the virus replication cycle is unknown, their involvement in the packaging of viral genome and regulation of CCHFV replication in conjunction with RdRp and host derived RNA regulators is highly likely.
Collapse
|
15
|
Salim NN, Ganaie SS, Roy A, Jeeva S, Mir MA. Targeting a Novel RNA-Protein Interaction for Therapeutic Intervention of Hantavirus Disease. J Biol Chem 2016; 291:24702-24714. [PMID: 27733686 DOI: 10.1074/jbc.m116.750729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
An evolutionarily conserved sequence at the 5' terminus of hantaviral genomic RNA plays an important role in viral transcription initiation and packaging of the viral genome into viral nucleocapsids. Interaction of viral nucleocapsid protein (N) with this conserved sequence facilitates mRNA translation by a unique N-mediated translation strategy. Whereas this evolutionarily conserved sequence facilitates virus replication with the assistance of N in eukaryotic hosts having multifaceted antiviral defense, we demonstrate its interaction with N presents a novel target for therapeutic intervention of hantavirus disease. Using a high throughput screening approach, we identified three lead inhibitors that bind and induce structural perturbations in N. The inhibitors interrupt N-RNA interaction and abrogate both viral genomic RNA synthesis and N-mediated translation strategy without affecting the canonical translation machinery of the host cell. The inhibitors are well tolerated by cells and inhibit hantavirus replication with the same potency as ribavarin, a commercially available antiviral. We report the identification of a unique chemical scaffold that disrupts a critical RNA-protein interaction in hantaviruses and holds promise for the development of the first anti-hantaviral therapeutic with broad spectrum antiviral activity.
Collapse
Affiliation(s)
- Nilshad N Salim
- From the Kansas University Medical Center, Kansas City, Kansas 66160
| | - Safder S Ganaie
- From the Kansas University Medical Center, Kansas City, Kansas 66160
| | - Anuradha Roy
- the University of Kansas, Lawrence, Kansas 66045, and
| | - Subbiah Jeeva
- the College of Veterinary Medicine, Western University of Health Sciences, Pomona, California 91766
| | - Mohammad A Mir
- the College of Veterinary Medicine, Western University of Health Sciences, Pomona, California 91766.
| |
Collapse
|
16
|
Shen CL, Liu CD, You RI, Ching YH, Liang J, Ke L, Chen YL, Chen HC, Hsu HJ, Liou JW, Kieff E, Peng CW. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function. Proc Natl Acad Sci U S A 2016; 113:2229-34. [PMID: 26858444 PMCID: PMC4776490 DOI: 10.1073/pnas.1525444113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Der Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Jun Liang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Liangru Ke
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Ya-Lin Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hong-Chi Chen
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Je-Wen Liou
- Institute of Biochemical Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan
| | - Elliott Kieff
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115;
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; Department of Life Sciences, Tzu Chi University, Sec. 3, Hualien 97004, Taiwan;
| |
Collapse
|
17
|
Ding B, Qin Y, Chen M. Nucleocapsid proteins: roles beyond viral RNA packaging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:213-26. [PMID: 26749541 PMCID: PMC7169677 DOI: 10.1002/wrna.1326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form NC–RNA complexes, which act as a template and are essential for viral replication and transcription. Beyond packaging viral RNA, NCs also play important roles in virus replication, transcription, assembly, and budding by interacting with viral and host cellular proteins. Additionally, NCs can inhibit interferon signaling response and function in cell stress response, such as inducing apoptosis. Finally, NCs can be the target of vaccines, benefiting from their conserved gene sequences. Here, we summarize important findings regarding the additional functions of NCs as much more than structural RNA‐binding proteins, with specific emphasis on (1) their association with the viral life cycle, (2) their association with host cells, and (3) as ideal candidates for vaccine development. WIREs RNA 2016, 7:213–226. doi: 10.1002/wrna.1326 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications Translation > Translation Regulation
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation. J Virol 2015; 90:1048-61. [PMID: 26559827 PMCID: PMC4702685 DOI: 10.1128/jvi.02523-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/24/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and in multiple biological functions. NP is also the exclusive target for the serological diagnoses. This work reveals the structure of hantavirus NP, furthering the knowledge of hantavirus RNP formation, revealing the relationship between hantavirus NP and serological specificity and raising the potential for the development of new diagnosis and therapeutics targeting hantavirus infection.
Collapse
|
19
|
Hover S, King B, Hall B, Loundras EA, Taqi H, Daly J, Dallas M, Peers C, Schnettler E, McKimmie C, Kohl A, Barr JN, Mankouri J. Modulation of Potassium Channels Inhibits Bunyavirus Infection. J Biol Chem 2015; 291:3411-22. [PMID: 26677217 PMCID: PMC4751384 DOI: 10.1074/jbc.m115.692673] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.
Collapse
Affiliation(s)
- Samantha Hover
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT
| | - Barnabas King
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH
| | - Bradley Hall
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT
| | - Eleni-Anna Loundras
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT
| | - Hussah Taqi
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT
| | - Janet Daly
- Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2RD
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading RG6 6AP, and
| | - Chris Peers
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Scotland, Glasgow G61 1QH, United Kingdom
| | - Clive McKimmie
- MRC-University of Glasgow Centre for Virus Research, Scotland, Glasgow G61 1QH, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Scotland, Glasgow G61 1QH, United Kingdom
| | - John N Barr
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT,
| | - Jamel Mankouri
- From the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT,
| |
Collapse
|
20
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
21
|
Ribosomal protein S19-binding domain provides insights into hantavirus nucleocapsid protein-mediated translation initiation mechanism. Biochem J 2015; 464:109-21. [PMID: 25062117 DOI: 10.1042/bj20140449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hantaviral zoonotic diseases pose a significant threat to human health due to the lack of potential antiviral therapeutics or a vaccine against hantaviruses. N (Sin Nombre hantavirus nucleocapsid protein) augments mRNA translation. N binds to both the mRNA 5' cap and 40S ribosomal subunit via RPS19 (ribosomal protein S19). N with the assistance of the viral mRNA 5'-UTR preferentially favours the translation of a downstream ORF. We identified and characterized the RPS19-binding domain at the N-terminus of N. Its deletion did not influence the secondary structure, but affected the conformation of trimeric N molecules. The N variant lacking the RPS19-binding region was able to bind both the mRNA 5' cap and panhandle-like structure, formed by the termini of viral genomic RNA. In addition, the N variant formed stable trimers similar to wild-type N. Use of this variant in multiple experiments provided insights into the mechanism of ribosome loading during N-mediated translation strategy. The present study suggests that N molecules individually associated with the mRNA 5' cap and RPS19 of the 40S ribosomal subunit undergo N-N interaction to facilitate the engagement of N-associated ribosomes at the mRNA 5' cap. This has revealed new targets for therapeutic intervention of hantavirus infection.
Collapse
|
22
|
The lysine residues within the human ribosomal protein S17 sequence naturally inserted into the viral nonstructural protein of a unique strain of hepatitis E virus are important for enhanced virus replication. J Virol 2015; 89:3793-803. [PMID: 25609799 DOI: 10.1128/jvi.03582-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Due largely to the lack of an efficient cell culture system for HEV, the molecular mechanisms of HEV replication and pathogenesis are poorly understood. Recently, a unique genotype 3 strain of HEV recovered from a chronically infected patient was adapted for growth in HepG2C3A human hepatoma cells. The adaptation of the Kernow C-1 P6 HEV to propagate in HepG2C3A cells selected for a rare virus recombinant that contains an insertion of a 171-nucleotide sequence encoding amino acids 21 to 76 of the human ribosomal protein S17 (RPS17) within the hypervariable region (HVR) of the HEV ORF1 protein. When the RPS17 insertion was placed into a strain of genotype 1 HEV which infects only humans, it expanded the host range of the virus, allowing it to infect cell lines from multiple animal species, including cow, dog, cat, chicken, and hamster. In this study, we utilized forward and reverse genetics to attempt to define which aspects of the RPS17 insertion allow for the ability of the Kernow C-1 P6 HEV to adapt in cell culture and allow for expanded host tropism. We demonstrate that the RPS17 sequence insertion in HEV bestows novel nuclear/nucleolar trafficking capabilities to the ORF1 protein of Kernow P6 HEV and that lysine residues within the RPS17 insertion, but not nuclear localization of the ORF1 protein, correlate with the enhanced replication of the HEV Kernow C-1 P6 strain. The results from this study have important implications for understanding the mechanism of cross-species infection and replication of HEV. IMPORTANCE HEV is an important pathogen worldwide. The virus causes high mortality (up to 30%) in pregnant women and has been recognized to cause chronic hepatitis in immunocompromised populations. The life cycle of HEV has been understudied due to a lack of sufficient cell culture systems in which to propagate the virus. Recently, insertions and rearrangements of the hypervariable region (HVR) within the HEV genome, allowing for cell culture adaptation and expansion of the host range, have been reported. We utilized these cell culture-adapted HEV strains to assess how the HVR may be involved in virus replication and host range. We provide evidence that insertion of the RPS17 sequence in HEV likely confers nuclear trafficking capabilities to the nonstructural protein of the virus and that lysine residues within the RPS17 insertion are important for enhanced replication of the virus. These data will help to elucidate the mechanism of cross-species infection of HEV in the future.
Collapse
|
23
|
Cyclic avian mass mortality in the northeastern United States is associated with a novel orthomyxovirus. J Virol 2014; 89:1389-403. [PMID: 25392223 DOI: 10.1128/jvi.02019-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Since 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined. IMPORTANCE The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health.
Collapse
|
24
|
Antigenic properties of N protein of hantavirus. Viruses 2014; 6:3097-109. [PMID: 25123683 PMCID: PMC4147688 DOI: 10.3390/v6083097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
Abstract
Hantavirus causes two important rodent-borne viral zoonoses, hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in North and South America. Twenty-four species that represent sero- and genotypes have been registered within the genus Hantavirus by the International Committee on Taxonomy of Viruses (ICTV). Among the viral proteins, nucleocapsid (N) protein possesses an immunodominant antigen. The antigenicitiy of N protein is conserved compared with that of envelope glycoproteins. Therefore, N protein has been used for serological diagnoses and seroepidemiological studies. An understanding of the antigenic properties of N protein is important for the interpretation of results from serological tests using N antigen. N protein consists of about 430 amino acids and possesses various epitopes. The N-terminal quarter of N protein bears linear and immunodominant epitopes. However, a serotype-specific and multimerization-dependent antigenic site was found in the C-terminal half of N protein. In this paper, the structure, function, and antigenicity of N protein are reviewed.
Collapse
|
25
|
Knight JRP, Willis AE, Milner J. Active regulator of SIRT1 is required for ribosome biogenesis and function. Nucleic Acids Res 2013; 41:4185-97. [PMID: 23462953 PMCID: PMC3627601 DOI: 10.1093/nar/gkt129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Active regulator of SIRT1 (AROS) binds and upregulates SIRT1, an NAD(+)-dependent deacetylase. In addition, AROS binds RPS19, a structural ribosomal protein, which also functions in ribosome biogenesis and is implicated in multiple disease states. The significance of AROS in relation to ribosome biogenesis and function is unknown. Using human cells, we now show that AROS localizes to (i) the nucleolus and (ii) cytoplasmic ribosomes. Co-localization with nucleolar proteins was verified by confocal immunofluorescence of endogenous protein and confirmed by AROS depletion using RNAi. AROS association with cytoplasmic ribosomes was analysed by sucrose density fractionation and immunoprecipitation, revealing that AROS selectively associates with 40S ribosomal subunits and also with polysomes. RNAi-mediated depletion of AROS leads to deficient ribosome biogenesis with aberrant precursor ribosomal RNA processing, reduced 40S subunit ribosomal RNA and 40S ribosomal proteins (including RPS19). Together, this results in a reduction in 40S subunits and translating polysomes, correlating with reduced overall cellular protein synthesis. Interestingly, knockdown of AROS also results in a functionally significant increase in eIF2α phosphorylation. Overall, our results identify AROS as a factor with a role in both ribosome biogenesis and ribosomal function.
Collapse
Affiliation(s)
- John R P Knight
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | | |
Collapse
|
26
|
Abstract
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5'-m(7)G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation.
Collapse
|
27
|
Abstract
Arenaviruses are responsible for acute hemorrhagic fevers with high mortality and pose significant threats to public health and biodefense. These enveloped negative-sense RNA viruses replicate in the cell cytoplasm and express four proteins. To better understand how these proteins insinuate themselves into cellular processes to orchestrate productive viral replication, we have identified and characterized novel cytosolic structures involved in arenavirus replication and transcription. In cells infected with the nonpathogenic Tacaribe virus or the attenuated Candid#1 strain of Junín virus, we find that newly synthesized viral RNAs localize to cytosolic puncta containing the nucleoprotein (N) of the virus. Density gradient centrifugation studies reveal that these replication-transcription complexes (RTCs) are associated with cellular membranes and contain full-length genomic- and antigenomic-sense RNAs. Viral mRNAs segregate at a higher buoyant density and are likewise scant in immunopurified RTCs, consistent with their translation on bulk cellular ribosomes. In addition, confocal microscopy analysis reveals that RTCs contain the lipid phosphatidylinositol-4-phosphate and proteins involved in cellular mRNA metabolism, including the large and small ribosomal subunit proteins L10a and S6, the stress granule protein G3BP1, and a subset of translation initiation factors. Elucidating the structure and function of RTCs will enhance our understanding of virus-cell interactions that promote arenavirus replication and mitigate against host cell immunity. This knowledge may lead to novel intervention strategies to limit viral virulence and pathogenesis.
Collapse
|
28
|
Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol 2012; 86:10914-23. [PMID: 22875964 DOI: 10.1128/jvi.01555-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging tick-borne virus of the Bunyaviridae family that is responsible for a fatal human disease for which preventative or therapeutic measures do not exist. We solved the crystal structure of the CCHFV strain Baghdad-12 nucleocapsid protein (N), a potential therapeutic target, at a resolution of 2.1 Å. N comprises a large globular domain composed of both N- and C-terminal sequences, likely involved in RNA binding, and a protruding arm domain with a conserved DEVD caspase-3 cleavage site at its apex. Alignment of our structure with that of the recently reported N protein from strain YL04057 shows a close correspondence of all folds but significant transposition of the arm through a rotation of 180 degrees and a translation of 40 Å. These observations suggest a structural flexibility that may provide the basis for switching between alternative N protein conformations during important functions such as RNA binding and oligomerization. Our structure reveals surfaces likely involved in RNA binding and oligomerization, and functionally critical residues within these domains were identified using a minigenome system able to recapitulate CCHFV-specific RNA synthesis in cells. Caspase-3 cleaves the polypeptide chain at the exposed DEVD motif; however, the cleaved N protein remains an intact unit, likely due to the intimate association of N- and C-terminal fragments in the globular domain. Structural alignment with existing N proteins reveals that the closest CCHFV relative is not another bunyavirus but the arenavirus Lassa virus instead, suggesting that current segmented negative-strand RNA virus taxonomy may need revision.
Collapse
|
29
|
Saasa N, Yoshida H, Shimizu K, Sánchez-Hernández C, Romero-Almaraz MDL, Koma T, Sanada T, Seto T, Yoshii K, Ramos C, Yoshimatsu K, Arikawa J, Takashima I, Kariwa H. The N-terminus of the Montano virus nucleocapsid protein possesses broadly cross-reactive conformation-dependent epitopes conserved in rodent-borne hantaviruses. Virology 2012; 428:48-57. [DOI: 10.1016/j.virol.2012.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/19/2012] [Accepted: 03/13/2012] [Indexed: 12/01/2022]
|
30
|
Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol 2012; 93:1631-1644. [PMID: 22622328 DOI: 10.1099/vir.0.042218-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses of the genus Hantavirus, carried and transmitted by rodents and insectivores, are the exception in the vector-borne virus family Bunyaviridae, since viruses of the other genera are transmitted via arthropods. The single-stranded, negative-sense, RNA genome of hantaviruses is trisegmented into small, medium and large (S, M and L) segments. The segments, respectively, encode three structural proteins: nucleocapsid (N) protein, two glycoproteins Gn and Gc and an RNA-dependent RNA-polymerase. The genome segments, encapsidated by the N protein to form ribonucleoproteins, are enclosed inside a lipid envelope that is decorated by spikes composed of Gn and Gc. The virion displays round or pleomorphic morphology with a diameter of roughly 120-160 nm depending on the detection method. This review focuses on the structural components of hantaviruses, their interactions, the mechanisms behind virion assembly and the interactions that maintain virion integrity. We attempt to summarize recent results on the virion structure and to suggest mechanisms on how the assembly is driven. We also compare hantaviruses to other bunyaviruses with known structure.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Hilkka Lankinen
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
31
|
Ellenbecker M, Sears L, Li P, Lanchy JM, Lodmell JS. Characterization of RNA aptamers directed against the nucleocapsid protein of Rift Valley fever virus. Antiviral Res 2012; 93:330-9. [PMID: 22252167 DOI: 10.1016/j.antiviral.2012.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/21/2011] [Accepted: 01/03/2012] [Indexed: 12/23/2022]
Abstract
Nucleocapsid protein (N) is an essential RNA binding protein in many RNA viruses. During replication, N protein encapsidates viral genomic and antigenomic RNA, but not viral mRNA or other cellular RNAs. To discriminate between different species of RNA in a host cell, it is likely that N interacts with specific sequences and/or secondary structures on its target RNA. In this study, we explore the RNA binding properties of N using both natural and artificially selected RNAs as ligands. We found that N binds to RNAs that resemble the terminal panhandle structures of RVFV genomic and antigenomic RNA. Furthermore, we used SELEX to isolate RNA aptamers that bound N with high affinity and determined that N specifically recognizes and binds to GAUU and pyrimidine/guanine motifs. Interestingly, BLAST analysis revealed the presence of these motifs within the coding region of the viral genome, suggesting that N may interact with non-terminal viral RNA sequences during replication. Finally, the aptamer RNAs were used to construct a sensitive fluorescence based sensor of N binding with potential applications for drug screening and imaging methodologies.
Collapse
Affiliation(s)
- Mary Ellenbecker
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | |
Collapse
|
32
|
Macneil A, Nichol ST, Spiropoulou CF. Hantavirus pulmonary syndrome. Virus Res 2011; 162:138-47. [PMID: 21945215 DOI: 10.1016/j.virusres.2011.09.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 12/27/2022]
Abstract
Hantavirus pulmonary syndrome (HPS) is a severe disease characterized by a rapid onset of pulmonary edema followed by respiratory failure and cardiogenic shock. The HPS associated viruses are members of the genus Hantavirus, family Bunyaviridae. Hantaviruses have a worldwide distribution and are broadly split into the New World hantaviruses, which includes those causing HPS, and the Old World hantaviruses [including the prototype Hantaan virus (HTNV)], which are associated with a different disease, hemorrhagic fever with renal syndrome (HFRS). Sin Nombre virus (SNV) and Andes virus (ANDV) are the most common causes of HPS in North and South America, respectively. Case fatality of HPS is approximately 40%. Pathogenic New World hantaviruses infect the lung microvascular endothelium without causing any virus induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of HPS. This article briefly reviews the knowledge on HPS-associated hantaviruses accumulated since their discovery, less than 20 years ago.
Collapse
Affiliation(s)
- Adam Macneil
- Viral Special Pathogens Branch, Division of High-consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA
| | | | | |
Collapse
|
33
|
Walter CT, Barr JN. Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 2011; 92:2467-2484. [PMID: 21865443 DOI: 10.1099/vir.0.035105-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean-Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.
Collapse
Affiliation(s)
- Cheryl T Walter
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - John N Barr
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
34
|
Antagonistic effects of cellular poly(C) binding proteins on vesicular stomatitis virus gene expression. J Virol 2011; 85:9459-71. [PMID: 21752917 DOI: 10.1128/jvi.05179-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunoprecipitation and subsequent mass spectrometry analysis of the cellular proteins from cells expressing the vesicular stomatitis virus (VSV) P protein identified the poly(C) binding protein 2 (PCBP2) as one of the P protein-interacting proteins. To investigate the role of PCBP2 in the viral life cycle, we examined the effects of depletion or overexpression of this protein on VSV growth. Small interfering RNA-mediated silencing of PCBP2 promoted VSV replication. Conversely, overexpression of PCBP2 in transfected cells suppressed VSV growth. Further studies revealed that PCBP2 negatively regulates overall viral mRNA accumulation and subsequent genome replication. Coimmunoprecipitation and immunofluorescence microscopic studies showed that PCBP2 interacts and colocalizes with VSV P protein in virus-infected cells. The P-PCBP2 interaction did not result in reduced levels of protein complex formation with the viral N and L proteins, nor did it induce degradation of the P protein. In addition, PCBP1, another member of the poly(C) binding protein family with homology to PCBP2, was also found to interact with the P protein and inhibit the viral mRNA synthesis at the level of primary transcription without affecting secondary transcription or genome replication. The inhibitory effects of PCBP1 on VSV replication were less pronounced than those of PCBP2. Overall, the results presented here suggest that cellular PCBP2 and PCBP1 antagonize VSV growth by affecting viral gene expression and highlight the importance of these two cellular proteins in restricting virus infections.
Collapse
|