1
|
Kaushik A, Parashar S, Ambasta RK, Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer. Ageing Res Rev 2024; 96:102279. [PMID: 38521359 DOI: 10.1016/j.arr.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
E3 ligases, essential components of the ubiquitin-proteasome-mediated protein degradation system, play a critical role in cellular regulation. By covalently attaching ubiquitin (Ub) molecules to target proteins, these ligases mark them for degradation, influencing various bioprocesses. With over 600 E3 ligases identified, there is a growing realization of their potential as therapeutic candidates for addressing proteinopathies in cancer and neurodegenerative disorders (NDDs). Recent research has highlighted the need to delve deeper into the intricate roles of E3 ligases as nexus points in the pathogenesis of both cancer and NDDs. Their dysregulation is emerging as a common thread linking these seemingly disparate diseases, necessitating a comprehensive understanding of their molecular intricacies. Herein, we have discussed (i) the fundamental mechanisms through which different types of E3 ligases actively participate in selective protein degradation in cancer and NDDs, followed by an examination of common E3 ligases playing pivotal roles in both situations, emphasising common players. Moving to, (ii) the functional domains and motifs of E3 ligases involved in ubiquitination, we have explored their interactions with specific substrates in NDDs and cancer. Additionally, (iii) we have explored techniques like PROTAC, molecular glues, and other state-of-the-art methods for hijacking neurotoxic and oncoproteins. Lastly, (iv) we have provided insights into ongoing clinical trials, offering a glimpse into the evolving landscape of E3-based therapeutics for cancer and NDDs. Unravelling the intricate network of E3 ligase-mediated regulation holds the key to unlocking targeted therapies that address the specific molecular signatures of individual patients, heralding a new era in personalized medicines.
Collapse
Affiliation(s)
- Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University-Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
2
|
Khan I, Amin MA, Eklund EA, Gartel AL. Regulation of HOX gene expression in AML. Blood Cancer J 2024; 14:42. [PMID: 38453907 PMCID: PMC10920644 DOI: 10.1038/s41408-024-01004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
As key developmental regulators, HOX cluster genes have varied and context-specific roles in normal and malignant hematopoiesis. A complex interaction of transcription factors, epigenetic regulators, long non-coding RNAs and chromatin structural changes orchestrate HOX expression in leukemia cells. In this review we summarize molecular mechanisms underlying HOX regulation in clinical subsets of AML, with a focus on NPM1 mutated (NPM1mut) AML comprising a third of all AML patients. While the leukemia initiating function of the NPM1 mutation is clearly dependent on HOX activity, the favorable treatment responses in these patients with upregulation of HOX cluster genes is a poorly understood paradoxical observation. Recent data confirm FOXM1 as a suppressor of HOX activity and a well-known binding partner of NPM suggesting that FOXM1 inactivation may mediate the effect of cytoplasmic NPM on HOX upregulation. Conversely the residual nuclear fraction of mutant NPM has also been recently shown to have chromatin modifying effects permissive to HOX expression. Recent identification of the menin-MLL interaction as a critical vulnerability of HOX-dependent AML has fueled the development of menin inhibitors that are clinically active in NPM1 and MLL rearranged AML despite inconsistent suppression of the HOX locus. Insights into context-specific regulation of HOX in AML may provide a solid foundation for targeting this common vulnerability across several major AML subtypes.
Collapse
Affiliation(s)
- Irum Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Medicine at the Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Mohammed A Amin
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Medicine at the Feinberg School of Medicine, Northwestern University, Chicago, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
3
|
Lv B, Zhang XO, Pazour GJ. Arih2 regulates Hedgehog signaling through smoothened ubiquitylation and ER-associated degradation. J Cell Sci 2022; 135:jcs260299. [PMID: 35899529 PMCID: PMC9481925 DOI: 10.1242/jcs.260299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
During Hedgehog signaling, the ciliary levels of Ptch1 and Smo are regulated by the pathway. At the basal state, Ptch1 localizes to cilia and prevents the ciliary accumulation and activation of Smo. Upon binding a Hedgehog ligand, Ptch1 exits cilia, relieving inhibition of Smo. Smo then concentrates in cilia, becomes activated and activates downstream signaling. Loss of the ubiquitin E3 ligase Arih2 elevates basal Hedgehog signaling, elevates the cellular level of Smo and increases basal levels of ciliary Smo. Mice express two isoforms of Arih2 with Arih2α found primarily in the nucleus and Arih2β found on the cytoplasmic face of the endoplasmic reticulum (ER). Re-expression of ER-localized Arih2β but not nuclear-localized Arih2α rescues the Arih2 mutant phenotypes. When Arih2 is defective, protein aggregates accumulate in the ER and the unfolded protein response is activated. Arih2β appears to regulate the ER-associated degradation (ERAD) of Smo preventing excess and potentially misfolded Smo from reaching the cilium and interfering with pathway regulation.
Collapse
Affiliation(s)
- Bo Lv
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| | - Xiao-Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China200092
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
5
|
Ali MS, Panuzzo C, Calabrese C, Maglione A, Piazza R, Cilloni D, Saglio G, Pergolizzi B, Bracco E. The Giant HECT E3 Ubiquitin Ligase HERC1 Is Aberrantly Expressed in Myeloid Related Disorders and It Is a Novel BCR-ABL1 Binding Partner. Cancers (Basel) 2021; 13:cancers13020341. [PMID: 33477751 PMCID: PMC7832311 DOI: 10.3390/cancers13020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The pathological role/s of the HERC family members has recently been initiated to be explored in few solid tumors and the assessment of their transcript amount reveals that they might act as effective prognostic factors. However, evidence concerning the non-solid tumors, and especially myeloid related neoplasms, is currently lacking. In the present article for the first time we provide original data for a clear and well-defined association between the gene expression level of a giant HERC E3 ubiquitin ligase family member, HERC1, and some myeloid related disorders, namely Acute Myeloid Leukemia, Myeloproliferative neoplasms and Chronic Myeloid Leukemia. Furthermore, our findings unveil that the HERC1 protein physically interacts, likely forming a very large supramolecular complex, and it is a putative BCR-ABL1 tyrosine kinase substrate. We hope that this work will contribute to the advance of our understanding of the roles played by the giant HERCs in myeloid related neoplasms. Abstract HERC E3 subfamily members are parts of the E3 ubiquitin ligases and key players for a wide range of cellular functions. Though the involvement of the Ubiquitin Proteasome System in blood disorders has been broadly studied, so far the role of large HERCs in this context remains unexplored. In the present study we examined the expression of the large HECT E3 Ubiquitin Ligase, HERC1, in blood disorders. Our findings revealed that HERC1 gene expression was severely downregulated both in acute and in chronic myelogenous leukemia at diagnosis, while it is restored after complete remission achievement. Instead, in Philadelphia the negative myeloproliferative neoplasm HERC1 level was peculiarly controlled, being very low in Primary Myelofibrosis and significantly upregulated in those Essential Thrombocytemia specimens harboring the mutation in the calreticulin gene. Remarkably, in CML cells HERC1 mRNA level was associated with the BCR-ABL1 kinase activity and the HERC1 protein physically interacted with BCR-ABL1. Furthermore, we found that HERC1 was directly tyrosine phosphorylated by the ABL kinase. Overall and for the first time, we provide original evidence on the potential tumor-suppressing or -promoting properties, depending on the context, of HERC1 in myeloid related blood disorders.
Collapse
Affiliation(s)
- Muhammad Shahzad Ali
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Chiara Calabrese
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Alessandro Maglione
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Rocco Piazza
- Department of Health Sciences, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Giuseppe Saglio
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
- Correspondence: (B.P.); (E.B.)
| | - Enrico Bracco
- Department of Oncology, Medical School, University of Torino, 10043 Orbassano, Italy
- Correspondence: (B.P.); (E.B.)
| |
Collapse
|
6
|
Guo C, Ju QQ, Zhang CX, Gong M, Li ZL, Gao YY. Overexpression of HOXA10 is associated with unfavorable prognosis of acute myeloid leukemia. BMC Cancer 2020; 20:586. [PMID: 32571260 PMCID: PMC7310421 DOI: 10.1186/s12885-020-07088-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background HOXA family genes were crucial transcription factors involving cell proliferation and apoptosis. While few studies have focused on HOXA10 in AML. We aimed to investigate the prognostic significance of HOXA10. Methods We downloaded datasets from GEO and BeatAML database, to compare HOXA expression level between AML patients and controls. Kaplan-Meier curves were used to estimate the impact of HOXA10 expression on AML survival. The differentially expressed genes, miRNAs, lncRNAs and methylated regions between HOXA10-high and -low groups were obtained using R (version 3.6.0). Accordingly, the gene set enrichment analysis (GSEA) was accomplished using MSigDB database. Moreover, the regulatory TFs/microRNAs/lncRNAs of HOXA10 were identified. A LASSO-Cox model fitted OS to clinical and HOXA10-associated genetic variables by glmnet package. Results HOXA10 was overexpressed in AML patients than that in controls. The HOXA10-high group is significantly associated with shorter OS and DFS. A total of 1219 DEGs, 131 DEmiRs, 282 DElncRs were identified to be associated with HOXA10. GSEA revealed that 12 suppressed and 3 activated pathways in HOXA10-high group. Furthermore, the integrated regulatory network targeting HOXA10 was established. The LASSO-Cox model fitted OS to AML-survival risk scores, which included age, race, molecular risk, expression of IKZF2/LINC00649/LINC00839/FENDRR and has-miR-424-5p. The time dependent ROC indicated a satisfying AUC (1-year AUC 0.839, 3-year AUC 0.871 and 5-year AUC 0.813). Conclusions Our study identified HOXA10 overexpression as an adverse prognostic factor for AML. The LASSO-COX regression analysis revealed novel prediction model of OS with superior diagnostic utility.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|
7
|
Wang H, Shah CA, Hu L, Huang W, Platanias LC, Eklund EA. An aberrantly sustained emergency granulopoiesis response accelerates postchemotherapy relapse in MLL1-rearranged acute myeloid leukemia in mice. J Biol Chem 2020; 295:9663-9675. [PMID: 32467231 PMCID: PMC7363149 DOI: 10.1074/jbc.ra120.013206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/21/2020] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) with mixed lineage leukemia 1 (MLL1) gene rearrangement is characterized by increased expression of a set of homeodomain transcription factors, including homeobox A9 (HOXA9) and HOXA10. The target genes for these regulators include fibroblast growth factor 2 (FGF2) and Ariadne RBR E3 ubiquitin ligase 2 (ARIH2). FGF2 induces leukemia stem cell expansion in MLL1-rearranged AML. ARIH2 encodes TRIAD1, an E3 ubiquitin ligase required for termination of emergency granulopoiesis and leukemia suppressor function in MLL1-rearranged AML. Receptor tyrosine kinases (RTKs), including the FGF receptor, are TRIAD1 substrates that are possibly relevant to these activities. Using transcriptome analysis, we found increased activity of innate immune response pathways and RTK signaling in bone marrow progenitors from mice with MLL1-rearranged AML. We hypothesized that sustained RTK signaling, because of decreased TRIAD1 activity, impairs termination of emergency granulopoiesis during the innate immune response and contributes to leukemogenesis in this AML subtype. Consistent with this, we found aberrantly sustained emergency granulopoiesis in a murine model of MLL1-rearranged AML, associated with accelerated leukemogenesis. Treating these mice with an inhibitor of TRIAD1-substrate RTKs terminated emergency granulopoiesis, delayed leukemogenesis during emergency granulopoiesis, and normalized innate immune responses when combined with chemotherapy. Emergency granulopoiesis also hastened postchemotherapy relapse in mice with MLL1-rearranged AML, but remission was sustained by ongoing RTK inhibition. Our findings suggest that the physiological stress of infectious challenges may drive AML progression in molecularly defined subsets and identify RTK inhibition as a potential therapeutic approach to counteract this process.
Collapse
Affiliation(s)
- Hao Wang
- Department of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Chirag A Shah
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liping Hu
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Weiqi Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Department of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Elizabeth A Eklund
- Department of Medicine, Northwestern University, Chicago, Illinois, USA .,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
8
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
9
|
Wang S, Xue F, Li W, Shan Y, Gu X, Shen J, Ke K. Increased expression of Triad1 is associated with neuronal apoptosis after intracerebral hemorrhage in adult rats. Int J Neurosci 2020; 130:759-769. [PMID: 31842638 DOI: 10.1080/00207454.2019.1705807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: It has been demonstrated that Triad1 (2 RING fingers and double RING finger linked 1) negatively regulates myeloid cell growth and induces cell apoptosis. However, its functions in intracerebral hemorrhage (ICH) disease have not been conducted. In this study, the role of Triad1 in rat model of ICH was explored.Methods: We observe an increasing expression of Triad1 in areas adjacent to hematoma after ICH. Immunofluorescence shows that Triad1 is colocalized with neurons, while not microglia or astrocyte, indicates its correlation with neuronal activities following ICH.Results: As neuronal apoptosis is the most crucial event in ICH disease, the expression of active caspase-3 and p53 is also enhanced around the hematoma, which is consistent with Triad1 in expression tendency. In turn, Triad1 depletion in primary cortical neurons decreased the apoptosis of neurons after using Triad1 shRNA.Conclusion: We conclude that inhibition of Triad1 expression might protect the brain from secondary damage following ICH.
Collapse
Affiliation(s)
- Shuyao Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Feng Xue
- Department of Neurology, Qidong Second People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yisi Shan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xingxing Gu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Arih2 gene influences immune response and tissue development in chicken. Biosci Rep 2019; 39:BSR20190933. [PMID: 31551339 PMCID: PMC6822486 DOI: 10.1042/bsr20190933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Ariadne homolog 2 (ARIH2), as an E3 ubiquitin ligase, is one of the important factors involved in regulating biological functions, such as inflammation and skeletal muscle degeneration. In the present study, the full-length coding sequence of Arih2 gene was cloned from Hy-Line Brown chicken. The tissue transcriptional profiles of Arih2 gene at different developmental stages were detected using quantitative real-time PCR (qRT-PCR), and the Arih2 functional characteristics in immune response were analyzed. The results showed that the full-length coding sequence of Arih2 gene was 1473 bp, encoding 490 amino acids, and conservative between different species. The Arih2 gene was transcribed in various tissues at different developmental stages, and its transcriptional activities varied significantly between multiple tissues. With the development of chicken, Arih2 gene was basically up-regulated in heart, liver, kidney, skeletal muscle and glandular stomach, but fluctuated significantly in large intestine. In immune response, the transcriptional activities of Arih2 gene exhibited significant changes in the bursa, thymus and blood (P<0.05). The results showed that Arih2 might be a multifunctional gene involved in tissue development and immune response in chicken, and have a potential possible application as diagnostic marker for identifying immune response.
Collapse
|
11
|
HoxA10 Facilitates SHP-1-Catalyzed Dephosphorylation of p38 MAPK/STAT3 To Repress Hepatitis B Virus Replication by a Feedback Regulatory Mechanism. J Virol 2019; 93:JVI.01607-18. [PMID: 30674631 DOI: 10.1128/jvi.01607-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCE Two billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.
Collapse
|
12
|
Hasan S, Naqvi AR, Rizvi A. Transcriptional Regulation of Emergency Granulopoiesis in Leukemia. Front Immunol 2018; 9:481. [PMID: 29593731 PMCID: PMC5858521 DOI: 10.3389/fimmu.2018.00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Neutropenic conditions are prevalent in leukemia patients and are often associated with increased susceptibility to infections. In fact, emergency granulopoiesis (EG), a process regulating neutrophil homeostasis in inflammatory conditions and infections, may occur improperly in leukemic conditions, leading to reduced neutrophil counts. Unfortunately, the mechanisms central to dysfunctional EG remain understudied in both leukemia patients and leukemic mouse models. However, despite no direct studies on EG response in leukemia are reported, recently certain transcription factors (TFs) have been found to function at the crossroads of leukemia and EG. In this review, we present an update on TFs that can potentially govern the fate of EG in leukemia. Transcriptional control of Fanconi DNA repair pathway genes is also highlighted, as well as the newly discovered role of Fanconi proteins in innate immune response and EG. Identifying the TFs regulating EG in leukemia and dissecting their underlying mechanisms may facilitate the discovery of therapeutic drugs for the treatment of neutropenia.
Collapse
Affiliation(s)
- Shirin Hasan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Afsar R Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Asim Rizvi
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
13
|
Wang H, Bei L, Shah CA, Huang W, Platanias LC, Eklund EA. The E3 ubiquitin ligase Triad1 influences development of Mll-Ell-induced acute myeloid leukemia. Oncogene 2018; 37:2532-2544. [PMID: 29459712 PMCID: PMC5945580 DOI: 10.1038/s41388-018-0131-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023]
Abstract
Chromosomal translocations involving the MLL1 gene characterize a poor prognosis subset of acute myeloid leukemia (AML), referred to as 11q23-AML. Transcription of the HOXA9 and HOXA10 genes is enhanced in hematopoietic stem and progenitor cells in these leukemias. We previously found the ARIH2 gene was repressed by HoxA9 in myeloid progenitors, but activated by HoxA10 during granulopoiesis. ARIH2 encodes the Triad1 protein, an anti-proliferative E3 ubiquitin ligase. In the current study, we investigate the role of Triad1 in leukemogenesis induced by an MLL1 fusion protein (Mll-Ell). We found Mll-Ell increased expression of HoxA9, HoxA10, and Triad1 because HoxA9 represses only one of two ARIH2 cis elements that are activated by HoxA10. Although Triad1 antagonized the generally pro-proliferative effects of the Mll-Ell oncoprotein, we found blocking HoxA9 and HoxA10 phosphorylation shifted the balance to ARIH2 repression in Mll-Ell+ cells. We investigated the significance of these in vitro results in a murine bone marrow transplant model. We found Triad1 knockdown significantly shortened the latency to development of AML in mice transplanted with Mll-Ell-transduced bone marrow. And, Triad1 expression fell during the prolonged AML latency period in mice transplanted with bone marrow expressing Mll-Ell alone. Our studies identify Triad1 as a leukemia suppressor in 11q23-AML. This suggests defining relevant Triad1 substrates may indicate novel therapeutic targets in this disease.
Collapse
Affiliation(s)
- Hao Wang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ling Bei
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Chirag A Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Weiqi Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leonidas C Platanias
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
14
|
Shah CA, Bei L, Wang H, Altman JK, Platanias LC, Eklund EA. Cooperation between AlphavBeta3 integrin and the fibroblast growth factor receptor enhances proliferation of Hox-overexpressing acute myeloid leukemia cells. Oncotarget 2018; 7:54782-54794. [PMID: 27340869 PMCID: PMC5342381 DOI: 10.18632/oncotarget.10189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
A poor prognosis subtype of acute myeloid leukemia (AML) is characterized by increased expression of a set of homeodomain (HD) transcription factors, including HoxA9, HoxA10 and Cdx4. This encompasses AML with MLL1 gene translocations, because Mll1-fusion proteins aberrantly activate HOX transcription. We previously identified FGF2 (Fibroblast Growth Factor 2) as a target gene for HoxA9 and HoxA10 that was indirectly activated by Mll-Ell (an Mll1-fusion protein). Autocrine stimulation of Mll-Ell+ myeloid progenitor cells by Fgf2 stabilized βcatenin and increased expression of βcatenin target genes, including CDX4. Since HOXA9 and HOXA10 are Cdx4 target genes, Fgf2 indirectly augmented direct effects of Mll-Ell on these genes. ITGB3, encoding β3 integrin, is another HoxA10 target gene. In the current studies, we found activation of ITGB3 transcription in Mll-Ell+ myeloid progenitor cells via HoxA9 and HoxA10. Increased expression of αvβ3 integrin increased Syk-activation; contributing to cytokine hypersensitivity. However, inhibiting Fgf-R partly reversed αvβ3 activity in Mll-Ell+ progenitor cells by decreasing ITGB3 promoter activity in a βcatenin- and Cdx4-dependent manner. Inhibitors of Fgf-R or Syk impaired proliferation of CD34+ bone marrow cells from AML subjects with increased Hox-expression; with a greater combined effect. These studies identified a rational therapeutic approach to this AML subtype.
Collapse
Affiliation(s)
- Chirag A Shah
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Ling Bei
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Hao Wang
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jessica K Altman
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Leonidas C Platanias
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| |
Collapse
|
15
|
Dove KK, Klevit RE. RING-Between-RING E3 Ligases: Emerging Themes amid the Variations. J Mol Biol 2017; 429:3363-3375. [PMID: 28827147 DOI: 10.1016/j.jmb.2017.08.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
Abstract
Covalent, reversible, post-translational modification of cellular proteins with the small modifier, ubiquitin (Ub), regulates virtually every known cellular process in eukaryotes. The process is carried out by a trio of enzymes: a Ub-activating (E1) enzyme, a Ub-conjugating (E2) enzyme, and a Ub ligase (E3) enzyme. RING-in-Between-RING (RBR) E3s constitute one of three classes of E3 ligases and are defined by a RING-HECT-hybrid mechanism that utilizes a E2-binding RING domain and a second domain (called RING2) that contains an active site Cys required for the formation of an obligatory E3~Ub intermediate. Albeit a small class, RBR E3s in humans regulate diverse cellular process. This review focuses on non-Parkin members such as HOIP/HOIL-1L (the only E3s known to generate linear Ub chains), HHARI and TRIAD1, both of which have been recently demonstrated to work together with Cullin RING E3 ligases. We provide a brief historical background and highlight, summarize, and discuss recent developments in the young field of RBR E3s. Insights reviewed here include new understandings of the RBR Ub-transfer mechanism, specifically the role of RING1 and various Ub-binding sites, brief structural comparisons among members, and different modes of auto-inhibition and activation.
Collapse
Affiliation(s)
- Katja K Dove
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
16
|
Wang H, Bei L, Shah CA, Hu L, Eklund EA. HoxA10 Terminates Emergency Granulopoiesis by Increasing Expression of Triad1. THE JOURNAL OF IMMUNOLOGY 2015; 194:5375-87. [PMID: 25895533 DOI: 10.4049/jimmunol.1401909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Expression of the E3 ubiquitin ligase Triad1 is greater in mature granulocytes than in myeloid progenitor cells. HoxA10 actives transcription of the gene encoding Triad1 (ARIH2) during myeloid differentiation, but the contribution of increased Triad1 expression to granulocyte production or function is unknown. Mice with bone marrow-specific disruption of the ARIH2 gene exhibit constitutive inflammation with tissue infiltration by granulocytes and B cells. In contrast, disruption of the HOXA10 gene in mice neither constitutively activates the innate immune response nor significantly alters steady-state granulopoiesis. This study explores the impact of HoxA10-induced Triad1 expression on emergency (stress) granulopoiesis. We found that mice with HOXA10 gene disruption exhibited an overwhelming and fatal emergency granulopoiesis response that was characterized by tissue infiltration with granulocytes, but reversed by re-expression of Triad1 in the bone marrow. We determined that HoxA9 repressed ARIH2 transcription in myeloid progenitor cells, antagonizing the effect of HoxA10 on Triad1 expression. Also, we found that differentiation-stage-specific ARIH2 transcription was regulated by the tyrosine phosphorylation states of HoxA9 and HoxA10. Our studies demonstrate a previously undescribed role for HoxA10 in terminating emergency granulopoiesis, suggesting an important contribution by Hox proteins to the innate immune response.
Collapse
Affiliation(s)
- Hao Wang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Ling Bei
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612
| | - Chirag A Shah
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Elizabeth A Eklund
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612
| |
Collapse
|
17
|
Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep 2014; 15:142-54. [PMID: 24469331 PMCID: PMC3989860 DOI: 10.1002/embr.201338166] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022] Open
Abstract
The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.
Collapse
Affiliation(s)
- Judith J Smit
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| |
Collapse
|
18
|
Shah CA, Bei L, Wang H, Platanias LC, Eklund EA. The leukemia-associated Mll-Ell oncoprotein induces fibroblast growth factor 2 (Fgf2)-dependent cytokine hypersensitivity in myeloid progenitor cells. J Biol Chem 2013; 288:32490-32505. [PMID: 24089521 DOI: 10.1074/jbc.m113.496109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subset of acute myeloid leukemias (AML) with chromosomal translocations involving the MLL gene have a poor prognosis (referred to as 11q23-AML). The MLL fusion proteins that are expressed in 11q23-AML facilitate transcription of a set of HOX genes, including HOXA9 and HOXA10. Because Hox proteins are transcription factors, this suggests the possibility that Hox target genes mediate the adverse effects of MLL fusion proteins in leukemia. Identifying such Hox target genes might provide insights to the pathogenesis and treatment of 11q23-AML. In the current study we found that Mll-Ell (an MLL fusion protein) induced transcriptional activation of the FGF2 gene in a HoxA9- and HoxA10-dependent manner. FGF2 encodes fibroblast growth factor 2 (also referred to as basic fibroblast growth factor). Fgf2 influences proliferation and survival of hematopoietic stem cells and myeloid progenitor cells, and increased Fgf2-expression has been described in AMLs. We determined that expression of Mll-Ell in myeloid progenitor cells resulted in autocrine production of Fgf2 and Fgf2-dependent cytokine hypersensitivity. Therefore, our results implicated increased Fgf2 expression in progenitor proliferation and expansion in 11q23-AML. Because small molecule inhibitors of Fgf-receptors are in human clinical trials, this suggested a potential therapeutic approach to this treatment refractory leukemia.
Collapse
Affiliation(s)
- Chirag A Shah
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Ling Bei
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611; the Jesse Brown Veterans Administration Medical Center, Chicago, Illinois 60612
| | - Hao Wang
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Leonidas C Platanias
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611; the Jesse Brown Veterans Administration Medical Center, Chicago, Illinois 60612
| | - Elizabeth A Eklund
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611; the Jesse Brown Veterans Administration Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
19
|
Chile T, Fortes MAHZ, Corrêa-Giannella MLC, Brentani HP, Maria DA, Puga RD, de Paula VDJR, Kubrusly MS, Novak EM, Bacchella T, Giorgi RR. HOXB7 mRNA is overexpressed in pancreatic ductal adenocarcinomas and its knockdown induces cell cycle arrest and apoptosis. BMC Cancer 2013; 13:451. [PMID: 24088503 PMCID: PMC3851693 DOI: 10.1186/1471-2407-13-451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/26/2013] [Indexed: 01/18/2023] Open
Abstract
Background Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. Methods Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. Results Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle. Conclusion The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies.
Collapse
Affiliation(s)
- Thais Chile
- Laboratory for Cellular and Molecular Endocrinology (LIM-25), University of São Paulo Medical School, Av, Dr, Arnaldo, 455 # 4305, São Paulo, SP, 01246-903, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system. Nat Immunol 2012. [DOI: 10.1038/ni.2478] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
BAE SEUNGHEE, JUNG JINHYUK, AN INSOOK, KIM OKYEOUN, LEE MYOUNGJOO, LEE JAEHO, PARK INCHUL, LEE SUJAE, AN SUNGKWAN. TRIAD1 is negatively regulated by the MDM2 E3 ligase. Oncol Rep 2012; 28:1924-8. [DOI: 10.3892/or.2012.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/03/2012] [Indexed: 11/06/2022] Open
|
22
|
Bae S, Jung JH, Kim K, An IS, Kim SY, Lee JH, Park IC, Jin YW, Lee SJ, An S. TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation. FEBS Lett 2012; 586:3057-63. [DOI: 10.1016/j.febslet.2012.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
|
23
|
Hassink G, Slotman J, Oorschot V, Van Der Reijden BA, Monteferrario D, Noordermeer SM, Van Kerkhof P, Klumperman J, Strous GJ. Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport. Biol Open 2012; 1:607-14. [PMID: 23213454 PMCID: PMC3509441 DOI: 10.1242/bio.2012778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ubiquitin system plays an important role in trafficking of signaling receptors from the plasma membrane to lysosomes. Triad1 is a ubiquitin ligase that catalyzes the formation of poly-ubiquitin chains linked via lysine-48 as well as lysine-63 residues. We show that depletion of Triad1 affects the sorting of both growth hormone and epidermal growth factor. Triad1-depleted cells accumulate both ligands in endosomes. While fluid phase transport to the lysosomes is reduced in the absence of Triad1, growth hormone receptor can recycle back to the plasma membrane together with transferrin. Using immune electron microscopy we show that Triad1 depletion results in enlarged endosomes with enlarged and irregular shaped intraluminal vesicles. The endosomes display prominent clathrin coats and show increased levels of growth hormone label. We conclude that Triad1 is required for the proper function of multivesicular bodies.
Collapse
Affiliation(s)
- Gerco Hassink
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht , 3584 CX Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shah CA, Bei L, Wang H, Platanias LC, Eklund EA. HoxA10 protein regulates transcription of gene encoding fibroblast growth factor 2 (FGF2) in myeloid cells. J Biol Chem 2012; 287:18230-48. [PMID: 22493287 DOI: 10.1074/jbc.m111.328401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HoxA10 is a member of a highly conserved family of homeodomain transcription factors that are involved in definitive hematopoiesis and implicated in the pathogenesis of acute myeloid leukemia (AML). During normal hematopoiesis, HoxA10 facilitates myeloid progenitor expansion and impedes myeloid differentiation. To better understand the molecular mechanisms that control these events, we have been identifying and characterizing HoxA10 target genes. In this study, we identified the gene encoding fibroblast growth factor 2 (Fgf2 or basic fibroblast growth factor) as a target gene that is relevant to the biological effects of HoxA10. We identified two cis elements in the proximal FGF2 promoter that are activated by HoxA10 in myeloid progenitor cells and differentiating phagocytes. We determined that Fgf2 expression and secretion are regulated in a HoxA10-dependent manner in these cells. We found that increased Fgf2 production by HoxA10-overexpressing myeloid progenitor cells induced a phosphoinositol 3-kinase-dependent increase in β-catenin protein. This resulted in autocrine stimulation of proliferation in HoxA10-overexpressing cells and hypersensitivity to other cytokines that share this pathway. Therefore, these studies identified expression of Fgf2 as a mechanism by which HoxA10 controls the size of the myeloid progenitor population. These studies also suggested that aberrant production of Fgf2 may contribute to leukemogenesis in the subset of AML with dysregulated Hox expression. Therapeutic targeting of Fgf2-stimulated signaling pathways might be a rational approach to this poor prognosis subset of AML.
Collapse
Affiliation(s)
- Chirag A Shah
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
25
|
Pietschmann K, Buchwald M, Müller S, Knauer SK, Kögl M, Heinzel T, Krämer OH. Differential regulation of PML-RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int J Biochem Cell Biol 2011; 44:132-8. [PMID: 22037423 DOI: 10.1016/j.biocel.2011.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system plays an important role in normal and malignant hematopoiesis and relies on the concerted action of three enzyme families. The E2 ubiquitin conjugase UBCH8 (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins. One such protein is the leukemia fusion protein PML-RARα (promyelocytic leukemia-retinoic acid receptorα) that is associated with acute promyelocytic leukemia. A limited number of UBCH8 interaction partners that participate in the UBCH8-dependent depletion of cancer-relevant proteins are known. We report here that TRIAD1 (two RING fingers and DRIL [double RING finger linked] 1), an E3 ubiquitin ligase relevant for the clonogenic growth of myloid progenitors, binds UBCH8 as well as PML-RARα. Moreover, there is concurrent induction of TRIAD1 and UBCH8 upon combinatorial treatment of acute promyelocytic leukemia cells with the pro-apoptotic epigenetic modulator valproic acid and the differentiation inducing agent all-trans retinoic acid. However, in sharp contrast to SIAH1/SIAH2 and UBCH8, TRIAD1 binding to PML-RARα has no effect on its turnover. In summary, our data exclude TRIAD1 as crucial regulator of the leukemic determinant PML-RARα, but highlight the prominence of the UBCH8/SIAH axis in PML-RARα degradation.
Collapse
Affiliation(s)
- Kristin Pietschmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|