1
|
Saveleva EE, Tyutrina ES, Nakanishi T, Tamai I, Salmina AB. Inhibitors of the Apical Sodium-Dependent Bile Acid Transporter (ASBT) as Promising Drugs. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2021; 15:16-26. [DOI: 10.1134/s1990750821010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2025]
|
2
|
Ayewoh EN, Czuba LC, Nguyen TT, Swaan PW. S-acylation status of bile acid transporter hASBT regulates its function, metabolic stability, membrane expression, and phosphorylation state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183510. [PMID: 33189717 DOI: 10.1016/j.bbamem.2020.183510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is the rate-limiting step of intestinal bile acid absorption in the enterohepatic circulation system of bile acids. Therefore, the regulation and stability of hASBT is vital in maintaining bile acid and cholesterol homeostasis and may serve as a potential target for cholesterol-related disorders. We hypothesized that post-translational mechanisms that govern hASBT function and regulation will provide novel insight on intestinal bile acid transport and homeostasis. In this study, we confirm the S-acylation status of hASBT via acyl biotin exchange in COS-1 cells and its impact on hASBT expression, function, kinetics, and protein stability. Using the acylation inhibitor, 2-bromopalmitate, we show that S-acylation is an important modification which modulates the function, surface expression, and maximal transporter flux (Jmax) of hASBT. By means of proteasome inhibitors, S-acylated hASBT was found to be cleared via the proteasome whereas a reduction in the palmitoylation status of hASBT resulted in rapid proteolytic degradation compared to the unmodified transporter. Screening of cysteine mutants in and or near transmembrane domains, some of which are exposed to the cytosol, confirmed Cys314 to be the predominate S-acylated residue. Lastly, we show that S-acylation was reduced in a mutant form of hASBT devoid of cytosolic facing tyrosine residues, suggestive of crosstalk between acylation and phosphorylation post-translational modification mechanisms.
Collapse
Affiliation(s)
- Ebehiremen N Ayewoh
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Thao T Nguyen
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Saveleva EE, Tyutrina ES, Nakanishi T, Tamai I, Salmina AB. [The inhibitors of the apical sodium-dependent bile acid transporter (ASBT) as promising drugs]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:185-195. [PMID: 32588824 DOI: 10.18097/pbmc20206603185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of the apical sodium-dependent bile acid transporter (ASBT, also known as IBAT - ileal bile acid transporter, SLC10A2) leads to disruption of the enterohepatic circulation of bile acids and their excretion with fecal masses. This is accompanied by cholesterol utilization for synthesis of new bile acids. ASBT inhibitors are promising drugs for the treatment of such diseases as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, type 2 diabetes mellitus, necrotic enterocolitis, chronic constipation, atherosclerosis. To date the most known chemically synthesized inhibitors are: A3309, SHP626, A4250, 264W94, GSK2330672, SC-435. All of them are at different stages of clinical trials, which confirm the high efficacy and good tolerance of these inhibitors. Current trends in this field also include directed chemical synthesis of ASBT inhibitors, as well as their search among substances of plant origin.
Collapse
Affiliation(s)
- E E Saveleva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E S Tyutrina
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - T Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma, Japan
| | - I Tamai
- School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - A B Salmina
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
4
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
5
|
Chothe PP, Czuba LC, Ayewoh EN, Swaan PW. Tyrosine Phosphorylation Regulates Plasma Membrane Expression and Stability of the Human Bile Acid Transporter ASBT (SLC10A2). Mol Pharm 2019; 16:3569-3576. [DOI: 10.1021/acs.molpharmaceut.9b00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paresh P. Chothe
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Lindsay C. Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Ebehiremen N. Ayewoh
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Chothe PP, Czuba LC, Moore RH, Swaan PW. Human bile acid transporter ASBT (SLC10A2) forms functional non-covalent homodimers and higher order oligomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:645-653. [PMID: 29198943 DOI: 10.1016/j.bbamem.2017.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022]
Abstract
The human apical sodium-dependent bile acid transporter, hASBT/SLC10A2, plays a central role in cholesterol homeostasis via the efficient reabsorption of bile acids from the distal ileum. hASBT has been shown to self-associate in higher order complexes, but while the functional role of endogenous cysteines has been reported, their implication in the oligomerization of hASBT remains unresolved. Here, we determined the self-association architecture of hASBT by site-directed mutagenesis combined with biochemical, immunological and functional approaches. We generated a cysteine-less form of hASBT by creating point mutations at all 13 endogenous cysteines in a stepwise manner. Although Cysless hASBT had significantly reduced function correlated with lowered surface expression, it featured an extra glycosylation site that facilitated its differentiation from wt-hASBT on immunoblots. Decreased protein expression was associated with instability and subsequent proteasome-dependent degradation of Cysless hASBT protein. Chemical cross-linking of wild-type and Cysless species revealed that hASBT exists as an active dimer and/or higher order oligomer with apparently no requirement for endogenous cysteine residues. This was further corroborated by co-immunoprecipitation of differentially tagged (HA-, Flag-) wild-type and Cysless hASBT. Finally, Cysless hASBT exhibited a dominant-negative effect when co-expressed with wild-type hASBT which validated heterodimerization/oligomerization at the functional level. Combined, our data conclusively demonstrate the functional existence of hASBT dimers and higher order oligomers irrespective of cysteine-mediated covalent bonds, thereby providing greater understanding of its topological assembly at the membrane surface.
Collapse
Affiliation(s)
- Paresh P Chothe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Lindsay C Czuba
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Robyn H Moore
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Resveratrol promotes degradation of the human bile acid transporter ASBT (SLC10A2). Biochem J 2014; 459:301-12. [PMID: 24498857 DOI: 10.1042/bj20131428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sodium/bile acid co-transporter ASBT [apical sodium-dependent bile acid transporter; SLC10A2 (solute carrier family 10 member 2)] plays a key role in the enterohepatic recycling of the bile acids and indirectly contributes to cholesterol homoeostasis. ASBT inhibitors reportedly lower plasma triglyceride levels and increase HDL (high-density lipoprotein) cholesterol levels. RSV (resveratrol), a major constituent of red wine, is known to lower LDL (low-density lipoprotein) cholesterol levels, but its mechanism of action is still unclear. In the present study, we investigated the possible involvement of ASBT in RSV-mediated cholesterol-lowering effects. We demonstrate that RSV inhibits ASBT protein expression and function via a SIRT1 (sirtuin 1)-independent mechanism. The effect was specific to ASBT since other transporters involved in cholesterol homoeostasis, NTCP (SLC10A1), OSTα (SLC51A) and ABCG1 (ATP-binding cassette G1), remained unaffected. ASBT inhibition by RSV was reversed by proteasome inhibitors (MG-132 and lactacystin) and the ubiquitin inhibitor LDN57444, suggesting involvement of the ubiquitin-proteasome pathway. Immunoprecipitation revealed high levels of ubiquitinated ASBT after RSV treatment. Phosphorylation at Ser335 and Thr339 was shown previously to play a role in proteosomal degradation of rat ASBT. However, mutation at corresponding residues in rat ASBT revealed that phosphorylation does not contribute to RSV-mediated degradation of ASBT. Combined, our data indicate that RSV promotes ASBT degradation via the ubiquitin-proteasome pathway without requiring phosphorylation. We conclude that regulation of ASBT expression by RSV may have clinical relevance with regard to the observed cholesterol-lowering effects of RSV.
Collapse
|
8
|
Al-Hilal TA, Park J, Alam F, Chung SW, Park JW, Kim K, Kwon IC, Kim IS, Kim SY, Byun Y. Oligomeric bile acid-mediated oral delivery of low molecular weight heparin. J Control Release 2013; 175:17-24. [PMID: 24333628 DOI: 10.1016/j.jconrel.2013.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/19/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Intestinal transporters are limited to the transport of small molecular substrates. Here, we describe the development of apical sodium-dependent bile acid transporter (ASBT)-targeted high-affinity oligomeric bile acid substrates that mediate the transmembrane transport of low molecular weight heparin (LMWH). Several oligomers of deoxycholic acid (oligoDOCA) were synthesized to investigate the substrate specificity of ASBT. To see the binding of oligoDOCA on the substrate-binding pocket of ASBT, molecular docking was used and the dissociation rate constants (KD) were measured using surface plasmon resonance. The KD for tetrameric DOCA (tetraDOCA) was 50-fold lower than that for monomeric DOCA, because tetraDOCA interacted with several hydrophobic grooves in the substrate-binding pocket of ASBT. The synthesized oligoDOCA compounds were subsequently chemically conjugated to macromolecular LMWH. In vitro, tetraDOCA-conjugated LMWH (LHe-tetraD) had highest selectivity for ASBT during its transport. Orally administered LHe-tetraD showed remarkable systemic anticoagulation activity and high oral bioavailability of 33.5±3.2% and 19.9±2.5% in rats and monkeys, respectively. Notably, LHe-tetraD successfully prevented thrombosis in a rat model of deep vein thrombosis. These results represent a major advancement in ASBT-mediated LMWH delivery and may facilitate administration of many important therapeutic macromolecules through a non-invasive oral route.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Jooho Park
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Farzana Alam
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Seung Woo Chung
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Jin Woo Park
- College of Pharmacy, Mokpo National University, Mokpo 534-729, South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, South Korea
| | - Sang Yoon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea; Department of Otolaryngology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736, South Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
9
|
Sabit H, Mallajosyula SS, MacKerell AD, Swaan PW. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation. J Biol Chem 2013; 288:32394-32404. [PMID: 24045943 DOI: 10.1074/jbc.m113.518555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is responsible for intestinal reabsorption of bile acids and plays a key role in cholesterol homeostasis. We used a targeted and systematic approach to delineate the role of highly conserved transmembrane helix 2 on the expression and function of hASBT. Cysteine mutation significantly depressed transport activity for >60% of mutants without affecting cell surface localization of the transporter. All mutants were inaccessible toward chemical modification by membrane-impermeant MTSET reagent, strongly suggesting that transmembrane 2 (TM2) plays an indirect role in bile acid substrate translocation. Both bile acid uptake and sodium dependence of TM2 mutants revealed a distinct α-helical periodicity. Kinetic studies with conservative and non-conservative mutants of sodium sensitive residues further underscored the importance of Gln(75), Phe(76), Met(79), Gly(83), Leu(86), Phe(90), and Asp(91) in hASBT function. Computational analysis indicated that Asp(91) may coordinate with sodium during the transport cycle. Combined, our data propose that a consortium of sodium-sensitive residues along with previously reported residues (Thr(134), Leu(138), and Thr(149)) from TM3 may form the sodium binding and translocation pathway. Notably, residues Gln(75), Met(79), Thr(82), and Leu(86) from TM2 are highly conserved in TM3 of a putative remote bacterial homologue (ASBTNM), suggesting a universal mechanism for the SLC10A transporter family.
Collapse
Affiliation(s)
- Hairat Sabit
- From the Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Sairam S Mallajosyula
- From the Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D MacKerell
- From the Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Peter W Swaan
- From the Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
10
|
The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 2013; 34:252-69. [PMID: 23506869 DOI: 10.1016/j.mam.2012.07.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term "sodium bile salt cotransporting family" was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. Explicitly, SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family.
Collapse
|
11
|
Moore RH, Chothe P, Swaan PW. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2. Biochemistry 2013; 52:5117-24. [PMID: 23815591 PMCID: PMC3812428 DOI: 10.1021/bi400028q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2), primarily expressed in the ileum, is involved in both the recycling of bile acids and cholesterol homeostasis. In this study, the structure-function relationship of transmembrane domain 5 (TM5) residues involved in transport is elucidated. Cysteine scanning mutagenesis of each consecutive residue on TM5 resulted in 96% of mutants having a significantly decreased transport activity, although each was expressed at the cell surface. Specifically, G197 and I208 were no longer functional, and G201 and G212 functioned at a level of <10% upon cysteine mutation. Interestingly, each of these exists along one face of the helix. Studies suggest that neither G201 nor G212 is on the substrate pathway. Conservative alanine mutations of the four residues displayed a higher activity in all but G197A, indicating its functional importance. G197 and G201 form a GxxxG motif, which has been found to be important in helix-helix interactions. According to our model, G197 and G201 face transmembrane domain 4 (TM4) residues G179 and P175, respectively. Similarly, G212 faces G237, which forms part of a GxxxG domain in transmembrane domain 6 (TM6). It is possible that these GxxxG domains and their interacting partners are responsible for maintaining the structure of the helices and their interactions with one another. I205 and I208 are both in positions to anchor the GxxxG domains and direct the change in interaction of TM5 from TM4 to TM6. Combined, the results suggest that residues along TM5 are critical for ASBT function but are not directly involved in substrate translocation.
Collapse
Affiliation(s)
- Robyn H. Moore
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201
| | - Paresh Chothe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
12
|
Miyata M, Yamakawa H, Hayashi K, Kuribayashi H, Yamazoe Y, Yoshinari K. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids. Eur J Pharmacol 2013; 714:507-14. [PMID: 23872411 DOI: 10.1016/j.ejphar.2013.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/15/2013] [Accepted: 06/21/2013] [Indexed: 12/15/2022]
Abstract
The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids.
Collapse
Affiliation(s)
- Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Inside job: ligand-receptor pharmacology beneath the plasma membrane. Acta Pharmacol Sin 2013; 34:859-69. [PMID: 23685953 PMCID: PMC3703709 DOI: 10.1038/aps.2013.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/07/2013] [Indexed: 12/24/2022]
Abstract
Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon.
Collapse
|
14
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|