1
|
Shimamori Y, Tan XE, Li FY, Nishikawa Y, Watanabe S, Sasahara T, Miyanaga K, Aiba Y, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Batbold A, Nayanjin T, Lian AYS, Hossain S, Kawaguchi T, Alessa O, Kumwenda G, Sarangi J, Revilleza JEC, Baranwal P, Arbaah M, Maniruzzaman, Yi L, Duyen HTM, Sugano T, Sultana S, Faruk MO, Hidaka Y, Thu M, Shimojyo T, Kiga K, Cui L. Efficient synthesis of CRISPR-Cas13a-antimicrobial capsids against MRSA facilitated by silent mutation incorporation. Sci Rep 2024; 14:16225. [PMID: 39003336 PMCID: PMC11246472 DOI: 10.1038/s41598-024-67193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
In response to the escalating global threat of antimicrobial resistance, our laboratory has established a phagemid packaging system for the generation of CRISPR-Cas13a-antimicrobial capsids targeting methicillin-resistant Staphylococcus aureus (MRSA). However, a significant challenge arose during the packaging process: the unintentional production of wild-type phages alongside the antimicrobial capsids. To address this issue, the phagemid packaging system was optimized by strategically incorporated silent mutations. This approach effectively minimized contamination risks without compromising packaging efficiency. The study identified the indispensable role of phage packaging genes, particularly terL-terS, in efficient phagemid packaging. Additionally, the elimination of homologous sequences between the phagemid and wild-type phage genome was crucial in preventing wild-type phage contamination. The optimized phagemid-LSAB(mosaic) demonstrated sequence-specific killing, efficiently eliminating MRSA strains carrying target antibiotic-resistant genes. While acknowledging the need for further exploration across bacterial species and in vivo validation, this refined phagemid packaging system offers a valuable advancement in the development of CRISPR-Cas13a-based antimicrobials, shedding light on potential solutions in the ongoing battle against bacterial infections.
Collapse
Affiliation(s)
- Yuzuki Shimamori
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Yutaro Nishikawa
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
- EIKEN CHEMICAL CO., LTD., Nogi, Shimotsuga District, Tochigi, 329-0114, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Anujin Batbold
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Tergel Nayanjin
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Adeline Yeo Syin Lian
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Sarah Hossain
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Ola Alessa
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Geofrey Kumwenda
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Jayathilake Sarangi
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Jastin Edrian C Revilleza
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Priyanka Baranwal
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Mahmoud Arbaah
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Maniruzzaman
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Liu Yi
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Ho Thi My Duyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Takashi Sugano
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Sharmin Sultana
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Mohammad Omar Faruk
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Yuya Hidaka
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Myat Thu
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Takayuki Shimojyo
- EIKEN CHEMICAL CO., LTD., Nogi, Shimotsuga District, Tochigi, 329-0114, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City, Tochigi, 329-0498, Japan.
| |
Collapse
|
2
|
Coshic K, Maffeo C, Winogradoff D, Aksimentiev A. The structure and physical properties of a packaged bacteriophage particle. Nature 2024; 627:905-914. [PMID: 38448589 PMCID: PMC11196859 DOI: 10.1038/s41586-024-07150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.
Collapse
Affiliation(s)
- Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher Maffeo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David Winogradoff
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Dasgupta S, Thomas JA, Ray K. Mechanism of Viral DNA Packaging in Phage T4 Using Single-Molecule Fluorescence Approaches. Viruses 2024; 16:192. [PMID: 38399968 PMCID: PMC10893049 DOI: 10.3390/v16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Julie A. Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Rao VB, Fokine A, Fang Q, Shao Q. Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses 2023; 15:527. [PMID: 36851741 PMCID: PMC9958956 DOI: 10.3390/v15020527] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Bacteriophage (phage) T4 has served as an extraordinary model to elucidate biological structures and mechanisms. Recent discoveries on the T4 head (capsid) structure, portal vertex, and genome packaging add a significant body of new literature to phage biology. Head structures in unexpanded and expanded conformations show dramatic domain movements, structural remodeling, and a ~70% increase in inner volume while creating high-affinity binding sites for the outer decoration proteins Soc and Hoc. Small changes in intercapsomer interactions modulate angles between capsomer planes, leading to profound alterations in head length. The in situ cryo-EM structure of the symmetry-mismatched portal vertex shows the remarkable structural morphing of local regions of the portal protein, allowing similar interactions with the capsid protein in different structural environments. Conformational changes in these interactions trigger the structural remodeling of capsid protein subunits surrounding the portal vertex, which propagate as a wave of expansion throughout the capsid. A second symmetry mismatch is created when a pentameric packaging motor assembles at the outer "clip" domains of the dodecameric portal vertex. The single-molecule dynamics of the packaging machine suggests a continuous burst mechanism in which the motor subunits adjusted to the shape of the DNA fire ATP hydrolysis, generating speeds as high as 2000 bp/s.
Collapse
Affiliation(s)
- Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Fung HKH, Grimes S, Huet A, Duda RL, Chechik M, Gault J, Robinson C, Hendrix R, Jardine P, Conway J, Baumann C, Antson A. Structural basis of DNA packaging by a ring-type ATPase from an archetypal viral system. Nucleic Acids Res 2022; 50:8719-8732. [PMID: 35947691 PMCID: PMC9410871 DOI: 10.1093/nar/gkac647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.
Collapse
Affiliation(s)
- Herman K H Fung
- Department of Biology, University of York, York, YO10 5DD, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexis Huet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
6
|
Woodbury BM, Motwani T, Leroux MN, Barnes LF, Lyktey NA, Banerjee S, Dedeo CL, Jarrold MF, Teschke CM. Tryptophan Residues Are Critical for Portal Protein Assembly and Incorporation in Bacteriophage P22. Viruses 2022; 14:1400. [PMID: 35891382 PMCID: PMC9320234 DOI: 10.3390/v14071400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The oligomerization and incorporation of the bacteriophage P22 portal protein complex into procapsids (PCs) depends upon an interaction with scaffolding protein, but the region of the portal protein that interacts with scaffolding protein has not been defined. In herpes simplex virus 1 (HSV-1), conserved tryptophan residues located in the wing domain are required for portal-scaffolding protein interactions. In this study, tryptophan residues (W) present at positions 41, 44, 207 and 211 within the wing domain of the bacteriophage P22 portal protein were mutated to both conserved and non-conserved amino acids. Substitutions at each of these positions were shown to impair portal function in vivo, resulting in a lethal phenotype by complementation. The alanine substitutions caused the most severe defects and were thus further characterized. An analysis of infected cell lysates for the W to A mutants revealed that all the portal protein variants except W211A, which has a temperature-sensitive incorporation defect, were successfully recruited into procapsids. By charge detection mass spectrometry, all W to A mutant portal proteins were shown to form stable dodecameric rings except the variant W41A, which dissociated readily to monomers. Together, these results suggest that for P22 conserved tryptophan, residues in the wing domain of the portal protein play key roles in portal protein oligomerization and incorporation into procapsids, ultimately affecting the functionality of the portal protein at specific stages of virus assembly.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Makayla N. Leroux
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Lauren F. Barnes
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Nicholas A. Lyktey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Sanchari Banerjee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Corynne L. Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
8
|
Black LW, Yan B, Ray K. The T4 TerL Prohead Packaging Motor Does Not Drive DNA Translocation by a Proposed Dehydration Mechanism. Viruses 2020; 12:v12050522. [PMID: 32397493 PMCID: PMC7291337 DOI: 10.3390/v12050522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
A "DNA crunching" linear motor mechanism that employs a grip-and-release transient spring like compression of B- to A-form DNA has been found in our previous studies. Our FRET measurements in vitro show a decrease in distance from TerL to portal during packaging; furthermore, there is a decrease in distance between closely positioned dye pairs in the Y-stem of translocating Y-DNA that conforms to B- and A- structure. In normal translocation into the prohead the TerL motor expels all B-form tightly binding YOYO-1 dye that cannot bind A-form. The TerL motor cannot package A-form dsRNA. Our work reported here shows that addition of helper B form DNA:DNA (D:D) 20mers allows increased packaging of heteroduplex A-form DNA:RNA 20mers (D:R), evidence for a B- to A-form spring motor pushing duplex nucleic acid. A-form DNA:RNA 25mers, 30mers, and 35mers alone are efficiently packaged into proheads by the TerL motor showing that a proposed hypothetical dehydration motor mechanism operating on duplex substrates does not provide the packaging motor force. Taken together with our previous studies showing TerL motor protein motion toward the portal during DNA packaging, our present studies of short D:D and D:R duplex nucleic acid substrates strongly supports our previous evidence that the protein motor pushes rather than pulls or dehydrates duplex substrates to provide the translocation into prohead packaging force.
Collapse
Affiliation(s)
- Lindsay W. Black
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.Y.); (K.R.)
- Correspondence:
| | - Bingxue Yan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.Y.); (K.R.)
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.Y.); (K.R.)
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Ray K, Mengistu M, Orlandi C, Pazgier M, Lewis GK, DeVico AL. Concurrent Exposure of Neutralizing and Non-neutralizing Epitopes on a Single HIV-1 Envelope Structure. Front Immunol 2019; 10:1512. [PMID: 31338095 PMCID: PMC6628914 DOI: 10.3389/fimmu.2019.01512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 01/14/2023] Open
Abstract
The trimeric envelope spikes on the HIV-1 virus surface initiate infection and comprise key targets for antiviral humoral responses. Circulating virions variably present intact envelope spikes, which react with neutralizing antibodies; and altered envelope structures, which bind non-neutralizing antibodies. Once bound, either type of antibody can enable humoral effector mechanisms with the potential to control HIV-1 infection in vivo. However, it is not clear how the presentation of neutralizing vs. non-neutralizing epitopes defines distinct virus populations and/or envelope structures on single particles. Here we used single-virion fluorescence correlation spectroscopy (FCS), fluorescence resonance energy transfer (FRET), and two-color coincidence FCS approaches to examine whether neutralizing and non-neutralizing antibodies are presented by the same envelope structure. Given the spatial requirements for donor-acceptor energy transfer (≤10 nm), FRET signals generated by paired neutralizing and non-neutralizing fluorescent Fabs should occur via proximal binding to the same target antigen. Fluorescent-labeled Fabs of the neutralizing anti-gp120 antibodies 2G12 and b12 were combined with Fabs of the non-neutralizing anti-gp41 antibody F240, previously thought to mainly bind gp41 "stumps." We find that both 2G12-F240 and/or b12-F240 Fab combinations generate FRET signals on multiple types of virions in solution. FRET efficiencies position the neutralizing and non-neutralizing epitopes between 7.1 and 7.8 nm apart; potentially fitting within the spatial dimensions of a single trimer-derived structure. Further, the frequency of FRET detection suggests that at least one of such structures occurs on the majority of particles in a virus population. Thus, there is frequent, overlapping presentation of non-neutralizing and neutralizing epitope on freely circulating HIV-1 surfaces. Such information provides a broader perspective of how anti-HIV humoral immunity interfaces with circulating virions.
Collapse
Affiliation(s)
- Krishanu Ray
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Krishanu Ray
| | - Meron Mengistu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chiara Orlandi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - George K. Lewis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony L. DeVico
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Hilbert BJ, Hayes JA, Stone NP, Xu RG, Kelch BA. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. Nucleic Acids Res 2017; 45:3591-3605. [PMID: 28082398 PMCID: PMC5389665 DOI: 10.1093/nar/gkw1356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/05/2017] [Indexed: 01/07/2023] Open
Abstract
Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA.
Collapse
Affiliation(s)
- Brendan J. Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Janelle A. Hayes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas P. Stone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rui-Gang Xu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA,To whom correspondence should be addressed. Tel: +1 508 856 8322; Fax: +1 508 856 6464;
| |
Collapse
|
11
|
Waters JT, Kim HD, Gumbart JC, Lu XJ, Harvey SC. DNA Scrunching in the Packaging of Viral Genomes. J Phys Chem B 2016; 120:6200-7. [PMID: 27214211 DOI: 10.1021/acs.jpcb.6b02149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The motors that drive double-stranded DNA (dsDNA) genomes into viral capsids are among the strongest of all biological motors for which forces have been measured, but it is not known how they generate force. We previously proposed that the DNA is not a passive substrate but that it plays an active role in force generation. This "scrunchworm hypothesis" holds that the motor proteins repeatedly dehydrate and rehydrate the DNA, which then undergoes cyclic shortening and lengthening motions. These are captured by a coupled protein-DNA grip-and-release cycle to rectify the motion and translocate the DNA into the capsid. In this study, we examined the interactions of dsDNA with the dodecameric connector protein of bacteriophage ϕ29, using molecular dynamics simulations on four different DNA sequences, starting from two different conformations (A-DNA and B-DNA). In all four simulations starting with the protein equilibrated with A-DNA in the channel, we observed transitions to a common, metastable, highly scrunched conformation, designated A*. This conformation is very similar to one recently reported by Kumar and Grubmüller in much longer MD simulations on B-DNA docked into the ϕ29 connector. These results are significant for four reasons. First, the scrunched conformations occur spontaneously, without requiring lever-like protein motions often believed to be necessary for DNA translocation. Second, the transition takes place within the connector, providing the location of the putative "dehydrator". Third, the protein has more contacts with one strand of the DNA than with the other; the former was identified in single-molecule laser tweezer experiments as the "load-bearing strand". Finally, the spontaneity of the DNA-protein interaction suggests that it may play a role in the initial docking of DNA in motors like that of T4 that can load and package any sequence.
Collapse
Affiliation(s)
- James T Waters
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Yuan Y, Gao M. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component. Front Microbiol 2016; 7:745. [PMID: 27242758 PMCID: PMC4870245 DOI: 10.3389/fmicb.2016.00745] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022] Open
Abstract
Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall.
Collapse
Affiliation(s)
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| |
Collapse
|
13
|
Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 2015; 524:247-51. [PMID: 26245380 PMCID: PMC4830470 DOI: 10.1038/nature14884] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 07/08/2015] [Indexed: 01/24/2023]
Abstract
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Janine Kirstein
- Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Anna Szlachcic
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Mykhaylo Berynskyy
- Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Antonia Stank
- 1] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [2] Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Kristin Arnsburg
- Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Xuechao Gao
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annika Scior
- Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Ruedi Aebersold
- 1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | - D Lys Guilbride
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Rebecca C Wade
- 1] Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany [2] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [3] Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Matthias P Mayer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Old, new, and widely true: The bacteriophage T4 DNA packaging mechanism. Virology 2015; 479-480:650-6. [PMID: 25728298 DOI: 10.1016/j.virol.2015.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/28/2023]
Abstract
DNA packaging into empty viral procapsids by ATP-driven motor proteins applies widely among viruses. Recent fluorescence studies of phage T4 reveal: 1) the small terminase subunit (TerS) synapses pac homologs by a twin ring mechanism to gauge DNA maturation and allow packaging by the large terminase subunit (TerL); 2) translocation of linear DNA is efficient by TerL acting alone; expansion of the procapsid is controlled by the portal-terminase assembly; 3) both ends of the packaged DNA are held at the portal, showing a loop of DNA is packaged; 4) transient spring-like compression of B form to A form-like DNA accompanies translocation; 5) the C-terminal domain of TerL is docked to the portal and moves toward it when stalled; 6) a portal bound resolvase can release stalled Y-DNA compression and allow translocation in vitro; and 7) ATP powered translocation on A form dsDNA is supported by recent hexameric helicase studies.
Collapse
|
15
|
Abstract
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | |
Collapse
|
16
|
Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression. Proc Natl Acad Sci U S A 2014; 111:13319-24. [PMID: 25161284 DOI: 10.1073/pnas.1321940111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. The capsid-targeting sequence (CTS) directs virtually any protein into the procapsid. Procapsids are assembled with specific CTS-directed exogenous proteins that are encapsidated before the DNA. The capsid also can display on its surface high-affinity eukaryotic cell-binding peptides or proteins that are in fusion with small outer capsid and head outer capsid surface-decoration proteins that can be added in vivo or in vitro. In this study, we demonstrate that the site-specific recombinase cyclic recombination (Cre) targeted into the procapsid is enzymatically active within the procapsid and recircularizes linear plasmid DNA containing two terminal loxP recognition sites when packaged in vitro. mCherry expression driven by a cytomegalovirus promoter in the capsid containing Cre-circularized DNA is enhanced over linear DNA, as shown in recipient eukaryotic cells. The efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein-DNA complexes from the nanoparticles into cells have potential in numerous downstream drug and gene therapeutic applications.
Collapse
|
17
|
Padilla-Sanchez V, Gao S, Kim HR, Kihara D, Sun L, Rossmann MG, Rao VB. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine. J Mol Biol 2013; 426:1019-38. [PMID: 24126213 DOI: 10.1016/j.jmb.2013.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/17/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging.
Collapse
Affiliation(s)
- Victor Padilla-Sanchez
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| | - Song Gao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA; Marine Drug Research Institute, Huaihai Institute of Technology, Lianyungang, Jiangsu 222001, China
| | - Hyung Rae Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lei Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA.
| |
Collapse
|
18
|
Dixit AB, Ray K, Thomas JA, Black LW. The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging. Virology 2013; 446:293-302. [PMID: 24074593 DOI: 10.1016/j.virol.2013.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022]
Abstract
Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal-terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279-316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily. About 7.5nm was calculated by FCS-FRET studies employing maleimide Alexa488 dye labeled A316C proheads and gp17 CT-ReAsH supporting previous work docking the C-terminal end of the T4 terminase (gp17) closer to the N-terminal GFP-labeled portal (gp20) than the N-terminal end of the terminase. Such a terminase-portal orientation fits better to a proposed "DNA crunching" compression packaging motor and to portal determined DNA headful cutting.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108N. Greene St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
19
|
Kottadiel VI, Rao VB, Chemla YR. The dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4. Proc Natl Acad Sci U S A 2012; 109:20000-5. [PMID: 23169641 PMCID: PMC3523870 DOI: 10.1073/pnas.1209214109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
Collapse
Affiliation(s)
- Vishal I. Kottadiel
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Yann R. Chemla
- Department of Physics, University of Illinois, Urbana–Champaign, Urbana, IL 61801; and
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
20
|
Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation. Proc Natl Acad Sci U S A 2012. [PMID: 23185020 DOI: 10.1073/pnas.1214318109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.
Collapse
|
21
|
Characterization of the Holliday junction resolving enzyme encoded by the Bacillus subtilis bacteriophage SPP1. PLoS One 2012; 7:e48440. [PMID: 23119018 PMCID: PMC3485210 DOI: 10.1371/journal.pone.0048440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022] Open
Abstract
Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR). Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from PE2 and PE3 promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the PE2 operon (genes 44 and 45) showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa). G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication.
Collapse
|
22
|
Portal-large terminase interactions of the bacteriophage T4 DNA packaging machine implicate a molecular lever mechanism for coupling ATPase to DNA translocation. J Virol 2012; 86:4046-57. [PMID: 22345478 DOI: 10.1128/jvi.07197-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA packaging by double-stranded DNA bacteriophages and herpesviruses is driven by a powerful molecular machine assembled at the portal vertex of the empty prohead. The phage T4 packaging machine consists of three components: dodecameric portal (gp20), pentameric large terminase motor (gp17), and 11- or 12-meric small terminase (gp16). These components dynamically interact and orchestrate a complex series of reactions to produce a DNA-filled head containing one viral genome per head. Here, we analyzed the interactions between the portal and motor proteins using a direct binding assay, mutagenesis, and structural analyses. Our results show that a portal binding site is located in the ATP hydrolysis-controlling subdomain II of gp17. Mutations at key residues of this site lead to temperature-sensitive or null phenotypes. A conserved helix-turn-helix (HLH) that is part of this site interacts with the portal. A recombinant HLH peptide competes with gp17 for portal binding and blocks DNA translocation. The helices apparently provide specificity to capture the cognate prohead, whereas the loop residues communicate the portal interaction to the ATPase center. These observations lead to a hypothesis in which a unique HLH-portal interaction in the symmetrically mismatched complex acts as a lever to position the arginine finger and trigger ATP hydrolysis. Transiently connecting the critical parts of the motor; subdomain I (ATP binding), subdomain II (controlling ATP hydrolysis), and C-domain (DNA movement), the portal-motor interactions might ensure tight coupling between ATP hydrolysis and DNA translocation.
Collapse
|
23
|
Abstract
The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at the highest rate known and can package multiple segments. Förster resonance energy transfer-fluorescence correlation spectroscopy studies indicate that DNA gets compressed in the stalled motor and that the terminase-to-portal distance changes during translocation. Current evidence suggests a linear two-component (large terminase plus portal) translocation motor in which electrostatic forces generated by ATP hydrolysis drive DNA translocation by alternating the motor between tensed and relaxed states.
Collapse
Affiliation(s)
- Lindsay W Black
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland, USA
| | | |
Collapse
|
24
|
Cuervo A, Carrascosa JL. Viral connectors for DNA encapsulation. Curr Opin Biotechnol 2011; 23:529-36. [PMID: 22186221 DOI: 10.1016/j.copbio.2011.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 01/04/2023]
Abstract
Viral connectors are key components of the life cycle of bacteriophages and other viral systems. They participate in procapsid assembly, and they are instrumental in DNA packaging and release. Connector proteins build hollow cylindrical dodecamers that show an overall morphological similarity among different viral systems including a remarkable conserved domain in the central part of the protein. These domains build the wall of the channel forming a 24 α-helices stretch together with an α-β extension. A similar α-helical arrangement is found in other unspecific DNA translocating complexes, suggesting the existence of a common structural signature for channel formation. Preliminary experiments suggest that connectors might be ideal candidates as nanopores for synthetic applications in nanotechnology.
Collapse
Affiliation(s)
- Ana Cuervo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CNB-CSIC, c/Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
25
|
Schwartz C, Fang H, Huang L, Guo P. Sequential action of ATPase, ATP, ADP, Pi and dsDNA in procapsid-free system to enlighten mechanism in viral dsDNA packaging. Nucleic Acids Res 2011; 40:2577-86. [PMID: 22110031 PMCID: PMC3315319 DOI: 10.1093/nar/gkr841] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many cells and double-stranded DNA (dsDNA) viruses contain an AAA(+) ATPase that assembles into oligomers, often hexamers, with a central channel. The dsDNA packaging motor of bacteriophage phi29 also contains an ATPase to translocate dsDNA through a dodecameric channel. The motor ATPase has been investigated substantially in the context of the entire procapsid. Here, we report the sequential action between the ATPase and additional motor components. It is suggested that the contact of ATPase to ATP resulted in its conformational change to a higher binding affinity toward dsDNA. It was found that ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action that is speculated to push dsDNA to pass the connector channel. Our results suggest that dsDNA packaging goes through a combined effort of both the gp16 ATPase for pushing and the channel as a one-way valve to control the dsDNA translocation direction. Many packaging models have previously been proposed, and the packaging mechanism has been contingent upon the number of nucleotides packaged per ATP relative to the 10.5 bp per helical turn for B-type dsDNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five or six discrete steps of dsDNA translocation. Combination of the two distinct roles of gp16 and connector renews the perception of previous dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP.
Collapse
Affiliation(s)
- Chad Schwartz
- The School of Environmental, Energy, Biological, and Medical Engineering (SEEBME), Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
26
|
Smith DE. Single-molecule studies of viral DNA packaging. Curr Opin Virol 2011; 1:134-41. [PMID: 22440623 DOI: 10.1016/j.coviro.2011.05.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
Assembly of many dsDNA viruses involves packaging of DNA molecules into pre-assembled procapsids by portal molecular motor complexes. Techniques have recently been developed using optical tweezers to directly measure the packaging of single DNA molecules into single procapsids in real time and the forces generated by the molecular motor. Three different viruses, phages phi29, lambda, and T4, have been studied, revealing interesting similarities and differences in packaging dynamics. Single-molecule fluorescence methods have also been used to measure packaging kinetics and motor conformations. Here we review recent discoveries made using these new techniques.
Collapse
Affiliation(s)
- Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, United States.
| |
Collapse
|
27
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|