1
|
Meredith JD, Gray MJ. Genome-wide characterization of hypothiocyanite stress response in Escherichia coli. J Bacteriol 2025:e0052424. [PMID: 40298396 DOI: 10.1128/jb.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidative stress is one of the major methods of microbial population control and pathogen clearing by the mammalian immune system. The methods by which bacteria are able to escape damage by host-derived oxidants such as hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) have been relatively well described, while other oxidants' effects on bacteria and their genetic responses are not as well understood. Hypothiocyanite/hypothiocyanous acid (OSCN-/HOSCN) is one such oxidative stress agent. In this study, we used RNA-sequencing to characterize the global transcriptional response of Escherichia coli to treatment with HOSCN and the impact of deletions of the HOSCN resistance proteins RclA (HOSCN reductase), RclB, and RclC on that response. The HOSCN response of E. coli was different from the previously characterized responses of E. coli to other oxidants such as H2O2, superoxide, or HOCl and distinct from the reported responses of other bacteria such as Streptococcus pneumoniae and Pseudomonas aeruginosa to HOSCN. Strikingly, deletion of any one of the Rcl proteins had very similar effects on the transcriptional response to HOSCN, indicating that any disruption of HOSCN defense in E. coli results in similar impacts, despite the fact that we do not currently understand the mechanism(s) by which RclB and RclC contribute to that defense. IMPORTANCE Understanding how bacteria sense and respond to oxidative stress provides insights into how our bodies interact with the microbial population within us. In this study, we have characterized the genetic response of E. coli to the important immune oxidant hypothiocyanite and investigated the role of rclABC genes in that response.
Collapse
Affiliation(s)
- Julia D Meredith
- Department of Microbiology, School of Medicine,The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine,The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Hong Y, Qin J, Mitchell L, Paxman JJ, Heras B, Totsika M. Bacterial suppressor-of-copper-sensitivity proteins exhibit diverse thiol-disulfide oxidoreductase cellular functions. iScience 2024; 27:111392. [PMID: 39669427 PMCID: PMC11634996 DOI: 10.1016/j.isci.2024.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Disulfide bond (Dsb) oxidoreductases involved in oxidative protein folding govern bacterial survival and virulence. Over the past decade, oligomerization has emerged as a potential factor that dictates oxidoreductase activities. To investigate the role of oligomerization, we studied three Dsb-like ScsC oxidoreductases involved in copper resistance: the monomeric Salmonella enterica StScsC, and the trimeric Proteus mirabilis PmScsC and Caulobacter crescentus CcScsC. For copper sequestration, ScsC proteins must remain in the reduced form. However, all three ScsC proteins exhibit both dithiol oxidation and disulfide reduction activity, despite structural differences and previously reported limited in vitro activity. Most ScsC reductase activity relies on interactions with E. coli DsbD reductase, while oxidase activity depends on environmental oxidation. Interestingly, engineered monomeric PmScsC interacts effectively with the E. coli DsbB oxidase, at the partial expense of its reductase activity. These findings highlight oligomerization of oxidoreductases as a steric hindrance strategy to block undesirable upstream oxidative interactions.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lachlan Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Penning S, Hong Y, Cunliffe T, Hor L, Totsika M, Paxman JJ, Heras B. Unveiling the versatility of the thioredoxin framework: Insights from the structural examination of Francisella tularensis DsbA1. Comput Struct Biotechnol J 2024; 23:4324-4336. [PMID: 39697679 PMCID: PMC11653150 DOI: 10.1016/j.csbj.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis. Here we investigate FtDsbA1, a DsbA homologue from the Gram-negative bacterium Francisella tularensis. Our study shows that FtDsbA1 shares a conserved TRX-like fold bridged by an alpha helical bundle showcased by all DsbA-like proteins. However, FtDsbA1 displays a highly unique variation on this structure, containing an extended and flexible N-terminus and secondary structural elements inserted within the core of the TRX fold itself, which together twist the overall DsbA-like architecture. Additionally, FtDsbA1 exhibits variations to the well conserved active site with an unusual dipeptide in the catalytic CXXC redox centre (CGKC), and a trans configuration for the conserved cis-proline loop, known for governing DsbA-substrate interactions. FtDsbA1's redox properties are comparable to other DsbA enzymes, however, consistent with its atypical structure, functional analysis reveals FtDsbA1 has a high degree of substrate specificity suggesting a specialised role within F. tularensis' oxidative folding pathway. Overall, this work underscores the remarkable malleability of the TRX catalytic core, a ubiquitous and ancestral protein fold. This not only contributes to broadening the structural and functional diversity seen within proteins utilising this core fold but will also enhance the accuracy of AI-driven protein structural prediction tools.
Collapse
Affiliation(s)
- Stephanie Penning
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Taylor Cunliffe
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| |
Collapse
|
4
|
Petchiappan A, Majdalani N, Wall E, Gottesman S. RcsF-independent mechanisms of signaling within the Rcs phosphorelay. PLoS Genet 2024; 20:e1011408. [PMID: 39724052 PMCID: PMC11709261 DOI: 10.1371/journal.pgen.1011408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA. IgaA is essential; it negatively regulates the signaling by interacting with the phosphotransferase RcsD. We previously showed that RcsF-dependent signaling does not require the periplasmic domain of the histidine kinase RcsC and identified a dominant negative mutant of RcsD that can block signaling via increased interactions with IgaA. However, how the inducing signals are sensed and how signal is transduced to activate the transcription of the Rcs regulon remains unclear. In this study, we investigated how the Rcs cascade functions without its only known sensor, RcsF, and characterized the underlying mechanisms for three distinct RcsF-independent inducers. Previous reports showed that Rcs activity can be induced in the absence of RcsF by a loss of function mutation in the periplasmic oxidoreductase DsbA or by overexpression of the DnaK cochaperone DjlA. We identified an inner membrane protein, DrpB, as a multicopy RcsF-independent Rcs activator in E. coli. The loss of the periplasmic oxidoreductase DsbA and the overexpression of the DnaK cochaperone DjlA each trigger the Rcs cascade in the absence of RcsF by weakening IgaA-RcsD interactions in different ways. In contrast, the cell-division associated protein DrpB uniquely requires the RcsC periplasmic domain for activation; this domain is not needed for RcsF-dependent signaling. This suggests the possibility that the RcsC periplasmic domain acts as a sensor for some Rcs signals. Overall, the results add new understanding to how this complex phosphorelay can be activated by diverse mechanisms.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Watanabe N, Savchenko A. Molecular insights into the initiation step of the Rcs signaling pathway. Structure 2024; 32:1381-1393.e4. [PMID: 38964336 DOI: 10.1016/j.str.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
Collapse
Affiliation(s)
- Nobuhiko Watanabe
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA.
| |
Collapse
|
6
|
Petchiappan A, Majdalani N, Wall E, Gottesman S. RcsF-independent mechanisms of signaling within the Rcs Phosphorelay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610257. [PMID: 39372736 PMCID: PMC11451591 DOI: 10.1101/2024.08.29.610257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA. IgaA is essential; it negatively regulates the signaling by interacting with the phosphotransferase RcsD. We previously showed that RcsF-dependent signaling does not require the periplasmic domain of the histidine kinase RcsC and identified a dominant negative mutant of RcsD that can block signaling via increased interactions with IgaA. However, how the inducting signals are sensed and how signal is transduced to activate the transcription of the Rcs regulon remains unclear. In this study, we investigated how the Rcs cascade functions without its only known sensor, RcsF and characterized the underlying regulatory mechanisms for three distinct RcsF-independent inducers. Previous reports showed that Rcs signaling can be induced in the absence of RcsF by a loss of function mutation in the periplasmic oxidoreductase DsbA or by overexpression of the DnaK cochaperone DjlA. We identified an inner membrane protein, DrpB, as a multicopy RcsF-independent Rcs activator in E. coli. The loss of the periplasmic oxidoreductase DsbA and the overexpression of the DnaK cochaperone DjlA each trigger the Rcs cascade in the absence of RcsF by weakening IgaA-RcsD interactions in different ways. In contrast, the cell-division associated protein DrpB uniquely requires the RcsC periplasmic domain for signaling; this domain is not needed for RcsF-dependent signaling. This suggests the possibility that RcsC acts as a sensor for some Rcs signals. Overall, the results add new understanding to how this complex phosphorelay can be activated by diverse mechanisms.
Collapse
Affiliation(s)
- Anushya Petchiappan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| | - Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
- Current address: US Food and Drug Administration, Office of Pharmaceutical Quality, Silver Spring MD 20903
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD., 20892
| |
Collapse
|
7
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Anjou C, Lotoux A, Morvan C, Martin-Verstraete I. From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems. Environ Microbiol 2024; 26:e16668. [PMID: 38899743 DOI: 10.1111/1462-2920.16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The thioredoxin (Trx) system, found universally, is responsible for the regeneration of reversibly oxidized protein thiols in living cells. This system is made up of a Trx and a Trx reductase, and it plays a central role in maintaining thiol-based redox homeostasis by reducing oxidized protein thiols, such as disulfide bonds in proteins. Some Trxs also possess a chaperone function that is independent of thiol-disulfide exchange, in addition to their thiol-disulfide reductase activity. These two activities of the Trx system are involved in numerous physiological processes in bacteria. This review describes the diverse physiological roles of the Trx system that have emerged throughout bacterial evolution. The Trx system is essential for responding to oxidative and nitrosative stress. Beyond this primary function, the Trx system also participates in redox regulation and signal transduction, and in controlling metabolism, motility, biofilm formation, and virulence. This range of functions has evolved alongside the diversity of bacterial lifestyles and their specific constraints. This evolution can be characterized by the multiplication of the systems and by the specialization of cofactors or targets to adapt to the constraints of atypical lifestyles, such as photosynthesis, insect endosymbiosis, or spore-forming bacteria.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
9
|
Jeong H, Kim Y, Lee HS. CdbC: a disulfide bond isomerase involved in the refolding of mycoloyltransferases in Corynebacterium glutamicum cells exposed to oxidative conditions. J Biochem 2024; 175:457-470. [PMID: 38227582 DOI: 10.1093/jb/mvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, 65, Semyeong-ro, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| |
Collapse
|
10
|
Méndez AAE, Argüello JM, Soncini FC, Checa SK. Scs system links copper and redox homeostasis in bacterial pathogens. J Biol Chem 2024; 300:105710. [PMID: 38309504 PMCID: PMC10907172 DOI: 10.1016/j.jbc.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
The bacterial envelope is an essential compartment involved in metabolism and metabolites transport, virulence, and stress defense. Its roles become more evident when homeostasis is challenged during host-pathogen interactions. In particular, the presence of free radical groups and excess copper in the periplasm causes noxious reactions, such as sulfhydryl group oxidation leading to enzymatic inactivation and protein denaturation. In response to this, canonical and accessory oxidoreductase systems are induced, performing quality control of thiol groups, and therefore contributing to restoring homeostasis and preserving survival under these conditions. Here, we examine recent advances in the characterization of the Dsb-like, Salmonella-specific Scs system. This system includes the ScsC/ScsB pair of Cu+-binding proteins with thiol-oxidoreductase activity, an alternative ScsB-partner, the membrane-linked ScsD, and a likely associated protein, ScsA, with a role in peroxide resistance. We discuss the acquisition of the scsABCD locus and its integration into a global regulatory pathway directing envelope response to Cu stress during the evolution of pathogens that also harbor the canonical Dsb systems. The evidence suggests that the canonical Dsb systems cannot satisfy the extra demands that the host-pathogen interface imposes to preserve functional thiol groups. This resulted in the acquisition of the Scs system by Salmonella. We propose that the ScsABCD complex evolved to connect Cu and redox stress responses in this pathogen as well as in other bacterial pathogens.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina.
| |
Collapse
|
11
|
TagElDein MA, Mohamed NG, Shahein YE, Ziko L, Hussein NA. Altering Escherichia coli envelope integrity by mimicking the lipoprotein RcsF. Arch Microbiol 2023; 206:12. [PMID: 38070002 PMCID: PMC10710380 DOI: 10.1007/s00203-023-03733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Escherichia coli cell envelope is crucial for stress sensing and signal transduction, mediated by numerous protein-protein interactions to enable adaptation and survival. Interfering with these interactions might affect envelope integrity leading to bacterial death. The outer membrane lipoprotein (RcsF) is the stress sensor of the regulator of capsule synthesis (Rcs) phosphorelay that senses envelope threats. RcsF interacts with two essential proteins, IgaA (repressing the Rcs system) and BamA (inserting β-barrel proteins in the outer membrane). Disturbing RcsF interactions may alter Rcs signaling and/or membrane integrity thus affecting bacterial survival. Here, we derived the sequence of a peptide mimicking RcsF (RcsFmim), based on the in silico docking of RcsF with IgaA. Expression of rcsFmim caused 3-to-4-fold activation of the Rcs system and perturbation of the outer membrane. Both effects result in decreased E. coli growth rate. We anticipate that RcsFmim present a candidate for future antibacterial peptide development.
Collapse
Affiliation(s)
- Moustafa A TagElDein
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha G Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Laila Ziko
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted By the Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| |
Collapse
|
12
|
Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Int J Mol Sci 2023; 24:ijms24087662. [PMID: 37108829 PMCID: PMC10142737 DOI: 10.3390/ijms24087662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Collapse
Affiliation(s)
- Zhenyu Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhui Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cholsong Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoya Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Cho SH, Dekoninck K, Collet JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol 2023; 61:317-329. [PMID: 36892778 DOI: 10.1007/s12275-023-00030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium. .,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| | - Kilian Dekoninck
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,University of California, Berkeley, CA, 94720, USA
| | - Jean-Francois Collet
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
14
|
Yamaji K, Taniguchi R, Urano H, Ogasawara H. Roles of methionine and cysteine residues of the Escherichia coli sensor kinase HprS in reactive chlorine species sensing. FEBS Lett 2023; 597:573-584. [PMID: 36647922 DOI: 10.1002/1873-3468.14574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
Sensor histidine kinase HprS, an oxidative stress sensor of Escherichia coli, senses reactive oxygen species (ROS) and reactive chlorine species (RCS), and is involved in the induction of oxidatively damaged protein repair periplasmic enzymes. We reinvestigated the roles of six methionine and four cysteine residues of HprS in the response to HClO, an RCS. The results of site-directed mutagenesis revealed that methionine residues in periplasmic and cytoplasmic regions (Met225) are involved in HprS activation. Interestingly, the Cys165Ser substitution reduced HprS activity, which was recovered by an additional Glu22Cys substitution. Our results demonstrate that the position of the inner membrane cysteine residues influences the extent of HprS activation in HClO sensing.
Collapse
Affiliation(s)
- Kotaro Yamaji
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Rumine Taniguchi
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroyuki Urano
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroshi Ogasawara
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Ueda, Japan.,Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, Ueda, Japan.,Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto, Japan.,Renaissance Center for Applied Microbiology, Nagano, Japan.,Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano, Japan
| |
Collapse
|
15
|
Lach SR, Kumar S, Kim S, Im W, Konovalova A. Conformational rearrangements in the sensory RcsF/OMP complex mediate signal transduction across the bacterial cell envelope. PLoS Genet 2023; 19:e1010601. [PMID: 36706155 PMCID: PMC9907809 DOI: 10.1371/journal.pgen.1010601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/08/2023] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Timely detection and repair of envelope damage are paramount for bacterial survival. The Regulator of Capsule Synthesis (Rcs) stress response can transduce the stress signals across the multilayered gram-negative cell envelope to regulate gene expression in the cytoplasm. Previous studies defined the overall pathway, which begins with the sensory lipoprotein RcsF interacting with several outer membrane proteins (OMPs). RcsF can also interact with the periplasmic domain of the negative regulator IgaA, derepressing the downstream RcsCDB phosphorelay. However, how the RcsF/IgaA interaction is regulated at the molecular level to activate the signaling in response to stress remains poorly understood. In this study, we used a site-saturated mutant library of rcsF to carry out several independent genetic screens to interrogate the mechanism of signal transduction from RcsF to IgaA. We analyzed several distinct classes of rcsF signaling mutants, and determined the region of RcsF that is critically important for signal transduction. This region is bifunctional as it is important for RcsF interaction with both IgaA and OMPs. The mutant analysis provides strong evidence for conformational changes in the RcsF/OMP complex mediating signal transduction to IgaA, and the first direct evidence that OMPs play an important regulatory role in Rcs signaling.
Collapse
Affiliation(s)
- Sarah R. Lach
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Santosh Kumar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
ElyC and Cyclic Enterobacterial Common Antigen Regulate Synthesis of Phosphoglyceride-Linked Enterobacterial Common Antigen. mBio 2021; 12:e0284621. [PMID: 34809459 PMCID: PMC8609368 DOI: 10.1128/mbio.02846-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram-negative cell envelope is a complex structure delineating the cell from its environment. Recently, we found that enterobacterial common antigen (ECA) plays a role maintaining the outer membrane (OM) permeability barrier, which excludes toxic molecules including many antibiotics. ECA is a conserved carbohydrate found throughout Enterobacterales (e.g., Salmonella, Klebsiella, and Yersinia). There are two OM forms of ECA (phosphoglyceride-linked ECAPG and lipopolysaccharide-linked ECALPS) and one periplasmic form of ECA (cyclic ECACYC). ECAPG, found in the outer leaflet of the OM, consists of a linear ECA oligomer attached to phosphoglyceride through a phosphodiester linkage. The process through which ECAPG is produced from polymerized ECA is unknown. Therefore, we set out to identify genes interacting genetically with ECAPG biosynthesis in Escherichia coli K-12 using the competition between ECA and peptidoglycan biosynthesis. Through transposon-directed insertion sequencing, we identified an interaction between elyC and ECAPG biosynthesis. ElyC is an inner membrane protein previously shown to alter peptidoglycan biosynthesis rates. We found ΔelyC was lethal specifically in strains producing ECAPG without other ECA forms, suggesting ECAPG biosynthesis impairment or dysregulation. Further characterization suggested ElyC inhibits ECAPG synthesis in a posttranscriptional manner. Moreover, the full impact of ElyC on ECA levels requires the presence of ECACYC. Our data demonstrate ECACYC can regulate ECAPG synthesis in strains wild type for elyC. Overall, our data demonstrate ElyC and ECACYC act in a novel pathway that regulates the production of ECAPG, supporting a model in which ElyC provides feedback regulation of ECAPG production based on the periplasmic levels of ECACYC.
Collapse
|
17
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
18
|
High-throughput suppressor screen demonstrates that RcsF monitors outer membrane integrity and not Bam complex function. Proc Natl Acad Sci U S A 2021; 118:2100369118. [PMID: 34349021 DOI: 10.1073/pnas.2100369118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the β-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.
Collapse
|
19
|
Meng J, Young G, Chen J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front Microbiol 2021; 12:627104. [PMID: 33658986 PMCID: PMC7917084 DOI: 10.3389/fmicb.2021.627104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system's control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Dekoninck K, Létoquart J, Laguri C, Demange P, Bevernaegie R, Simorre JP, Dehu O, Iorga BI, Elias B, Cho SH, Collet JF. Defining the function of OmpA in the Rcs stress response. eLife 2020; 9:60861. [PMID: 32985973 PMCID: PMC7553776 DOI: 10.7554/elife.60861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
OmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of β-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal β-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results suggest a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.
Collapse
Affiliation(s)
- Kilian Dekoninck
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Juliette Létoquart
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Robin Bevernaegie
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Olivia Dehu
- de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Seung-Hyun Cho
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Francois Collet
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
21
|
Collet JF, Cho SH, Iorga BI, Goemans CV. How the assembly and protection of the bacterial cell envelope depend on cysteine residues. J Biol Chem 2020; 295:11984-11994. [PMID: 32487747 PMCID: PMC7443483 DOI: 10.1074/jbc.rev120.011201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Seung-Hyun Cho
- de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, UCLouvain, Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | |
Collapse
|
22
|
Rodríguez-Alonso R, Létoquart J, Nguyen VS, Louis G, Calabrese AN, Iorga BI, Radford SE, Cho SH, Remaut H, Collet JF. Structural insight into the formation of lipoprotein-β-barrel complexes. Nat Chem Biol 2020; 16:1019-1025. [PMID: 32572278 PMCID: PMC7610366 DOI: 10.1038/s41589-020-0575-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The β-barrel assembly machinery (BAM) inserts outer membrane β-barrel proteins (OMPs) in the outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF-OMP complexes. Here, we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged deep inside the lumen of the BamA barrel, binding regions proposed to undergo an outward and lateral opening during OMP insertion. On the basis of our structural and biochemical data, we propose a push-and-pull model for RcsF export upon conformational cycling of BamA and provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of BAM activity.
Collapse
Affiliation(s)
- Raquel Rodríguez-Alonso
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Juliette Létoquart
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Van Son Nguyen
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Gwennaelle Louis
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bogdan I Iorga
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Université Paris-Saclay, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Seung-Hyun Cho
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium. .,Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium. .,de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
23
|
Banaś AM, Bocian-Ostrzycka KM, Plichta M, Dunin-Horkawicz S, Ludwiczak J, Płaczkiewicz J, Jagusztyn-Krynicka EK. C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning. PLoS One 2020; 15:e0230366. [PMID: 32203539 PMCID: PMC7089426 DOI: 10.1371/journal.pone.0230366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational generation of disulfide bonds catalyzed by bacterial Dsb (disulfide bond) enzymes is essential for the oxidative folding of many proteins. Although we now have a good understanding of the Escherichia coli disulfide bond formation system, there are significant gaps in our knowledge concerning the Dsb systems of other bacteria, including Campylobacter jejuni, a food-borne, zoonotic pathogen. We attempted to gain a more complete understanding of the process by thorough analysis of C8J_1298 functioning in vitro and in vivo. C8J_1298 is a homodimeric thiol-oxidoreductase present in wild type (wt) cells, in both reduced and oxidized forms. The protein was previously described as a homolog of DsbC, and thus potentially should be active in rearrangement of disulfides. Indeed, biochemical studies with purified protein revealed that C8J_1298 shares many properties with EcDsbC. However, its activity in vivo is dependent on the genetic background, namely, the set of other Dsb proteins present in the periplasm that determine the redox conditions. In wt C. jejuni cells, C8J_1298 potentially works as a DsbG involved in the control of the cysteine sulfenylation level and protecting single cysteine residues from oxidation to sulfenic acid. A strain lacking only C8J_1298 is indistinguishable from the wild type strain by several assays recognized as the criteria to determine isomerization or oxidative Dsb pathways. Remarkably, in C. jejuni strain lacking DsbA1, the protein involved in generation of disulfides, C8J_1298 acts as an oxidase, similar to the homodimeric oxidoreductase of Helicobater pylori, HP0231. In E. coli, C8J_1298 acts as a bifunctional protein, also resembling HP0231. These findings are strongly supported by phylogenetic data. We also showed that CjDsbD (C8J_0565) is a C8J_1298 redox partner.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
24
|
Truong JQ, Panjikar S, Shearwin-Whyatt L, Bruning JB, Shearwin KE. Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:670-681. [PMID: 31282476 DOI: 10.1107/s2059798319009008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 11/11/2022]
Abstract
Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin.
Collapse
Affiliation(s)
- Jia Quyen Truong
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Santosh Panjikar
- MX, Australian Synchrotron, 800 Blackburn Road Clayton, Melbourne, VIC 3168, Australia
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Keith E Shearwin
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| |
Collapse
|
25
|
Banaś AM, Bocian-Ostrzycka KM, Jagusztyn-Krynicka EK. Engineering of the Dsb (disulfide bond) proteins - contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Crit Rev Microbiol 2019; 45:433-450. [PMID: 31190593 DOI: 10.1080/1040841x.2019.1622509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Dsb protein family in prokaryotes catalyzes the generation of disulfide bonds between thiol groups of cysteine residues in nascent proteins, ensuring their proper three-dimensional structure; these bonds are crucial for protein stability and function. The first Dsb protein, Escherichia coli DsbA, was described in 1991. Since then, many details of the bond-formation process have been described through microbiological, biochemical, biophysical and bioinformatics strategies. Research with the model microorganism E. coli and many other bacterial species revealed an enormous diversity of bond-formation mechanisms. Research using Dsb protein engineering has significantly helped to reveal details of the disulfide bond formation. The first part of this review presents the research that led to understanding the mechanism of action of DsbA proteins, which directly transfer their own disulfide into target proteins. The second part concentrates on the mechanism of electron transport through the cell cytoplasmic membrane. Third and lastly, the review discusses the contribution of this research towards new antibacterial agents.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | - Katarzyna Marta Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | | |
Collapse
|
26
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
Affiliation(s)
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
27
|
Asmar AT, Collet JF. Lpp, the Braun lipoprotein, turns 50—major achievements and remaining issues. FEMS Microbiol Lett 2018; 365:5071948. [DOI: 10.1093/femsle/fny199] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Abir T Asmar
- WELBIO, Université catholique de Louvain, avenue Hippocrate 75, Brussels 1200, Belgium
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Jean-François Collet
- WELBIO, Université catholique de Louvain, avenue Hippocrate 75, Brussels 1200, Belgium
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| |
Collapse
|
28
|
Abstract
RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.
Collapse
Affiliation(s)
- Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| |
Collapse
|
29
|
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. PLoS One 2018; 13:e0195358. [PMID: 29677198 PMCID: PMC5909903 DOI: 10.1371/journal.pone.0195358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC.
Collapse
|
30
|
Pucciarelli MG, Rodríguez L, García-Del Portillo F. A Disulfide Bond in the Membrane Protein IgaA Is Essential for Repression of the RcsCDB System. Front Microbiol 2017; 8:2605. [PMID: 29312270 PMCID: PMC5744062 DOI: 10.3389/fmicb.2017.02605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/14/2017] [Indexed: 11/26/2022] Open
Abstract
IgaA is an integral inner membrane protein that was discovered as repressor of the RcsCDB phosphorelay system in the intracellular pathogen Salmonella enterica serovar Typhimurium. The RcsCDB system, conserved in many members of the family Enterobacteriaceae, regulates expression of varied processes including motility, biofilm formation, virulence and response to envelope stress. IgaA is an essential protein to which, in response to envelope perturbation, the outer membrane lipoprotein RcsF has been proposed to bind in order to activate the RcsCDB phosphorelay. Envelope stress has also been reported to be sensed by a surface exposed domain of RcsF. These observations support a tight control of the RcsCDB system by RcsF and IgaA via mechanisms that, however, remain unknown. Interestingly, RcsF and IgaA have four conserved cysteine residues in loops exposed to the periplasmic space. Two non-consecutive disulfide bonds were shown to be required for RcsF function. Here, we report mutagenesis studies supporting the presence of one disulfide bond (C404-C425) in the major periplasmic loop of IgaA that is essential for repression of the RcsCDB phosphorelay. Our data therefore suggest that the redox state of the periplasm may be critical for the control of the RcsCDB system by its two upstream regulators, RcsF and IgaA.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratorio de Patógenos Bacterianos Intracelulares, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa-Consejo Superior de Investigaciones Científicas (CBMSO-CSIC), Madrid, Spain
| | - Leticia Rodríguez
- Laboratorio de Patógenos Bacterianos Intracelulares, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
31
|
Asmar AT, Ferreira JL, Cohen EJ, Cho SH, Beeby M, Hughes KT, Collet JF. Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biol 2017; 15:e2004303. [PMID: 29257832 PMCID: PMC5736177 DOI: 10.1371/journal.pbio.2004303] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
The cell envelope of gram-negative bacteria, a structure comprising an outer (OM) and an inner (IM) membrane, is essential for life. The OM and the IM are separated by the periplasm, a compartment that contains the peptidoglycan. The OM is tethered to the peptidoglycan via the lipoprotein, Lpp. However, the importance of the envelope's multilayered architecture remains unknown. Here, when we removed physical coupling between the OM and the peptidoglycan, cells lost the ability to sense defects in envelope integrity. Further experiments revealed that the critical parameter for the transmission of stress signals from the envelope to the cytoplasm, where cellular behaviour is controlled, is the IM-to-OM distance. Augmenting this distance by increasing the length of the lipoprotein Lpp destroyed signalling, whereas simultaneously increasing the length of the stress-sensing lipoprotein RcsF restored signalling. Our results demonstrate the physiological importance of the size of the periplasm. They also reveal that strict control over the IM-to-OM distance is required for effective envelope surveillance and protection, suggesting that cellular architecture and the structure of transenvelope protein complexes have been evolutionarily co-optimised for correct function. Similar strategies are likely at play in cellular compartments surrounded by 2 concentric membranes, such as chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Abir T. Asmar
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Josie L. Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Eli J. Cohen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Seung-Hyun Cho
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jean-François Collet
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
32
|
Guo XP, Sun YC. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Front Microbiol 2017; 8:2014. [PMID: 29089936 PMCID: PMC5651002 DOI: 10.3389/fmicb.2017.02014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Rcs phosphorelay system, a non-orthodox two-component regulatory system, integrates environmental signals, regulates gene expression, and alters the physiological behavior of members of the Enterobacteriaceae family of Gram-negative bacteria. Recent studies of Rcs system focused on protein interactions, functions, and the evolution of Rcs system components and its auxiliary regulatory proteins. Herein we review the latest advances on the Rcs system proteins, and discuss the roles that the Rcs system plays in the environmental adaptation of various Enterobacteriaceae species.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Major Tom to Ground Control: How Lipoproteins Communicate Extracytoplasmic Stress to the Decision Center of the Cell. J Bacteriol 2017; 199:JB.00216-17. [PMID: 28674071 DOI: 10.1128/jb.00216-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope of bacteria is a complex multilayered shield that ensures multiple essential functions, including protecting the cell from external assaults. Hence, bacterial cells have evolved intricate mechanisms called envelope stress response systems (ESRS) to monitor all kinds of perturbations affecting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In the model bacterium Escherichia coli, several ESRS are built around a two-component system, in which envelope stress triggers a phosphotransfer between a sensor protein in the inner membrane of the envelope and a response regulator in the cytoplasm. In this review, we focus on two major ESRS in E. coli, the Rcs and Cpx pathways, in which additional proteins not directly involved in the phosphotransfer modulate signal transduction. Both the Rcs and Cpx systems can be turned on by a lipoprotein anchored in the outer membrane, RcsF and NlpE, respectively, providing a molecular connection between the most exterior layer of the envelope and the ground control center in the cytoplasm. Here, we review how these two lipoproteins, which share a striking set of features while being distinct in several aspects, act as sentinels at the front line of the bacterium by sensing and transducing stress to the downstream components of the Rcs and Cpx systems.
Collapse
|
34
|
Kolappan S, Lo KY, Shen CLJ, Guttman JA, Craig L. Structure of the conserved Francisella virulence protein FvfA. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:814-821. [PMID: 28994410 DOI: 10.1107/s205979831701333x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022]
Abstract
Francisella tularensis is a potent human pathogen that invades and survives in macrophage and epithelial cells. Two identical proteins, FTT_0924 from F. tularensis subsp. tularensis and FTL_1286 from F. tularensis subsp. holarctica LVS, have previously been identified as playing a role in protection of the bacteria from osmotic shock and its survival in macrophages. FTT_0924 has been shown to localize to the inner membrane, with its C-terminus exposed to the periplasm. Here, crystal structures of the F. novicida homologue FTN_0802, which we call FvfA, in two crystal forms are reported at 1.8 Å resolution. FvfA differs from FTT_0924 and FTL_1286 by a single amino acid. FvfA has a DUF1471 fold that closely resembles the Escherichia coli outer membrane lipoprotein RscF, a component of a phosphorelay pathway involved in protecting bacteria from outer membrane perturbation. The structural and functional similarities and differences between these proteins and their implications for F. tularensis pathogenesis are discussed.
Collapse
Affiliation(s)
- Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Karen Y Lo
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Chiao Ling Jennifer Shen
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
35
|
Defining Lipoprotein Localisation by Fluorescence Microscopy. Methods Mol Biol 2017. [PMID: 28667602 DOI: 10.1007/978-1-4939-7033-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In recent years it has become evident that lipoproteins play crucial roles in the assembly of bacterial envelope-embedded nanomachineries and in the processes of protein export/secretion. In this chapter we describe a method to determine their precise localisation, for example inner versus outer membrane, in Gram-negative bacteria using human opportunistic pathogen Pseudomonas aeruginosa as a model. A fusion protein between a given putative lipoprotein and the red fluorescent protein mCherry must be created and expressed in a strain expressing cytoplasmic green fluorescent protein (GFP). Then the peripheral localisation of the fusion protein in the cell can be examined by treating cells with lysozyme to create spheroplasts and monitoring fluorescence under a confocal microscope. Mutants in the signal peptide can be engineered to study the association with the membrane and efficiency of transport. This protocol can be adapted to monitor lipoprotein localisation in other Gram-negative bacteria.
Collapse
|
36
|
Sato T, Takano A, Hori N, Izawa T, Eda T, Sato K, Umekawa M, Miyagawa H, Matsumoto K, Muramatsu-Fujishiro A, Matsumoto K, Matsuoka S, Hara H. Role of the inner-membrane histidine kinase RcsC and outer-membrane lipoprotein RcsF in the activation of the Rcs phosphorelay signal transduction system in Escherichia coli. Microbiology (Reading) 2017; 163:1071-1080. [DOI: 10.1099/mic.0.000483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Takatsugu Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Akira Takano
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Nanako Hori
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Tomoko Izawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Takayoshi Eda
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
- Present address: Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Kota Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Mitsuru Umekawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Hiroyoshi Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Kenji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Ayako Muramatsu-Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama-shi, Saitama-ken 338-8570, Japan
| |
Collapse
|
37
|
|
38
|
Bacterial thiol oxidoreductases - from basic research to new antibacterial strategies. Appl Microbiol Biotechnol 2017; 101:3977-3989. [PMID: 28409380 PMCID: PMC5403849 DOI: 10.1007/s00253-017-8291-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
The recent, rapid increase in bacterial antimicrobial resistance has become a major public health concern. One approach to generate new classes of antibacterials is targeting virulence rather than the viability of bacteria. Proteins of the Dsb system, which play a key role in the virulence of many pathogenic microorganisms, represent potential new drug targets. The first part of the article presents current knowledge of how the Dsb system impacts function of various protein secretion systems that influence the virulence of many pathogenic bacteria. Next, the review describes methods used to study the structure, biochemistry, and microbiology of the Dsb proteins and shows how these experiments broaden our knowledge about their function. The lessons gained from basic research have led to a specific search for inhibitors blocking the Dsb networks.
Collapse
|
39
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
40
|
Ren G, Ke N, Berkmen M. Use of the SHuffle Strains in Production of Proteins. ACTA ACUST UNITED AC 2016; 85:5.26.1-5.26.21. [PMID: 27479507 DOI: 10.1002/cpps.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Escherichia coli continues to be a popular expression host for the production of proteins, yet successful recombinant expression of active proteins to high yields remains a trial and error process. This is mainly due to decoupling of the folding factors of a protein from its native host, when expressed recombinantly in E. coli. Failure to fold could be due to many reasons but is often due to lack of post-translational modifications that are absent in E. coli. One such post-translational modification is the formation of disulfide bonds, a common feature of secreted proteins. The genetically engineered SHuffle cells offer an expression solution to proteins that require disulfide bonds for their folding and activity. The purpose of this protocol unit is to familiarize the researcher with the biology of SHuffle cells and guide the experimental design in order to optimize and increase the chances of successful expression of their desired protein of choice. Example of the expression and purification of a model disulfide-bonded protein DsbC is described in detail. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Na Ke
- New England Biolabs, Ipswich, Massachusetts
| | | |
Collapse
|
41
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Banaś AM, Jastrząb K, Pisarczyk K, Kolarzyk A, Łasica AM, Collet JF, Jagusztyn-Krynicka EK. Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231). Front Microbiol 2016; 7:1158. [PMID: 27507968 PMCID: PMC4960241 DOI: 10.3389/fmicb.2016.01158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
The formation of disulfide bonds that are catalyzed by proteins of the Dsb (disulfide bond) family is crucial for the correct folding of many extracytoplasmic proteins. Thus, this formation plays an essential, pivotal role in the assembly of many virulence factors. The Helicobacter pylori disulfide bond-forming system is uncomplicated compared to the best-characterized Escherichia coli Dsb pathways. It possesses only two extracytoplasmic Dsb proteins named HP0377 and HP0231. As previously shown, HP0377 is a reductase involved in the process of cytochrome c maturation. Additionally, it also possesses disulfide isomerase activity. HP0231 was the first periplasmic dimeric oxidoreductase involved in disulfide generation to be described. Although HP0231 function is critical for oxidative protein folding, its structure resembles that of dimeric EcDsbG, which does not confer this activity. However, the HP0231 catalytic motifs (CXXC and the so-called cis-Pro loop) are identical to that of monomeric EcDsbA. To understand the functioning of HP0231, we decided to study the relations between its sequence, structure and activity through an extensive analysis of various HP0231 point mutants, using in vivo and in vitro strategies. Our work shows the crucial role of the cis-Pro loop, as changing valine to threonine in this motif completely abolishes the protein function in vivo. Functioning of HP0231 is conditioned by the combination of CXXC and the cis-Pro loop, as replacing the HP0231 CXXC motif by the motif from EcDsbG or EcDsbC results in bifunctional protein, at least in E. coli. We also showed that the dimerization domain of HP0231 ensures contact with its substrates. Moreover, the activity of this oxidase is independent on the structure of the catalytic domain. Finally, we showed that HP0231 chaperone activity is independent of its redox function.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Anna M Banaś
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Katarzyna Jastrząb
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Karolina Pisarczyk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Anna Kolarzyk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Jean-François Collet
- Walloon Excellence in Life Sciences and BiotechnologyBrussels, Belgium; de Duve Institute, Université Catholique de LouvainBrussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| |
Collapse
|
42
|
Konovalova A, Silhavy TJ. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0030. [PMID: 26370942 DOI: 10.1098/rstb.2015.0030] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
43
|
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 2015; 6:1065. [PMID: 26500620 PMCID: PMC4597128 DOI: 10.3389/fmicb.2015.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobactercysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Karolina Drabik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aneta M Dobosz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain (UCL)/Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
44
|
Arts IS, Gennaris A, Collet JF. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett 2015; 589:1559-68. [DOI: 10.1016/j.febslet.2015.04.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 02/07/2023]
|
45
|
Cho SH, Szewczyk J, Pesavento C, Zietek M, Banzhaf M, Roszczenko P, Asmar A, Laloux G, Hov AK, Leverrier P, Van der Henst C, Vertommen D, Typas A, Collet JF. Detecting envelope stress by monitoring β-barrel assembly. Cell 2015; 159:1652-64. [PMID: 25525882 DOI: 10.1016/j.cell.2014.11.045] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/06/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023]
Abstract
The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses envelope stress and activates the signaling cascade. RcsF interacts with BamA, the major component of the β-barrel assembly machinery. In growing cells, BamA continuously funnels RcsF through the β-barrel OmpA, displaying RcsF on the cell surface. This process spatially separates RcsF from the downstream Rcs component, which we show is the inner membrane protein IgaA. The Rcs system is activated when BamA fails to bind RcsF and funnel it to OmpA. Newly synthesized RcsF then remains periplasmic, interacting with IgaA to activate the cascade. Thus RcsF senses envelope damage by monitoring the activity of the Bam machinery.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Joanna Szewczyk
- WELBIO, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Christina Pesavento
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matylda Zietek
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Manuel Banzhaf
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paula Roszczenko
- WELBIO, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Abir Asmar
- WELBIO, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Ann-Kristin Hov
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Pauline Leverrier
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Charles Van der Henst
- WELBIO, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Jean-François Collet
- WELBIO, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium.
| |
Collapse
|
46
|
Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). BIOMED RESEARCH INTERNATIONAL 2015; 2015:286972. [PMID: 25695056 PMCID: PMC4324885 DOI: 10.1155/2015/286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stressful conditions. The EhPDI enzyme (a 38 kDa polypeptide with two active thioredoxin-like domains) has been used as a model to gain insights into protein folding and disulfide bond formation in E. histolytica. Here, we performed a functional complementation assay, using a ΔdsbC mutant of E. coli, to test whether EhPDI exhibits isomerase activity in vivo. Our preliminary results showed that EhPDI exhibits isomerase activity; however, further mutagenic analysis revealed significant differences in the functional role of each thioredoxin-like domain. Additional studies confirmed that EhPDI protects heat-labile enzymes against thermal inactivation, extending our knowledge about its chaperone-like activity. The characterization of EhPDI, as an oxidative folding catalyst with chaperone-like function, represents the initial step to dissect the molecular mechanisms involved in protein folding in E. histolytica.
Collapse
|
47
|
Morgan JK, Ortiz JA, Riordan JT. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription. Microb Pathog 2014; 77:42-52. [DOI: 10.1016/j.micpath.2014.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023]
|
48
|
Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins. Proc Natl Acad Sci U S A 2014; 111:E4350-8. [PMID: 25267629 PMCID: PMC4205638 DOI: 10.1073/pnas.1417138111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RcsF (regulator of capsule synthesis) is an outer membrane (OM) lipoprotein that functions to sense defects such as changes in LPS. However, LPS is found in the outer leaflet, and RcsF was thought to be tethered to the inner leaflet by its lipidated N terminus, raising the question of how it monitors LPS. We show that RcsF has a transmembrane topology with the lipidated N terminus on the cell surface and the C-terminal signaling domain in the periplasm. Strikingly, the short, unstructured, charged transmembrane domain is threaded through the lumen of β-barrel OM proteins where it is protected from the hydrophobic membrane interior. We present evidence that these unusual complexes, which contain one protein inside another, are formed by the Bam complex that assembles all β-barrel proteins in the OM. The ability of the Bam complex to expose lipoproteins at the cell surface underscores the mechanistic versatility of the β-barrel assembly machine.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - David H Perlman
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - Charles E Cowles
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - Thomas J Silhavy
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| |
Collapse
|
49
|
Structural and functional characterization of DUF1471 domains of Salmonella proteins SrfN, YdgH/SssB, and YahO. PLoS One 2014; 9:e101787. [PMID: 25010333 PMCID: PMC4092069 DOI: 10.1371/journal.pone.0101787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/20/2022] Open
Abstract
Bacterial species in the Enterobacteriaceae typically contain multiple paralogues of a small domain of unknown function (DUF1471) from a family of conserved proteins also known as YhcN or BhsA/McbA. Proteins containing DUF1471 may have a single or three copies of this domain. Representatives of this family have been demonstrated to play roles in several cellular processes including stress response, biofilm formation, and pathogenesis. We have conducted NMR and X-ray crystallographic studies of four DUF1471 domains from Salmonella representing three different paralogous DUF1471 subfamilies: SrfN, YahO, and SssB/YdgH (two of its three DUF1471 domains: the N-terminal domain I (residues 21–91), and the C-terminal domain III (residues 244–314)). Notably, SrfN has been shown to have a role in intracellular infection by Salmonella Typhimurium. These domains share less than 35% pairwise sequence identity. Structures of all four domains show a mixed α+β fold that is most similar to that of bacterial lipoprotein RcsF. However, all four DUF1471 sequences lack the redox sensitive cysteine residues essential for RcsF activity in a phospho-relay pathway, suggesting that DUF1471 domains perform a different function(s). SrfN forms a dimer in contrast to YahO and SssB domains I and III, which are monomers in solution. A putative binding site for oxyanions such as phosphate and sulfate was identified in SrfN, and an interaction between the SrfN dimer and sulfated polysaccharides was demonstrated, suggesting a direct role for this DUF1471 domain at the host-pathogen interface.
Collapse
|
50
|
Denoncin K, Vertommen D, Arts IS, Goemans CV, Rahuel-Clermont S, Messens J, Collet JF. A new role for Escherichia coli DsbC protein in protection against oxidative stress. J Biol Chem 2014; 289:12356-64. [PMID: 24634211 DOI: 10.1074/jbc.m114.554055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a new function for Escherichia coli DsbC, a protein best known for disulfide bond isomerization in the periplasm. We found that DsbC regulates the redox state of the single cysteine of the L-arabinose-binding protein AraF. This cysteine, which can be oxidized to a sulfenic acid, mediates the formation of a disulfide-linked homodimer under oxidative stress conditions, preventing L-arabinose binding. DsbC, unlike the homologous protein DsbG, reduces the intermolecular disulfide, restoring AraF binding properties. Thus, our results reveal a new link between oxidative protein folding and the defense mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Katleen Denoncin
- From the de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|