1
|
Hao K, Hu J, Wang J, Li F. Novel composite bone cement modulates inflammatory response in vitro. Sci Rep 2025; 15:8897. [PMID: 40087513 PMCID: PMC11909224 DOI: 10.1038/s41598-025-93575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
1. To evaluate the anti-inflammatory properties of enoxaparin sodium polymethylmethacrylate bone cement within the indirect co-culture model comprising endothelial cells and macrophages. 2. To investigate the impacts of inflammatory factors IL-6 and IL-10 on macrophage M2 polarisation and endothelial cell apoptosis. An indirect co-culture system of endothelial cells and macrophages was established by utilizing 1 µg/mL of lipopolysaccharide (LPS) to trigger an inflammatory response model. The experiment was categorized into 4 groups: blank control group, LPS-indicated group, PMMA + LPS group, and ES-PMMA + LPS group. Flow cytometry was performed to ascertain the apoptosis rate of endothelial cells and macrophage polarisation trend in the co-culture system. Meanwhile, ELISA, Western blotting, and immunofluorescence were adopted to measure the expression levels of Interleukin-6(IL-6), Tumour Necrosis Factor-α(TNF-α), Intercellular Cell Adhesion Molecule (ICAM), and Interleukin-10(IL-10) in cells and supernatants. In the detection of two typical polarisation proteins, CD86 and CD206, it was observed that the expression level of the CD86 protein, which indicates M1 polarisation, was elevated in the LPS-induced group in comparison to the blank control group (**P < 0.01). The expression level was found to be down-regulated in the ES-PMMA + LPS group (*P < 0.05). In contrast, the expression level of CD206 protein, which indicates the trend of M2-polarisation, was observed to be down-regulated in the LPS-induced group compared to the blank control group (***P < 0.001). Conversely, this expression level was up-regulated in the ES-PMMA + LPS group in comparison to the LPS-induced group (**P < 0.01). The expression of IL-6, TNF-α, IL-10, and ICAM was investigated in cell culture supernatants using the Elisa assay. The results showed that the LPS-induced group had higher levels of IL-6, TNF-α, and ICAM compared to the blank control group (***P < 0.001), while the LPS-induced group had lower levels of IL-10 (***P < 0.001). Additionally, the ES-PMMA + LPS-induced group showed lower levels of the aforementioned cytokines (**P < 0.01 or *P < 0.05) and higher levels of IL-10 (*P < 0.05). Western Blot and immunofluorescence results revealed that the expression of IL-6, TNF-α, and ICAM was up-regulated (***P < 0.001) and IL-10 was down-regulated (***P < 0.001) in the LPS-induced group compared with the blank control group. Compared with the LPS-induced group and PMMA + LPS group, in the ES-PMMA + LPS group, the expression of all three proteins was down-regulated (*P < 0.05 or **P < 0.01), whereas the expression of the IL-10 protein was up-regulated (***P < 0.001). The inflammatory proteins IL-6, TNF-α, and ICAM were shown to have higher fluorescence intensity in the LPS-induced group compared to the blank control group (***P < 0.001), the intensity of IL-10 was observed to be diminished (***P < 0.001). In contrast, the fluorescence intensity of IL-6, TNF-α, and ICAM was reduced in the ES-PMMA + LPS group relative to the LPS-induced group (***P < 0.001), the intensity of IL-10 was enhanced (***P < 0.001). In terms of endothelial cell apoptosis rate detection, the rate of apoptosis considerably reduced in the ES-PMMA + LPS-induced group when compared to the LPS-induced group (***P < 0.001) and rose noticeably in the LPS-induced group when compared to the blank control group (***P < 0.001). (1) In the co-culture system, ES-PMMA bone cement fulfills anti-inflammatory functions by impeding the expression of inflammatory factor IL-6 and promoting IL-10. (2) ES-PMMA bone cement facilitates the M2 polarisation response of macrophages and declines endothelial cell apoptosis within a co-culture system. (3) ES-PMMA bone cement can modify the local inflammatory environment by modulating the expression of inflammatory factors, which is potentially valuable for the application of cement-related surgery.
Collapse
Affiliation(s)
- Kangning Hao
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jie Hu
- Medical Imaging Center, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jiangyong Wang
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Fei Li
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China.
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, People's Republic of China.
| |
Collapse
|
2
|
Fan W, Fu D, Zhang L, Xiao Z, Shen X, Chen J, Qi X. Enoxaparin sodium bone cement plays an anti-inflammatory immunomodulatory role by inducing the polarization of M2 macrophages. J Orthop Surg Res 2023; 18:380. [PMID: 37221568 DOI: 10.1186/s13018-023-03865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE The implantation of PMMA bone cement results in an immune response and the release of PMMA bone cement particles causes an inflammatory cascade. Our study discovered that ES-PMMA bone cement can induce M2 polarization of macrophages, which has an anti-inflammatory immunomodulatory effect. We also delved into the molecular mechanisms that underlie this process. METHODS In this study, we designed and prepared samples of bone cement. These included PMMA bone cement samples and ES-PMMA bone cement samples, which were implanted into the back muscles of rats. At 3, 7, and 14 days after the operation, we removed the bone cement and a small amount of surrounding tissue. We then performed immunohistochemistry and immunofluorescence to observe the polarization of macrophages and the expression of related inflammatory factors in the surrounding tissues. The RAW264.7 cells were exposed to lipopolysaccharide (LPS) for 24 h to establish the macrophage inflammation model. Then, each group was treated with enoxaparin sodium medium, PMMA bone cement extract medium, and ES-PMMA bone cement extract medium, respectively, and cultured for another 24 h. We collected cells from each group and used flow cytometry to detect the expressions of CD86 and CD206 in macrophages. Additionally, we performed RT-qPCR to determine the mRNA levels of three markers of M1 macrophages (TNF-α, IL-6, iNOS) and two M2 macrophage markers (Arg-1, IL-10). Furthermore, we analyzed the expression of TLR4, p-NF-κB p65, and NF-κB p65 through Western blotting. RESULTS The immunofluorescence results indicate that the ES-PMMA group exhibited an upregulation of CD206, an M2 marker, and a downregulation of CD86, an M1 marker, in comparison to the PMMA group. Additionally, the immunohistochemistry results revealed that the levels of IL-6 and TNF-α expression were lower in the ES-PMMA group than in the PMMA group, while the expression level of IL-10 was higher in the ES-PMMA group. Flow cytometry and RT-qPCR analyses revealed that the expression of M1-type macrophage marker CD86 was significantly elevated in the LPS group compared to the NC group. Additionally, M1-type macrophage-related cytokines TNF-α, IL-6, and iNOS were also found to be increased. However, in the LPS + ES group, the expression levels of CD86, TNF-α, IL-6, and iNOS were decreased, while the expression of M2-type macrophage markers CD206 and M2-type macrophage-related cytokines (IL-10, Arg-1) were increased compared to the LPS group. In comparison to the LPS + PMMA group, the LPS + ES-PMMA group demonstrated a down-regulation of CD86, TNF-α, IL-6, and iNOS expression levels, while increasing the expression levels of CD206, IL-10, and Arg-1. Western blotting results revealed a significant decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 in the LPS + ES group when compared to the LPS group. Additionally, the LPS + ES-PMMA group exhibited a decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 levels when compared to the LPS + PMMA group. CONCLUSION ES-PMMA bone cement is more effective than PMMA bone cement in down-regulating the expression of the TLR4/NF-κB signaling pathway. Additionally, it induces macrophages to polarize towards the M2 phenotype, making it a crucial player in anti-inflammatory immune regulation.
Collapse
Affiliation(s)
- Weiye Fan
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Zhihang Xiao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Jianchao Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
3
|
Hu X, Xu L, Fu X, Huang J, Ji P, Zhang Z, Deng F, Wu X. The TiO 2-μ implant residual is more toxic than the Al 2O 3-n implant residual via blocking LAP and inducing macrophage polarization. NANOSCALE 2021; 13:8976-8990. [PMID: 33973606 DOI: 10.1039/d1nr00696g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medical device residuals cause harmful effects and diseases in the human body, such as Particle Disease (PD), but the biological interaction of different types of particles is unclear. In this study, after a biological interaction screen between different particles, we aimed to explore the mechanism of the biological interaction between different types of particles, and the effect of a proteasome inhibitor on PD. Our studies showed that the titanium oxide microscale particle (Ti-μ) was more toxic than the aluminum oxide nanoscale particle (Al-n). Al-n activated LAP, attenuated the macrophage M1 polarization, inhibited the activator of the NF-κB pathway, and blocked the secretion of inflammatory factors and apoptosis in vitro, and also prevented the inflammation tissue disorder and aseptic loosening in vivo induced by Ti-μ. What is more, Bortezomib blocked apoptosis, secretion of inflammatory factors and the activation of the NF-κB pathway induced by TiO2 micro particles. Al-n-induced autophagy could play the function in the efficient clearance of dying cells by phagocytosis, and serves in dampening M1 polarization-related pro-inflammatory responses. While the Ti alloy medical implant and devices are applied worldwide, the toxicity of Ti-μ and its interaction with Al-n could be considered in the implant design, and Bortezomib was a potential therapeutic for PD.
Collapse
Affiliation(s)
- Xiaolei Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China and Key Laboratory of Clinical Laboratory Science, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, China
| | - Ling Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, China
| | - Xuewei Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, China
| | - Jiao Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Periodontology, College of Stomatology, Chongqing Medical University, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Zhiwei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Periodontology, College of Stomatology, Chongqing Medical University, China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiaomian Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Binns R, Li W, Wu CD, Campbell S, Knoernschild K, Yang B. Effect of Ultraviolet Radiation on
Candida albicans Biofilm
on Poly(methylmethacrylate) Resin. J Prosthodont 2020; 29:686-692. [DOI: 10.1111/jopr.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Randold Binns
- Department of Restorative Dentistry College of Dentistry, UIC Chicago IL
| | - Wei Li
- Department of Pediatric Dentistry College of Dentistry, UIC Chicago IL
| | - Christine D. Wu
- Department of Pediatric Dentistry College of Dentistry, UIC Chicago IL
| | - Stephen Campbell
- Department of Restorative Dentistry College of Dentistry, UIC Chicago IL
| | - Kent Knoernschild
- Department of Restorative Dentistry College of Dentistry, UIC Chicago IL
| | - Bin Yang
- Department of Restorative Dentistry College of Dentistry, UIC Chicago IL
| |
Collapse
|
5
|
Ge J, Yang H, Chen Y, Yan Q, Wu C, Zou J. PMMA Bone Cement Acts on the Hippo/YAP Pathway To Regulate CTGF and Induce Intervertebral Disc Degeneration. ACS Biomater Sci Eng 2019; 5:3293-3302. [PMID: 33405572 DOI: 10.1021/acsbiomaterials.9b00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yufeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
6
|
Ma Y, Wang L, Zheng S, Xu J, Pan Y, Tu P, Sun J, Guo Y. Osthole inhibits osteoclasts formation and bone resorption by regulating NF-κB signaling and NFATc1 activations stimulated by RANKL. J Cell Biochem 2019; 120:16052-16061. [PMID: 31081953 DOI: 10.1002/jcb.28886] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023]
Abstract
Chinese herbal medicine Fructus Cnidii has an outstanding effect on chronic lumbar pain and impotence, also has been used against osteoporosis with high frequency. Yet, the mechanisms of osthole, a derivative of Fructus Cnidii, on osteoclasts remains barely known. In this study, it was found out that osthole (10-6 mol/L, 10-5 mol/L) had the influence of inhibiting osteoclast formation and bone resorptive activities induced by receptor activator of nuclear factor κB ligand (RANKL), rather than affecting the viability of osteoclast-like cells. Furthermore, osthole could also inhibit the messenger RNA expressions of c-Src, tartrate-resistant acid phosphatase, β3-Integrin, matrix metallopeptidase 9, and cathepsin K. The results of the mechanistic study indicated that osthole regulated the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and nuclear factor-κB (NF-κB) activations following the RANKL stimulation. These findings suggested that the inhibitory effects of osthole were associated with restraining the activations of NFATc1 and NF-κB induced by RANKL. Thus osthole can be used as a potential treatment for abnormal bone-resorption related diseases.
Collapse
Affiliation(s)
- Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Suyang Zheng
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Wang L, Guo X, Zhou W, Ding Y, Shi J, Wu X, Liu Y, Xu Y, Yang H, Geng D. Protein phosphatase 2A as a new target for downregulating osteoclastogenesis and alleviating titanium particle-induced bone resorption. Acta Biomater 2018; 73:488-499. [PMID: 29656074 DOI: 10.1016/j.actbio.2018.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/17/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022]
Abstract
Receptor activator of nuclear factor-кB ligand (RANKL)-induced osteoclastogenesis is believed to play a critical role in osteolytic diseases including peri-prosthetic osteolysis (PPO), the primary reason for implant failure and revision surgery. In this study, we observed that protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, was highly expressed in human periprosthetic interface membranes with aseptic loosening and in a murine osteolysis model induced by titanium particle irritation. PP2A inhibition effectively alleviated titanium particle-induced bone destruction at osteolytic sites. In addition, PP2A downregulation significantly decreased osteoclast numbers and RANKL expression, compared with in animals treated with only titanium. Mechanistically, a PP2A selective inhibitor or PP2A siRNA suppressed osteoclastogenesis and alleviated osteoclastic resorption by inhibiting the RANKL-induced nuclear factor-кB and c-Jun N-terminal kinase signaling pathways. Downstream NFATc1 and c-Fos expression were also substantially suppressed by PP2A inhibition or knockdown. Our findings support the importance of PP2A during osteoclastogenesis, identifying PP2A as a novel target for treating particle-induced or other osteoclast-mediated bone resorption diseases. STATEMENT OF SIGNIFICANCE Excessive osteoclast activation disrupts bone homeostasis and leads to osteoclast-mediated bone resorption diseases, such as peri-prosthetic osteolysis, regarded as the primary reason for implant failure and revision surgery. Here, we firstly demonstrated protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, was highly expressed in human periprosthetic interface membranes with aseptic loosening and murine osteolysis model. Moreover, PP2A inhibition effectively alleviated titanium particle-induced bone destruction and decreased osteoclast numbers. Meanwhile, a PP2A selective inhibitor or PP2A siRNA suppressed osteoclastogenesis and alleviated osteoclastic resorption by inhibiting the nuclear factor-кB and c-Jun N-terminal kinase signaling pathways. Thus, PP2A is involved in osteoclastogenesis and could be a promising target for regulating bone homeostasis and osteolytic responses.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaobin Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yayun Ding
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiawei Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiexing Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
8
|
Li Z, Li D, Chen X. Paeoniflorin Inhibits Receptor Activator for Nuclear Factor κB (RANK) Ligand-Induced Osteoclast Differentiation In Vitro and Particle-Induced Osteolysis In Vivo. Med Sci Monit 2018; 24:1044-1053. [PMID: 29459582 PMCID: PMC5827632 DOI: 10.12659/msm.907739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Paeoniflorin (PF), a glucoside isolated from the dried root of Paeonia lactiflora Pall, has been reported to have a number of pharmacological properties, including immunity-regulation, anticancer activities, and neuroprotective effect. However, PF’s pharmacological role in bone disorder has been seldom reported. Hence, this study was designed to investigate the effects of PF on osteoclast differentiation and osteolysis diseases. Material/Methods The bone marrow macrophages were isolated from C57BL/6 mice and incubated with RANK ligand (RANKL) and various concentrations of PF. After 5 days of incubation, tartrate-resistant acid phosphatase (+) cells and bone resorption pits were counted. Effects of PF on expression of osteoclast-specific protein and gene were investigated via Western blot, q-PCR, and immunofluorescence assay. The osteoprotective effect of PF in vivo was evaluated in a calvarial osteolysis model via micro-CT scan and histological stain. Results In vitro, PF intervention inhibited osteoclast formation and resorption activity. PF also impaired RANKL-induced NF-κB phosphorylation and immigration to the nucleus. PF suppressed osteoclast-marker protein and gene expression. In vivo, PF inhibited cobalt-chromium-molybdenum alloy particle-induced osteolysis and reduced osteoclast number in tissue slice. Conclusions PF is a potential agent against osteolysis-related diseases caused by excessive osteoclast activity.
Collapse
Affiliation(s)
- Zhuokai Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China (mainland)
| | - De Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China (mainland)
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China (mainland)
| |
Collapse
|
9
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Tortolano L, Saunier J, Hammami S, Manerlax K, Matmati H, Do B, Jubeli E, Fattal E, Yagoubi N. Restructuration kinetics of amphiphilic intraocular lenses during aging. Colloids Surf B Biointerfaces 2018; 161:420-432. [PMID: 29121615 DOI: 10.1016/j.colsurfb.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
|
11
|
Abstract
This study was aimed at exploring the effects of P2X7 receptor on BV2 microglia cell injury induced by glycoprotein gp120 (gp120) and its underlying mechanisms. We used the MTS method to study the influence of different gp120 concentrations on BV2 microglia cells, and to test the degree of cell injury in each gp120 treatment group; quantitative real-time PCR (qPCR) and Western blot were used to detect the P2X7 mRNA and receptor protein expressions. Immunocytochemistry and Western blot were used to detect the P2X7 receptor expression and P65 NF-κB, respectively. We also measured the content of TNFα, IL-1β, nitric oxide (NO) and reactive oxygen species (ROS). We found that the cell survival rate generally decreased as gp120 concentration increased, and the cell survival rate of the gp120 + Brilliant Blue G (BBG) group was higher than that of the gp120 group. Western blot and qPCR results showed that the expressions of P2X7 receptor protein and mRNA were positively dose-dependent with gp120 concentration; the results of immunocytochemistry and Western blot showed that the expressions of P2X7 receptor and P65 NF-κB in the gp120 group increased significantly compared to those of the control (Ctrl) group, but those in the gp120+BBG group decreased. Taken together, these results confirmed that the P2X7 receptor is involved in gp120-induced BV2 microglial cell injury and that the underlying mechanism may be associated with the over-activation of microglia caused by P2X7 receptor up-regulation, which leads to abundant release of inflammatory factors which exert toxic effects on the cells.
Collapse
|
12
|
Tortolano L, Hammami S, Manerlax K, Do B, Yagoubi N. RP-HPLC detection and dosage method for acrylic monomers and degradation products released from implanted medical devices. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1038:26-33. [PMID: 27776330 DOI: 10.1016/j.jchromb.2016.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Acrylic copolymers are useful in medical therapeutics. As in dental implants or intraocular lenses, acrylics are present in many medical devices or drug adjuvants. Industrial using of acrylics is still important in painting or textile manufacturing. Scientific research background has proved that acrylic suffer for depolymerized and cross-linking mechanisms under heating and photo-oxidative conditions. Those aging processes could lead to release of unreacted monomers and degradation products. We developed a new RP-HPLC method with good resolution, recovery, linearity, detection and quantification limits that is efficient for acrylic monomers quantification in in vitro and in vivo saline solution matrices. This method allows the detection of copolymer and medical devices degradation products too. Both the limit of quantification and the limit of detection for monomers and degradation products are above cytotoxic concentrations for human epithelial cells. Those biological results confirm the interest of the method for dosage of unreacted acrylics after polymerization and for the research of degradation products in body fluids as aqueous humor.
Collapse
Affiliation(s)
- Lionel Tortolano
- EA 401: Matériaux et santé, Université Paris-Saclay, UFR Pharmacie, Châtenay-Malabry F-92290, France; Gustave Roussy, Université Paris-Saclay, Département de Pharmacie Clinique, Villejuif F-94805, France.
| | - Senda Hammami
- EA 401: Matériaux et santé, Université Paris-Saclay, UFR Pharmacie, Châtenay-Malabry F-92290, France
| | - Katia Manerlax
- EA 401: Matériaux et santé, Université Paris-Saclay, UFR Pharmacie, Châtenay-Malabry F-92290, France
| | - Bernard Do
- EA 401: Matériaux et santé, Université Paris-Saclay, UFR Pharmacie, Châtenay-Malabry F-92290, France; Hôpital Universitaire Henri Mondor, AP-HP, Département de Pharmacie, Créteil F-94010, France
| | - Najet Yagoubi
- EA 401: Matériaux et santé, Université Paris-Saclay, UFR Pharmacie, Châtenay-Malabry F-92290, France
| |
Collapse
|
13
|
Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway. Sci Rep 2016; 6:36251. [PMID: 27796351 PMCID: PMC5087084 DOI: 10.1038/srep36251] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Wear-particle-induced chronic inflammation and osteoclastogenesis have been identified as critical factors of aseptic loosening. Although strontium is known to be involved in osteoclast differentiation, its effect on particle-induced inflammatory osteolysis remains unclear. In this study, we investigate the potential impact and underling mechanism of strontium on particle-induced osteoclast activation and chronic inflammation in vivo and in vitro. As expected, strontium significantly inhibited titanium particle-induced inflammatory infiltration and prevented bone loss in a murine calvarial osteolysis model. Interestingly, the number of mature osteoclasts decreased after treatment with strontium in vivo, suggesting osteoclast formation might be inhibited by strontium. Additionally, low receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α, interleukin-1β, interleukin-6 and p65 immunochemistry staining were observed in strontium-treatment groups. In vitro, strontium obviously decreased osteoclast formation, osteoclastogenesis-related gene expression, osteoclastic bone resorption and pro-inflammatory cytokine expression in bone-marrow-derived macrophages in a dose-dependent manner. Furthermore, we demonstrated that strontium impaired osteoclastogenesis by blocking RANKL-induced activation of NF-κB pathway. In conclusion, our study demonstrated that strontium can significantly inhibit particle-induced osteoclast activation and inflammatory bone loss by disturbing the NF-κB pathway, and is an effective therapeutic agent for the treatment of wear particle-induced aseptic loosening.
Collapse
|
14
|
Brulefert K, Córdova LA, Brulin B, Faucon A, Hulin P, Nedellec S, Gouin F, Passuti N, Ishow E, Heymann D. Pro-osteoclastic in vitro effect of Polyethylene-like nanoparticles: Involvement in the pathogenesis of implant aseptic loosening. J Biomed Mater Res A 2016; 104:2649-57. [PMID: 27254768 DOI: 10.1002/jbm.a.35803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Polyethylene micro-sized wear particles released from orthopedic implants promote inflammation and osteolysis; however, less is known about the bioactivity of polyethylene nanosized wear particles released from the last generation of polymer-bearing surfaces. We aim to assess the internalization of fluorescent polyethylene-like nanoparticles by both human macrophages and osteoclasts and also, to determine their effects in osteoclastogenesis in vitro. Human macrophages and osteoclasts were incubated with several ratios of fluorescent polyethylene-like nanoparticles between 1 and 72 h, and 4 h, 2, 4, 6, and 9 days, respectively. The internalization of nanoparticles was quantified by flow cytometry and followed by both confocal and video time-lapse microscopy. Osteoclast differentiation and activity was semiquantified by tartrate-resistant acid phosphatase (TRAP) staining, TRAP mRNA relative expression, and pit resorption assay, respectively. Macrophages, osteoclast precursors and mature osteoclasts internalized nanoparticles in a dose- and time-dependent manner and maintained their resorptive activity. In addition, nanoparticles significantly increased the osteoclastogenesis as shown by upregulation of the TRAP expressing cell number. We conclude that polyethylene-like nanosized wear particles promote osteoclast differentiation without alteration of bone resorptive activity of mature osteoclasts and they could be considered as important actors in periprosthetic osteolysis of the last new generation of polymer-bearing surfaces. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2649-2657, 2016.
Collapse
Affiliation(s)
- Kevin Brulefert
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Luis A Córdova
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France. .,University of Nantes, Nantes Atlantique Universities, Nantes, France. .,Department of Oral and Maxillofacial Surgery-Faculty of Dentistry, University of Chile-Conicyt, Santiago, Chile.
| | - Bénédicte Brulin
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France
| | - Adrien Faucon
- CEISAM-UMR CNRS 6230, University of Nantes, Nantes, France
| | - Philipe Hulin
- Nantes University Hospital, Nantes, France.,MicroPICell Platform, SFR Santé François Bonamy, INSERM, UMS 016-UMS CNRS 3556, Nantes, France
| | - Steven Nedellec
- Nantes University Hospital, Nantes, France.,MicroPICell Platform, SFR Santé François Bonamy, INSERM, UMS 016-UMS CNRS 3556, Nantes, France
| | - François Gouin
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Norbert Passuti
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, University of Nantes, Nantes, France
| | - Dominique Heymann
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France.,Department of Oncology and Metabolism, University of Sheffield, The Medical School, Sheffield, England, United Kingdom
| |
Collapse
|
15
|
Qin S, Chen Q, Wu H, Liu C, Hu J, Zhang D, Xu C. Effects of naringin on learning and memory dysfunction induced by gp120 in rats. Brain Res Bull 2016; 124:164-71. [PMID: 27154619 DOI: 10.1016/j.brainresbull.2016.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate the effects of naringin on learning and memory dysfunction induced by HIV-1-enveloped protein gp120 in rats, and to identify its potential mechanisms of action. Learning and memory ability was evaluated via Morris water maze test, P2X7 receptor and P65 protein expressions in the rat hippocampus were detected by western blot analysis, and P2X7 mRNA expression in the hippocampus was measured by RT-PCR. We also recorded P2X7 agonist BzATP-activated current in the hippocampus via patch clamp technique. The results showed that naringin treatment (30mg/kg/day) markedly decreased the escape latency and target platform errors of rats treated with gp120 (50ng/day), and further, that naringin treatment significantly decreased the expression of P2X7 and P65 protein and P2X7 mRNA in the hippocampus of gp120-treated rats. In addition, naringin treatment reduced BzATP-activated current in the hippocampus of gp120-treated rats. These results altogether demonstrated that naringin can improve gp120-induced learning and memory dysfunction via mechanisms involving the inhibition of P2X7 expression in the hippocampus.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Qiang Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Hui Wu
- Second Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Chenglong Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Jing Hu
- Second Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Dalei Zhang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
16
|
ZHANG ZEHUA, DAI FEI, CHENG PENG, LUO FEI, HOU TIANYONG, ZHOU QIANG, XIE ZHAO, DENG MOYUAN, XU JIANZHONG. Pitavastatin attenuates monocyte activation in response to orthopedic implant-derived wear particles by suppressing the NF-κB signaling pathway. Mol Med Rep 2015; 12:6932-8. [DOI: 10.3892/mmr.2015.4306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/07/2015] [Indexed: 11/05/2022] Open
|
17
|
Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis. Cell Tissue Res 2015; 363:427-47. [PMID: 26004143 PMCID: PMC4735257 DOI: 10.1007/s00441-015-2205-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 12/29/2022]
Abstract
Aseptic loosening secondary to periprosthetic inflammatory osteolysis results from the biological response to wear particles and is a leading cause of arthroplasty failure. The origin of this inflammatory response remains unclear. We aim to validate the definite link between endoplasmic reticulum (ER) stress and particle-induced inflammatory signaling pathways in periprosthetic osteolysis. We examine the histopathologic changes of osteolysis and the expression of specific biomarkers for ER-stress-mediated inflammatory signaling pathways (IRE1α, GRP78/Bip, c-Fos, NF-κB, ROS and Ca(2+)). Moreover, pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and osteoclastogenic molecules (VEGF, OPG, RANKL and M-CSF) were assessed in clinical interface membranes and murine periosteum tissues. We found wear particles to be capable of inducing ER stress in macrophages within clinical osteolytic interface membranes and murine osteolytic periosteum tissues and to be associated with the inflammatory response and osteoclastogenesis. Blocking ER stress with sodium 4-phenylbutyrate (4-PBA) results in a dramatic amelioration of particle-induced osteolysis and a significant reduction of ER-stress intensity. Simultaneously, this ER-stress blocker also lessens inflammatory cell infiltration, diminishes the capability of osteoclastogenesis and reduces the inflammatory response by lowering IRE1α, GRP78/Bip, c-Fos, NF-κB, ROS and Ca(2+) levels. Thus, ER stress plays an important role in particle-induced inflammatory osteolysis and osteoclastogenic reactions. The pharmacological targeting of ER-stress-mediated inflammatory signaling pathways might be an appealing approach for alleviating or preventing particle-induced osteolysis in at-risk patients.
Collapse
|
18
|
Gordon CR, Fisher M, Liauw J, Lina I, Puvanesarajah V, Susarla S, Coon A, Lim M, Quinones-Hinojosa A, Weingart J, Colby G, Olivi A, Huang J. Multidisciplinary approach for improved outcomes in secondary cranial reconstruction: introducing the pericranial-onlay cranioplasty technique. Neurosurgery 2015; 10 Suppl 2:179-89; discussion 189-90. [PMID: 24448187 DOI: 10.1227/neu.0000000000000296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although materials for secondary cranial reconstruction have evolved with time, the overall approach in terms of bone flap/implant reconstruction after necessary delay has remained constant. OBJECTIVE To present our cases series of 50 consecutive secondary cranial reconstruction patients and to describe a multidisciplinary cranioplasty approach developed to reduce morbidity, to minimize infection, and to improve aesthetic appearance. METHODS Standard technique teaches us to place the bone flap and/or alloplastic implant directly over the dura or dural protectant after scalp flap re-elevation. However, this procedure is fraught with high complication rates, including infection. While raising the previously incised scalp flap overlying the full-thickness calvarial defect, the dissection is performed within the loose areolar tissue plane beneath the galea aponeurosis, thus leaving vascularized pericranium intact over the dura. RESULTS A total of 50 consecutive patients were treated by the senior author encompassing 46 cranioplasties using the pericranial-onlay approach, along with 4 isolated temporal soft tissue reconstructions with liquid poly-methyl-methacrylate. Of the 46 cranioplasties (> 5 cm), only 1 autologous bone flap developed deep infection necessitating bone flap removal (1 of 46, 2.17%; 95% confidence interval, 0.003-11.3). None of the alloplastic custom implants placed have developed any infection requiring removal. CONCLUSION This multidisciplinary approach illustrated in our case series, including our "pericranial-onlay" technique described here for the first time, has the potential to improve patient outcomes, to decrease perioperative morbidity, and to minimize costs associated with postoperative infections after secondary cranial reconstruction.
Collapse
Affiliation(s)
- Chad R Gordon
- *Department of Plastic and Reconstructive Surgery and §Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; ‡Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The transcription factor NF-κB is a family of proteins involved in signaling pathways essential for normal cellular functions and development. Deletion of various components of this pathway resulted with abnormal skeletal development. Research in the last decade has established that NF-κB signaling mediates RANK ligand-induced osteoclastogenesis. Consistently, it was shown that inhibition of NF-κB was an effective approach to inhibit osteoclast formation and bone resorptive activity. Identification of the molecular machinery underlying NF-κB activation permitted osteoclast-specific deletion of the major components of this pathway. As a result, it was clear that deletion of members of the proximal IKK kinase complex and the distal NF-κB subunits and downstream regulators affected skeletal development. These studies provided several targets of therapeutic intervention in osteolytic diseases. NF-κB activity has been also described as the centerpiece of inflammatory responses and is considered a potent mediator of inflammatory osteolysis. Indeed, inflammatory insults exacerbate physiologic RANKL-induced NF-κB signals leading to exaggerated responses and to inflammatory osteolysis. These superimposed NF-κB activities appear to underlie several bone pathologies. This review will describe the individual roles of NF-κB molecules in bone resorption and inflammatory osteolysis.
Collapse
Affiliation(s)
- Y Abu-Amer
- Department of Orthopedic Surgery, Department of Cell Biology & Physiology, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
20
|
Shibata M, Sato T, Nukiwa R, Ariga T, Hatakeyama S. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation. Biochem Biophys Res Commun 2012; 423:104-9. [PMID: 22634006 DOI: 10.1016/j.bbrc.2012.05.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 02/06/2023]
Abstract
The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.
Collapse
Affiliation(s)
- Mio Shibata
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | |
Collapse
|