1
|
Liang C, Wu F. Reconstitution of Calcium Channel Protein Orai3 into Liposomes for Functional Studies. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1296-1303. [PMID: 37770396 DOI: 10.1134/s0006297923090092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
Store-operated calcium entry (SOCE) is the main mechanism for the Ca2+ influx in non-excitable cells. The two major components of SOCE are stromal interaction molecule 1 (STIM1) in the endoplasmic reticulum and Ca2+ release-activated Ca2+ channel (CRAC) Orai on the plasma membrane. SOCE requires interaction between STIM1 and Orai. Mammals have three Orai homologs: Orai1, Orai2, and Orai3. Although Orai1 has been widely studied and proven to essential for numerous cellular processes, Orai3 has also attracted a significant attention recently. The gating and activation mechanisms of Orai3 have yet to be fully elucidated. Here, we expressed, purified, and reconstituted Orai3 protein into liposomes and investigated its orientation and oligomeric state in the resulting proteoliposomes. STIM1 interacted with the Orai3-containing proteoliposomes and mediated calcium release from the them, suggesting that the Orai3 channel was functional and that recombinant STIM1 could directly open the Orai3 channel in vitro. The developed in vitro calcium release system could be used to study the structure, function, and pharmacology of Orai3 channel.
Collapse
Affiliation(s)
- Chuangxuan Liang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Maltan L, Weiß S, Najjar H, Leopold M, Lindinger S, Höglinger C, Höbarth L, Sallinger M, Grabmayr H, Berlansky S, Krivic D, Hopl V, Blaimschein A, Fahrner M, Frischauf I, Tiffner A, Derler I. Photocrosslinking-induced CRAC channel-like Orai1 activation independent of STIM1. Nat Commun 2023; 14:1286. [PMID: 36890174 PMCID: PMC9995687 DOI: 10.1038/s41467-023-36458-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/01/2023] [Indexed: 03/10/2023] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.
Collapse
Affiliation(s)
- Lena Maltan
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Sarah Weiß
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Hadil Najjar
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Melanie Leopold
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Sonja Lindinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Carmen Höglinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Lorenz Höbarth
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Sascha Berlansky
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Denis Krivic
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, A-8010, Graz, Austria
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Anna Blaimschein
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria.
| |
Collapse
|
3
|
Yeung PSW, Yamashita M, Prakriya M. A pathogenic human Orai1 mutation unmasks STIM1-independent rapid inactivation of Orai1 channels. eLife 2023; 12:82281. [PMID: 36806330 PMCID: PMC9991058 DOI: 10.7554/elife.82281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels are activated by direct physical interactions between Orai1, the channel protein, and STIM1, the endoplasmic reticulum Ca2+ sensor. A hallmark of CRAC channels is fast Ca2+-dependent inactivation (CDI) which provides negative feedback to limit Ca2+ entry through CRAC channels. Although STIM1 is thought to be essential for CDI, its molecular mechanism remains largely unknown. Here, we examined a poorly understood gain-of-function (GOF) human Orai1 disease mutation, L138F, that causes tubular aggregate myopathy. Through pairwise mutational analysis, we determine that large amino acid substitutions at either L138 or the neighboring T92 locus located on the pore helix evoke highly Ca2+-selective currents in the absence of STIM1. We find that the GOF phenotype of the L138 pathogenic mutation arises due to steric clash between L138 and T92. Surprisingly, strongly activating L138 and T92 mutations showed CDI in the absence of STIM1, contradicting prevailing views that STIM1 is required for CDI. CDI of constitutively open T92W and L138F mutants showed enhanced intracellular Ca2+ sensitivity, which was normalized by re-adding STIM1 to the cells. Truncation of the Orai1 C-terminus reduced T92W CDI, indicating a key role for the Orai1 C-terminus for CDI. Overall, these results identify the molecular basis of a disease phenotype with broad implications for activation and inactivation of Orai1 channels.
Collapse
Affiliation(s)
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Murali Prakriya
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| |
Collapse
|
4
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
5
|
Humer C, Romanin C, Höglinger C. Highlighting the Multifaceted Role of Orai1 N-Terminal- and Loop Regions for Proper CRAC Channel Functions. Cells 2022; 11:371. [PMID: 35159181 PMCID: PMC8834118 DOI: 10.3390/cells11030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Orai1, the Ca2+-selective pore in the plasma membrane, is one of the key components of the Ca2+release-activated Ca2+ (CRAC) channel complex. Activated by the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, stromal interaction molecule 1 (STIM1), via direct interaction when ER luminal Ca2+ levels recede, Orai1 helps to maintain Ca2+ homeostasis within a cell. It has already been proven that the C-terminus of Orai1 is indispensable for channel activation. However, there is strong evidence that for CRAC channels to function properly and maintain all typical hallmarks, such as selectivity and reversal potential, additional parts of Orai1 are needed. In this review, we focus on these sites apart from the C-terminus; namely, the second loop and N-terminus of Orai1 and on their multifaceted role in the functioning of CRAC channels.
Collapse
Affiliation(s)
| | | | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (C.R.)
| |
Collapse
|
6
|
Fresquez AM, White C. Extracellular cysteines C226 and C232 mediate hydrogen sulfide-dependent inhibition of Orai3-mediated store-operated calcium entry. Am J Physiol Cell Physiol 2022; 322:C38-C48. [PMID: 34788146 PMCID: PMC8759961 DOI: 10.1152/ajpcell.00490.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.
Collapse
Affiliation(s)
- Adriana M. Fresquez
- 1Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois,2Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- 1Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois,2Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
7
|
Tiffner A, Hopl V, Schober R, Sallinger M, Grabmayr H, Höglinger C, Fahrner M, Lunz V, Maltan L, Frischauf I, Krivic D, Bhardwaj R, Schindl R, Hediger MA, Derler I. Orai1 Boosts SK3 Channel Activation. Cancers (Basel) 2021; 13:6357. [PMID: 34944977 PMCID: PMC8699475 DOI: 10.3390/cancers13246357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.
Collapse
Affiliation(s)
- Adéla Tiffner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Valentina Hopl
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Romana Schober
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias Sallinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Herwig Grabmayr
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Carmen Höglinger
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Marc Fahrner
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Victoria Lunz
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Lena Maltan
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Irene Frischauf
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| | - Denis Krivic
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, A-8010 Graz, Austria; (D.K.); (R.S.)
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland; (R.B.); (M.A.H.)
- Department of Biomedical Research, University of Bern, Inselspital, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Isabella Derler
- JKU Life Science Center, Institute of Biophysics, Johannes Kepler University Linz, A-4020 Linz, Austria; (A.T.); (V.H.); (R.S.); (M.S.); (H.G.); (C.H.); (M.F.); (V.L.); (L.M.); (I.F.)
| |
Collapse
|
8
|
Sanchez-Collado J, Jardin I, López JJ, Ronco V, Salido GM, Dubois C, Prevarskaya N, Rosado JA. Role of Orai3 in the Pathophysiology of Cancer. Int J Mol Sci 2021; 22:ijms222111426. [PMID: 34768857 PMCID: PMC8584145 DOI: 10.3390/ijms222111426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
The mammalian exclusive Orai3 channel participates in the generation and/or modulation of two independent Ca2+ currents, the store-operated current, Icrac, involving functional interactions between the stromal interaction molecules (STIM), STIM1/STIM2, and Orai1/Orai2/Orai3, as well as the store-independent arachidonic acid (AA) (or leukotriene C4)-regulated current Iarc, which involves Orai1, Orai3 and STIM1. Overexpression of functional Orai3 has been described in different neoplastic cells and cancer tissue samples as compared to non-tumor cells or normal adjacent tissue. In these cells, Orai3 exhibits a cell-specific relevance in Ca2+ influx. In estrogen receptor-positive breast cancer cells and non-small cell lung cancer (NSCLC) cells store-operated Ca2+ entry (SOCE) is strongly dependent on Orai3 expression while in colorectal cancer and pancreatic adenocarcinoma cells Orai3 predominantly modulates SOCE. On the other hand, in prostate cancer cells Orai3 expression has been associated with the formation of Orai1/Orai3 heteromeric channels regulated by AA and reduction in SOCE, thus leading to enhanced proliferation. Orai3 overexpression is associated with supporting several cancer hallmarks, including cell cycle progression, proliferation, migration, and apoptosis resistance. This review summarizes the current knowledge concerning the functional role of Orai3 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (J.S.-C.); (I.J.); (V.R.); (G.M.S.)
| | - Isaac Jardin
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (J.S.-C.); (I.J.); (V.R.); (G.M.S.)
| | - Jose J. López
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (J.S.-C.); (I.J.); (V.R.); (G.M.S.)
- Correspondence: (J.J.L.); (J.A.R.)
| | - Victor Ronco
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (J.S.-C.); (I.J.); (V.R.); (G.M.S.)
| | - Gines M. Salido
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (J.S.-C.); (I.J.); (V.R.); (G.M.S.)
| | - Charlotte Dubois
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, 59650 Villeneuve d’Ascq, France; (C.D.); (N.P.)
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, 59650 Villeneuve d’Ascq, France; (C.D.); (N.P.)
| | - Juan A. Rosado
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (J.S.-C.); (I.J.); (V.R.); (G.M.S.)
- Correspondence: (J.J.L.); (J.A.R.)
| |
Collapse
|
9
|
Höglinger C, Grabmayr H, Maltan L, Horvath F, Krobath H, Muik M, Tiffner A, Renger T, Romanin C, Fahrner M, Derler I. Defects in the STIM1 SOARα2 domain affect multiple steps in the CRAC channel activation cascade. Cell Mol Life Sci 2021; 78:6645-6667. [PMID: 34498097 PMCID: PMC8558294 DOI: 10.1007/s00018-021-03933-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
The calcium release-activated calcium (CRAC) channel consists of STIM1, a Ca2+ sensor in the endoplasmic reticulum (ER), and Orai1, the Ca2+ ion channel in the plasma membrane. Ca2+ store depletion triggers conformational changes and oligomerization of STIM1 proteins and their direct interaction with Orai1. Structural alterations include the transition of STIM1 C-terminus from a folded to an extended conformation thereby exposing CAD (CRAC activation domain)/SOAR (STIM1-Orai1 activation region) for coupling to Orai1. In this study, we discovered that different point mutations of F394 in the small alpha helical segment (STIM1 α2) within the CAD/SOAR apex entail a rich plethora of effects on diverse STIM1 activation steps. An alanine substitution (STIM1 F394A) destabilized the STIM1 quiescent state, as evident from its constitutive activity. Single point mutation to hydrophilic, charged amino acids (STIM1 F394D, STIM1 F394K) impaired STIM1 homomerization and subsequent Orai1 activation. MD simulations suggest that their loss of homomerization may arise from altered formation of the CC1α1-SOAR/CAD interface and potential electrostatic interactions with lipid headgroups in the ER membrane. Consistent with these findings, we provide experimental evidence that the perturbing effects of F394D depend on the distance of the apex from the ER membrane. Taken together, our results suggest that the CAD/SOAR apex is in the immediate vicinity of the ER membrane in the STIM1 quiescent state and that different mutations therein can impact the STIM1/Orai1 activation cascade in various manners. Legend: Upon intracellular Ca2+ store depletion of the endoplasmic reticulum (ER), Ca2+ dissociates from STIM1. As a result, STIM1 adopts an elongated conformation and elicits Ca2+ influx from the extracellular matrix (EM) into the cell due to binding to and activation of Ca2+-selective Orai1 channels (left). The effects of three point mutations within the SOARα2 domain highlight the manifold roles of this region in the STIM1/Orai1 activation cascade: STIM1 F394A is active irrespective of the intracellular ER Ca2+ store level, but activates Orai1 channels to a reduced extent (middle). On the other hand, STIM1 F394D/K cannot adopt an elongated conformation upon Ca2+ store-depletion due to altered formation of the CC1α1-SOAR/CAD interface and/or electrostatic interaction of the respective side-chain charge with corresponding opposite charges on lipid headgroups in the ER membrane (right).
Collapse
Affiliation(s)
- Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Lena Maltan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Ferdinand Horvath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Martin Muik
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Adela Tiffner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Thomas Renger
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
10
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
11
|
Huo J, Dong H. Gating and regulation of the calcium release-activated calcium channel: Recent progress from experiments and molecular modeling. Biopolymers 2021; 111:e23392. [PMID: 33460071 DOI: 10.1002/bip.23392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are highly calcium ion (Ca2+)-selective channels in the plasma membrane. The transient drop of endoplasmic reticulum Ca2+ level activates its calcium sensor stromal interaction molecule (STIM) and then triggers the gating of the CRAC channel pore unit Orai. This process involves a variety of activities of the immune system. Therefore, understanding how the activation and regulation of the CRAC channel can be accomplished is essential. Here we briefly summarize the recent progress on Orai gating and its regulation by 2-aminoethoxydiphenylborate (2-APB) obtained from structural biology studies, biochemical and electrophysiological measurements, as well as molecular modeling. Indeed, integration between experiments and computations has further deepened our understanding of the channel gating and regulation.
Collapse
Affiliation(s)
- Jun Huo
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Wang WA, Demaurex N. Proteins Interacting with STIM1 and Store-Operated Ca 2+ Entry. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:51-97. [PMID: 34050862 DOI: 10.1007/978-3-030-67696-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Niu L, Wu F, Li K, Li J, Zhang SL, Hu J, Wang Q. STIM1 interacts with termini of Orai channels in a sequential manner. J Cell Sci 2020; 133:jcs239491. [PMID: 32107289 DOI: 10.1242/jcs.239491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1.
Collapse
Affiliation(s)
- Liling Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fuyun Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Kaili Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Junjie Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, and Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin 300070, China
| |
Collapse
|
14
|
Kappel S, Kilch T, Baur R, Lochner M, Peinelt C. The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca 2+ Channels Alter the Pharmacology of I CRAC. Int J Mol Sci 2020; 21:ijms21072458. [PMID: 32252254 PMCID: PMC7178029 DOI: 10.3390/ijms21072458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Store-operated heteromeric Orai1/Orai3 channels have been discussed in the context of aging, cancer, and immune cell differentiation. In contrast to homomeric Orai1 channels, they exhibit a different pharmacology upon application of reactive oxygen species (ROS) or 2-aminoethoxydiphenyl borate (2-APB) in various cell types. In endogenous cells, subunit composition and arrangement may vary and cannot be defined precisely. In this study, we used patch-clamp electrophysiology to investigate the 2-APB profile of store-operated and store-independent homomeric Orai1 and heteromeric Orai1/Orai3 concatenated channels with defined subunit compositions. As has been shown previous, one or more Orai3 subunit(s) within the channel result(s) in decreased Ca2+ release activated Ca2+ current (ICRAC). Upon application of 50 µM 2-APB, channels with two or more Orai3 subunits exhibit large outward currents and can be activated by 2-APB independent from storedepletion and/or the presence of STIM1. The number and position of Orai3 subunits within the heteromeric store-operated channel change ion conductivity of 2-APB-activated outward current. Compared to homomeric Orai1 channels, one Orai3 subunit within the channel does not alter 2-APB pharmacology. None of the concatenated channel constructs were able to exactly simulate the complex 2-APB pharmacology observed in prostate cancer cells. However, 2-APB profiles of prostate cancer cells are similar to those of concatenated channels with Orai3 subunit(s). Considering the presented and previous results, this indicates that distinct subtypes of heteromeric SOCE channels may be selectively activated or blocked. In the future, targeting distinct heteromeric SOCE channel subtypes may be the key to tailored SOCE-based therapies.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | | | - Roland Baur
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (R.B.); (M.L.)
- Correspondence: ; Tel.: +41-31-631-3415
| |
Collapse
|
15
|
Butorac C, Krizova A, Derler I. Review: Structure and Activation Mechanisms of CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:547-604. [PMID: 31646526 DOI: 10.1007/978-3-030-12457-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria.
| |
Collapse
|
16
|
Krizova A, Maltan L, Derler I. Critical parameters maintaining authentic CRAC channel hallmarks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:425-445. [PMID: 30903264 PMCID: PMC6647248 DOI: 10.1007/s00249-019-01355-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Ca2+ ions represent versatile second messengers that regulate a huge diversity of processes throughout the cell's life. One prominent Ca2+ entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) ion channel. It is fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM1) and Orai. STIM1 is a Ca2+ sensor located in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel embedded in the plasma membrane. Ca2+ store-depletion leads initially to the activation of STIM1 which subsequently activates Orai channels via direct binding. Authentic CRAC channel hallmarks and biophysical characteristics include high Ca2+ selectivity with a reversal potential in the range of + 50 mV, small unitary conductance, fast Ca2+-dependent inactivation and enhancements in currents upon the switch from a Na+-containing divalent-free to a Ca2+-containing solution. This review provides an overview on the critical determinants and structures within the STIM1 and Orai proteins that establish these prominent CRAC channel characteristics.
Collapse
Affiliation(s)
- Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Lena Maltan
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
17
|
Fahrner M, Pandey SK, Muik M, Traxler L, Butorac C, Stadlbauer M, Zayats V, Krizova A, Plenk P, Frischauf I, Schindl R, Gruber HJ, Hinterdorfer P, Ettrich R, Romanin C, Derler I. Communication between N terminus and loop2 tunes Orai activation. J Biol Chem 2018; 293:1271-1285. [PMID: 29237733 PMCID: PMC5787804 DOI: 10.1074/jbc.m117.812693] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.
Collapse
Affiliation(s)
- Marc Fahrner
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Saurabh K Pandey
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Martin Muik
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Lukas Traxler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Carmen Butorac
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Michael Stadlbauer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Vasilina Zayats
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Adéla Krizova
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Peter Plenk
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Irene Frischauf
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Rainer Schindl
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Hermann J Gruber
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Peter Hinterdorfer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Rüdiger Ettrich
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Christoph Romanin
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Isabella Derler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| |
Collapse
|
18
|
Derler I, Butorac C, Krizova A, Stadlbauer M, Muik M, Fahrner M, Frischauf I, Romanin C. Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus. J Biol Chem 2018; 293:1259-1270. [PMID: 29237734 PMCID: PMC5787803 DOI: 10.1074/jbc.m117.812206] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium (Ca2+) is an essential second messenger required for diverse signaling processes in immune cells. Ca2+ release-activated Ca2+ (CRAC) channels represent one main Ca2+ entry pathway into the cell. They are fully reconstituted via two proteins, the stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, and the Ca2+ ion channel Orai in the plasma membrane. After Ca2+ store depletion, STIM1 and Orai couple to each other, allowing Ca2+ influx. CRAC-/STIM1-mediated Orai channel currents display characteristic hallmarks such as high Ca2+ selectivity, an increase in current density when switching from a Ca2+-containing solution to a divalent-free Na+ one, and fast Ca2+-dependent inactivation. Here, we discovered several constitutively active Orai1 and Orai3 mutants, containing substitutions in the TM3 and/or TM4 regions, all of which displayed a loss of the typical CRAC channel hallmarks. Restoring authentic CRAC channel activity required both the presence of STIM1 and the conserved Orai N-terminal portion. Similarly, these structural requisites were found in store-operated Orai channels. Key molecular determinants within the Orai N terminus that together with STIM1 maintained the typical CRAC channel hallmarks were distinct from those that controlled store-dependent Orai activation. In conclusion, the conserved portion of the Orai N terminus is essential for STIM1, as it fine-tunes the open Orai channel gating, thereby establishing authentic CRAC channel activity.
Collapse
Affiliation(s)
- Isabella Derler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Carmen Butorac
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Adéla Krizova
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Michael Stadlbauer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Martin Muik
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Marc Fahrner
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Irene Frischauf
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Christoph Romanin
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| |
Collapse
|
19
|
Traxler L, Rathner P, Fahrner M, Stadlbauer M, Faschinger F, Charnavets T, Müller N, Romanin C, Hinterdorfer P, Gruber HJ. Multiple Evidenz für einen ungewöhnlichen Wechselwirkungsmodus zwischen Calmodulin und Orai-Proteinen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Traxler
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| | - Petr Rathner
- Institut für Organische Chemie; Johannes Kepler Universität; Altenberger Strasse 69 4020 Linz Österreich
| | - Marc Fahrner
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| | - Michael Stadlbauer
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| | - Felix Faschinger
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| | - Tatsiana Charnavets
- CF Centre of Molecular Structure, BIOCEV; Průmyslová 595 252 50 Vestec Tschechische Republik
| | - Norbert Müller
- Institut für Organische Chemie; Johannes Kepler Universität; Altenberger Strasse 69 4020 Linz Österreich
- Faculty of Science; University of South Bohemia; Branišovská 31 370 05 České Budějovice Tschechische Republik
| | - Christoph Romanin
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| | - Peter Hinterdorfer
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| | - Hermann J. Gruber
- Institut für Biophysik; Johannes Kepler Universität; Gruberstrasse 40 4020 Linz Österreich
| |
Collapse
|
20
|
Traxler L, Rathner P, Fahrner M, Stadlbauer M, Faschinger F, Charnavets T, Müller N, Romanin C, Hinterdorfer P, Gruber HJ. Detailed Evidence for an Unparalleled Interaction Mode between Calmodulin and Orai Proteins. Angew Chem Int Ed Engl 2017; 56:15755-15759. [PMID: 29024298 DOI: 10.1002/anie.201708667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Calmodulin (CaM) binds most of its targets by wrapping around an amphipathic α-helix. The N-terminus of Orai proteins contains a conserved CaM-binding segment but the binding mechanism has been only partially characterized. Here, microscale thermophoresis (MST), surface plasmon resonance (SPR), and atomic force microscopy (AFM) were employed to study the binding equilibria, the kinetics, and the single-molecule interaction forces involved in the binding of CaM to the conserved helical segments of Orai1 and Orai3. The results consistently indicated stepwise binding of two separate target peptides to the two lobes of CaM. An unparalleled high affinity was found when two Orai peptides were dimerized or immobilized at high lateral density, thereby mimicking the close proximity of the N-termini in native Orai oligomers. The analogous experiments with smooth muscle myosin light chain kinase (smMLCK) showed only the expected 1:1 binding, confirming the validity of our methods.
Collapse
Affiliation(s)
- Lukas Traxler
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| | - Petr Rathner
- Institute of Organic Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4020, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| | - Michael Stadlbauer
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| | - Felix Faschinger
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| | - Tatsiana Charnavets
- CF Centre of Molecular Structure, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Norbert Müller
- Institute of Organic Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4020, Linz, Austria.,Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| | - Hermann J Gruber
- Institute of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020, Linz, Austria
| |
Collapse
|
21
|
Wei M, Zhou Y, Sun A, Ma G, He L, Zhou L, Zhang S, Liu J, Zhang SL, Gill DL, Wang Y. Molecular mechanisms underlying inhibition of STIM1-Orai1-mediated Ca 2+ entry induced by 2-aminoethoxydiphenyl borate. Pflugers Arch 2016; 468:2061-2074. [PMID: 27726010 DOI: 10.1007/s00424-016-1880-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/24/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023]
Abstract
Store-operated Ca2+ entry (SOCE) mediated by STIM1 and Orai1 is crucial for Ca2+ signaling and homeostasis in most cell types. 2-Aminoethoxydiphenyl borate (2-APB) is a well-described SOCE inhibitor, but its mechanisms of action remain largely elusive. Here, we show that 2-APB does not affect the dimeric state of STIM1, but enhances the intramolecular coupling between the coiled-coil 1 (CC1) and STIM-Orai-activating region (SOAR) of STIM1, with subsequent reduction in the formation of STIM1 puncta in the absence of Orai1 overexpression. 2-APB also inhibits Orai1 channels, directly inhibiting Ca2+ entry through the constitutively active, STIM1-independent Orai1 mutants, Orai1-P245T and Orai1-V102A. When unbound from STIM1, the constitutively active Orai1-V102C mutant is not inhibited by 2-APB. Thus, we used Orai1-V012C as a tool to examine whether 2-APB can also inhibit the coupling between STIM1 and Orai1. We reveal that the functional coupling between STIM1 and Orai1-V102C is inhibited by 2-APB. This inhibition on coupling is indirect, arising from 2-APB's action on STIM1, and it is most likely mediated by functional channel residues in the Orai1 N-terminus. Overall, our findings on this two-site inhibition mediated by 2-APB provide new understanding on Orai1-activation by STIM1, important to future drug design.
Collapse
Affiliation(s)
- Ming Wei
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Guolin Ma
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, 77030, USA
| | - Lian He
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, 77030, USA
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Shuce Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, 76504, USA
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Ca(2+)entry into the cell via store-operated Ca(2+)release-activated Ca(2+)(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca(2+)channels open after depletion of intracellular Ca(2+)stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca(2+)sensor, while Orai forms a highly Ca(2+)-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca(2+)permeation into the cell.
Collapse
Affiliation(s)
- Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria; and
| | - Isaac Jardin
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria; and
| |
Collapse
|
23
|
Frischauf I, Fahrner M, Jardín I, Romanin C. The STIM1: Orai Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:25-46. [PMID: 27161223 DOI: 10.1007/978-3-319-26974-0_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signalling pathway for a variety of cell functions, including T-cell activation as well as mast-cell degranulation. Depletion of [Ca(2+)]ER results in activation of Ca(2+) channels within the plasmamembrane that mediate sustained Ca(2+) influx which is required for refilling Ca(2+) stores and down-stream Ca(2+) signalling. The CRAC channel is the best characterized store-operated channel (SOC) with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel have been defined. The ER - located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca(2+)]ER and activates the CRAC channel upon store depletion by direct binding to Orai1 in the plasmamembrane. The identification of STIM1 and Orai1 and recently the structural resolution of both proteins by X-ray crystallography and nuclear magnetic resonance substantiated many findings from structure-function studies which has substantially improved the understanding of CRAC channel activation. Within this review, we summarize the functional and structural mechanisms of CRAC channel regulation, present a detailed overview of the STIM1/Orai1 signalling pathway where we focus on the critical domains mediating interactions and on the ion permeation pathway. We portray a mechanistic view of the steps in the dynamics of CRAC channel signalling ranging from STIM1 oligomerization over STIM1-Orai1 coupling to CRAC channel activation and permeation.
Collapse
Affiliation(s)
| | - Marc Fahrner
- Institute of Biophysics, University of Linz, Linz, Austria
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | |
Collapse
|
24
|
Amcheslavsky A, Wood ML, Yeromin AV, Parker I, Freites JA, Tobias DJ, Cahalan MD. Molecular biophysics of Orai store-operated Ca2+ channels. Biophys J 2015; 108:237-46. [PMID: 25606672 DOI: 10.1016/j.bpj.2014.11.3473] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Upon endoplasmic reticulum Ca(2+) store depletion, Orai channels in the plasma membrane are activated directly by endoplasmic reticulum-resident STIM proteins to generate the Ca(2+)-selective, Ca(2+) release-activated Ca(2+) (CRAC) current. After the molecular identification of Orai, a plethora of functional and biochemical studies sought to compare Orai homologs, determine their stoichiometry, identify structural domains responsible for the biophysical fingerprint of the CRAC current, identify the physiological functions, and investigate Orai homologs as potential therapeutic targets. Subsequently, the solved crystal structure of Drosophila Orai (dOrai) substantiated many findings from structure-function studies, but also revealed an unexpected hexameric structure. In this review, we explore Orai channels as elucidated by functional and biochemical studies, analyze the dOrai crystal structure and its implications for Orai channel function, and present newly available information from molecular dynamics simulations that shed light on Orai channel gating and permeation.
Collapse
Affiliation(s)
- Anna Amcheslavsky
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California
| | - Mona L Wood
- Department of Chemistry, University of California at Irvine, Irvine, California
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California
| | - Ian Parker
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California; Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California
| | - J Alfredo Freites
- Department of Chemistry, University of California at Irvine, Irvine, California
| | - Douglas J Tobias
- Department of Chemistry, University of California at Irvine, Irvine, California
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California; Institute for Immunology, University of California at Irvine, Irvine, California.
| |
Collapse
|
25
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
26
|
Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun 2015; 460:40-9. [PMID: 25998732 DOI: 10.1016/j.bbrc.2015.02.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 11/22/2022]
Abstract
Store-operated calcium entry is a central mechanism in cellular calcium signalling and in maintaining cellular calcium balance. This review traces the history of research on store-operated calcium entry, the discovery of STIM and ORAI as central players in calcium entry, and the role of STIM and ORAI in biology and human disease. It describes current knowledge of the basic mechanism of STIM-ORAI signalling and of the varied mechanisms by which STIM-ORAI signalling can be modulated.
Collapse
|
27
|
Alansary D, Bogeski I, Niemeyer BA. Facilitation of Orai3 targeting and store-operated function by Orai1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1541-50. [PMID: 25791427 DOI: 10.1016/j.bbamcr.2015.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
Orai1 subunits interacting with STIM1 molecules comprise the major components responsible for calcium release-activated calcium (CRAC) channels. The homologs Orai2 and Orai3 yield smaller store-operated currents when overexpressed and are mostly unable to substitute Orai1. Orai3 subunits are also essential components of store independent channel complexes and also tune inhibition of ICRAC by reactive oxygen species. Here we use patch-clamp, microscopy, Ca(2+)-imaging and biochemical experiments to investigate the interdependence of Orai2, Orai3 and Orai1. We demonstrate that store-operation and localization of Orai3 but not of Orai2 to STIM1 clusters in HEK cells or to the immunological synapse in T cells is facilitated by Orai1 while Orai3's store-independent activity remains unaffected. On the other hand, one Orai3 subunit confers redox-resistance to heteromeric channels. The inefficient store operation of Orai3 is partly due to the lack of three critical C-terminal residues, the insertion of which improves interaction with STIM1 and abrogates Orai3's dependence on Orai1. Our results suggest that Orai3 down-tunes efficient STIM1 gating when in a heteromeric complex with Orai1.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrated Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, School of Medicine, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
28
|
Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:3937-52. [PMID: 25762778 DOI: 10.4049/jimmunol.1402658] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/07/2015] [Indexed: 12/22/2022]
Abstract
Perturbation of intracellular ion homeostasis is a major cellular stress signal for activation of NLRP3 inflammasome signaling that results in caspase-1-mediated production of IL-1β and pyroptosis. However, the relative contributions of decreased cytosolic K(+) concentration versus increased cytosolic Ca(2+) concentration ([Ca(2+)]) remain disputed and incompletely defined. We investigated roles for elevated cytosolic [Ca(2+)] in NLRP3 activation and downstream inflammasome signaling responses in primary murine dendritic cells and macrophages in response to two canonical NLRP3 agonists (ATP and nigericin) that facilitate primary K(+) efflux by mechanistically distinct pathways or the lysosome-destabilizing agonist Leu-Leu-O-methyl ester. The study provides three major findings relevant to this unresolved area of NLRP3 regulation. First, increased cytosolic [Ca(2+)] was neither a necessary nor sufficient signal for the NLRP3 inflammasome cascade during activation by endogenous ATP-gated P2X7 receptor channels, the exogenous bacterial ionophore nigericin, or the lysosomotropic agent Leu-Leu-O-methyl ester. Second, agonists for three Ca(2+)-mobilizing G protein-coupled receptors (formyl peptide receptor, P2Y2 purinergic receptor, and calcium-sensing receptor) expressed in murine dendritic cells were ineffective as activators of rapidly induced NLRP3 signaling when directly compared with the K(+) efflux agonists. Third, the intracellular Ca(2+) buffer, BAPTA, and the channel blocker, 2-aminoethoxydiphenyl borate, widely used reagents for disruption of Ca(2+)-dependent signaling pathways, strongly suppressed nigericin-induced NLRP3 inflammasome signaling via mechanisms dissociated from their canonical or expected effects on Ca(2+) homeostasis. The results indicate that the ability of K(+) efflux agonists to activate NLRP3 inflammasome signaling can be dissociated from changes in cytosolic [Ca(2+)] as a necessary or sufficient signal.
Collapse
Affiliation(s)
| | - L Graham Rucker
- The Ohio State University College of Medicine, Columbus, OH 43210; and
| | - Hana M Russo
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
29
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
30
|
Taskinen B, Zauner D, Lehtonen SI, Koskinen M, Thomson C, Kähkönen N, Kukkurainen S, Määttä JAE, Ihalainen TO, Kulomaa MS, Gruber HJ, Hytönen VP. Switchavidin: Reversible Biotin–Avidin–Biotin Bridges with High Affinity and Specificity. Bioconjug Chem 2014; 25:2233-43. [DOI: 10.1021/bc500462w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Barbara Taskinen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Dominik Zauner
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Soili I. Lehtonen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Masi Koskinen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Chloe Thomson
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Niklas Kähkönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Sampo Kukkurainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Juha A. E. Määttä
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
| | - Markku S. Kulomaa
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Tampere University Hospital, PL 2000, FI-33521 Tampere, Finland
| | - Hermann J. Gruber
- Institute
of Biophysics, Johannes Kepler University, Gruberstrasse 40, 4020 Linz, Austria
| | - Vesa P. Hytönen
- BioMediTech, University of Tampere, Biokatu 6, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu
4, FI-33520 Tampere, Finland
| |
Collapse
|
31
|
Gudlur A, Quintana A, Zhou Y, Hirve N, Mahapatra S, Hogan PG. STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat Commun 2014; 5:5164. [PMID: 25296861 PMCID: PMC4376667 DOI: 10.1038/ncomms6164] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/04/2014] [Indexed: 01/28/2023] Open
Abstract
The ER-resident regulatory protein STIM1 triggers store-operated Ca2+ entry by direct interaction with the plasma membrane Ca2+ channel ORAI1. The mechanism of channel gating remains undefined. Here we establish that STIM1 gates the purified recombinant ORAI1 channel in vitro, and use Tb3+ luminescence and, separately, disulfide crosslinking to probe movements of the pore-lining helices. We show that interaction of STIM1 with the cytoplasmic face of the human ORAI1 channel elicits a conformational change near the external entrance to the pore, detectable at the pore Ca2+-binding residue E106 and the adjacent pore-lining residue V102. We demonstrate that a short nonpolar segment of the pore including V102 forms a barrier to ion flux in the closed channel, implicating the STIM1-dependent movement in channel gating. Our data explain the close coupling between ORAI1 channel gating and ion selectivity, and open a new avenue to dissect the gating, modulation, and inactivation of ORAI-family channels.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Ariel Quintana
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Yubin Zhou
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Nupura Hirve
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Sahasransu Mahapatra
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|
32
|
Dong H, Klein ML, Fiorin G. Counterion-Assisted Cation Transport in a Biological Calcium Channel. J Phys Chem B 2014; 118:9668-76. [DOI: 10.1021/jp5059897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Dong
- Institute for Computational
Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational
Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Giacomo Fiorin
- Institute for Computational
Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
33
|
Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB. Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr Biol 2014; 24:1361-1368. [PMID: 24909327 PMCID: PMC4062936 DOI: 10.1016/j.cub.2014.04.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
NFAT-dependent gene expression is essential for the development and function of the nervous, immune, and cardiovascular systems and kidney, bone, and skeletal muscle [1]. Most NFAT protein resides in the cytoplasm because of extensive phosphorylation, which masks a nuclear localization sequence. Dephosphorylation by the Ca2+-calmodulin-activated protein phosphatase calcineurin triggers NFAT migration into the nucleus [2, 3]. In some cell types, NFAT can be activated by Ca2+ nanodomains near open store-operated Orai1 and voltage-gated Ca2+ channels in the plasma membrane [4, 5]. How local Ca2+ near Orai1 is detected and whether other Orai channels utilize a similar mechanism remain unclear. Here, we report that the paralog Orai3 fails to activate NFAT. Orai1 is effective in activating gene expression via Ca2+ nanodomains because it participates in a membrane-delimited signaling complex that forms after store depletion and brings calcineurin, via the scaffolding protein AKAP79, to calmodulin tethered to Orai1. By contrast, Orai3 interacts less well with AKAP79 after store depletion, rendering it ineffective in activating NFAT. A channel chimera of Orai3 with the N terminus of Orai1 was able to couple local Ca2+ entry to NFAT activation, identifying the N-terminal domain of Orai1 as central to Ca2+ nanodomain-transcription coupling. The formation of a store-dependent signaling complex at the plasma membrane provides for selective activation of a fundamental downstream response by Orai1. Ca2+ store depletion leads to the formation of a plasmalemmal signaling complex AKAP79, with bound calcineurin and NFAT1, couples to the N terminus of Orai1 channels Ca2+ entry though the channels releases activated NFAT, leading to gene expression These results identify a mechanism for selective activation of a response by Orai1
Collapse
Affiliation(s)
- Pulak Kar
- Department of Physiology, Anatomy, and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK
| | - Krishna Samanta
- Department of Physiology, Anatomy, and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Department of Physiology, Anatomy, and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK
| | - Otto Morris
- Department of Physiology, Anatomy, and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK
| | - Daniel Bakowski
- Department of Physiology, Anatomy, and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy, and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
34
|
Takahashi K, Yokota M, Ohta T. Molecular mechanism of 2-APB-induced Ca2+ influx in external acidification in PC12. Exp Cell Res 2014; 323:337-45. [DOI: 10.1016/j.yexcr.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 02/02/2023]
|
35
|
Hoth M, Niemeyer BA. The neglected CRAC proteins: Orai2, Orai3, and STIM2. CURRENT TOPICS IN MEMBRANES 2014; 71:237-71. [PMID: 23890118 DOI: 10.1016/b978-0-12-407870-3.00010-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasma-membrane-localized Orai1 ion channel subunits interacting with ER-localized STIM1 molecules comprise the major subunit composition responsible for calcium release-activated calcium channels. STIM1 "translates" the Ca(2+) store content into Orai1 activity, making it a store-operated channel. Surprisingly, in addition to being the physical activator, STIM1 also modulates Orai1 properties, including its inactivation and permeation (see Chapter 1). STIM1 is thus more than a pure Orai1 activator. Within the past 7 years following the discovery of STIM and Orai proteins, the molecular mechanisms of STIM1/Orai1 activity and their functional importance have been studied in great detail. Much less is currently known about the other isoforms STIM2, Orai2, and Orai3. In this chapter, we summarize the current knowledge about STIM2, Orai2, and Orai3 properties and function. Are these homologues mainly modulators of predominantly STIM1/Orai1-mediated complexes or do store-dependent or -independent functions such as regulation of basal Ca(2+) concentration and activation of Orai3-containing complexes by arachidonic acid or by estrogen receptors point toward their "true" physiological function? Is Orai2 the Orai1 of neurons? A major focus of the review is on the functional relevance of STIM2, Orai2, and Orai3, some of which still remains speculative.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Saarland University, Homburg, Germany
| | | |
Collapse
|
36
|
Abstract
TRPV3 is a temperature-sensitive transient receptor potential (TRP) ion channel. The TRPV3 protein functions as a Ca(2+)-permeable nonselective cation channel with six transmembrane domains forming a tetrameric complex. TRPV3 is known to be activated by warm temperatures, synthetic small-molecule chemicals, and natural compounds from plants. Its function is regulated by a variety of physiological factors including extracellular divalent cations and acidic pH, intracellular adenosine triphosphate, membrane voltage, and arachidonic acid. TRPV3 shows a broad expression pattern in both neuronal and non-neuronal tissues including epidermal keratinocytes, epithelial cells in the gut, endothelial cells in blood vessels, and neurons in dorsal root ganglia and CNS. TRPV3 null mice exhibit abnormal hair morphogenesis and compromised skin barrier function. Recent advances suggest that TRPV3 may play critical roles in inflammatory skin disorders, itch, and pain sensation. Thus, identification of selective TRPV3 activators and inhibitors could potentially lead to beneficial pharmacological interventions in several diseases. The intent of this review is to summarize our current knowledge of the tissue expression, structure, function, and mechanisms of activation of TRPV3.
Collapse
Affiliation(s)
- Jialie Luo
- The Center for the Study of Itch, Washington University Pain Center, The Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hongzhen Hu
- The Center for the Study of Itch, Washington University Pain Center, The Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
37
|
Derler I, Plenk P, Fahrner M, Muik M, Jardin I, Schindl R, Gruber HJ, Groschner K, Romanin C. The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 2013; 288:29025-34. [PMID: 23943619 PMCID: PMC3790000 DOI: 10.1074/jbc.m113.501510] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/09/2013] [Indexed: 11/21/2022] Open
Abstract
STIM1 and Orai1 represent the two molecular key components of the Ca(2+) release-activated Ca(2+) channels. Their activation involves STIM1 C terminus coupling to both the N terminus and the C terminus of Orai. Here we focused on the extended transmembrane Orai1 N-terminal (ETON, aa73-90) region, conserved among the Orai family forming an elongated helix of TM1 as recently shown by x-ray crystallography. To identify "hot spot" residues in the ETON binding interface for STIM1 interaction, numerous Orai1 constructs with N-terminal truncations or point mutations within the ETON region were generated. N-terminal truncations of the first four residues of the ETON region or beyond completely abolished STIM1-dependent Orai1 function. Loss of Orai1 function resulted from neither an impairment of plasma membrane targeting nor pore damage, but from a disruption of STIM1 interaction. In a complementary approach, we monitored STIM1-Orai interaction via Orai1 V102A by determining restored Ca(2+) selectivity as a consequence of STIM1 coupling. Orai1 N-terminal truncations that led to a loss of function consistently failed to restore Ca(2+) selectivity of Orai1 V102A in the presence of STIM1, demonstrating impairment of STIM1 binding. Hence, the major portion of the ETON region (aa76-90) is essential for STIM1 binding and Orai1 activation. Mutagenesis within the ETON region revealed several hydrophobic and basic hot spot residues that appear to control STIM1 coupling to Orai1 in a concerted manner. Moreover, we identified two basic residues, which protrude into the elongated pore to redound to Orai1 gating. We suggest that several hot spot residues in the ETON region contribute in aggregate to the binding of STIM1, which in turn is coupled to a conformational reorientation of the gate.
Collapse
Affiliation(s)
- Isabella Derler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Peter Plenk
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Marc Fahrner
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Martin Muik
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Isaac Jardin
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Rainer Schindl
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Hermann J. Gruber
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| | - Klaus Groschner
- the Institute of Biophysics, Medical University of Graz, Harrachgasse 21/4, 8010 Graz, Austria
| | - Christoph Romanin
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz and
| |
Collapse
|
38
|
Pollheimer P, Taskinen B, Scherfler A, Gusenkov S, Creus M, Wiesauer P, Zauner D, Schöfberger W, Schwarzinger C, Ebner A, Tampé R, Stutz H, Hytönen VP, Gruber HJ. Reversible biofunctionalization of surfaces with a switchable mutant of avidin. Bioconjug Chem 2013; 24:1656-68. [PMID: 23978112 DOI: 10.1021/bc400087e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Label-free biosensors detect binding of prey molecules (″analytes″) to immobile bait molecules on the sensing surface. Numerous methods are available for immobilization of bait molecules. A convenient option is binding of biotinylated bait molecules to streptavidin-functionalized surfaces, or to biotinylated surfaces via biotin-avidin-biotin bridges. The goal of this study was to find a rapid method for reversible immobilization of biotinylated bait molecules on biotinylated sensor chips. The task was to establish a biotin-avidin-biotin bridge which was easily cleaved when desired, yet perfectly stable under a wide range of measurement conditions. The problem was solved with the avidin mutant M96H which contains extra histidine residues at the subunit-subunit interfaces. This mutant was bound to a mixed self-assembled monolayer (SAM) containing biotin residues on 20% of the oligo(ethylene glycol)-terminated SAM components. Various biotinylated bait molecules were bound on top of the immobilized avidin mutant. The biotin-avidin-biotin bridge was stable at pH ≥3, and it was insensitive to sodium dodecyl sulfate (SDS) at neutral pH. Only the combination of citric acid (2.5%, pH 2) and SDS (0.25%) caused instantaneous cleavage of the biotin-avidin-biotin bridge. As a consequence, the biotinylated bait molecules could be immobilized and removed as often as desired, the only limit being the time span for reproducible chip function when kept in buffer (2-3 weeks at 25 °C). As expected, the high isolectric pH (pI) of the avidin mutant caused nonspecific adsorption of proteins. This problem was solved by acetylation of avidin (to pI < 5), or by optimization of SAM formation and passivation with biotin-BSA and BSA.
Collapse
Affiliation(s)
- Philipp Pollheimer
- Institute of Biophysics, Johannes Kepler University , Gruberstr. 40, 4020 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signaling pathway for T-cell activation as well as mast-cell degranulation. The ER-located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Their identification, but even more the recent structural resolution of both proteins by X-ray crystallography has substantially advanced the understanding of the activation mechanism of CRAC channels. In this review, we provide a detailed description of the STIM1/Orai1 signaling pathway thereby focusing on the critical domains mediating both, intra- as well as intermolecular interactions and on the ion permeation pathway. Based on the results of functional studies as well as the recently published crystal structures, we portray a mechanistic view of the steps in the CRAC channel signaling cascade ranging from STIM1 oligomerization over STIM1-Orai1 coupling to the ultimate Orai1 channel activation and permeation.
Collapse
Affiliation(s)
- Marc Fahrner
- Institute of Biophysics; Johannes Kepler University Linz; Linz, Austria
| | - Isabella Derler
- Institute of Biophysics; Johannes Kepler University Linz; Linz, Austria
| | - Isaac Jardin
- Institute of Biophysics; Johannes Kepler University Linz; Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics; Johannes Kepler University Linz; Linz, Austria
| |
Collapse
|
40
|
Gudlur A, Zhou Y, Hogan PG. STIM-ORAI interactions that control the CRAC channel. CURRENT TOPICS IN MEMBRANES 2013; 71:33-58. [PMID: 23890110 DOI: 10.1016/b978-0-12-407870-3.00002-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Ca(2+) sensor STIM1 and the Ca(2+) channel ORAI1 are the fundamental working machinery of the CRAC channel, a classical pathway for store-operated Ca(2+) entry. This chapter focuses on the protein-protein interactions of STIM and ORAI proteins that control the channel.
Collapse
Affiliation(s)
- Aparna Gudlur
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
41
|
Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol 2012; 167:1712-22. [PMID: 22862290 PMCID: PMC3525873 DOI: 10.1111/j.1476-5381.2012.02126.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Pyrazole derivatives have recently been suggested as selective blockers of transient receptor potential cation (TRPC) channels but their ability to distinguish between the TRPC and Orai pore complexes is ill-defined. This study was designed to characterize a series of pyrazole derivatives in terms of TRPC/Orai selectivity and to delineate consequences of selective suppression of these pathways for mast cell activation. EXPERIMENTAL APPROACH Pyrazoles were generated by microwave-assisted synthesis and tested for effects on Ca(2+) entry by Fura-2 imaging and membrane currents by patch-clamp recording. Experiments were performed in HEK293 cells overexpressing TRPC3 and in RBL-2H3 mast cells, which express classical store-operated Ca(2+) entry mediated by Orai channels. The consequences of inhibitory effects on Ca(2+) signalling in RBL-2H3 cells were investigated at the level of both degranulation and nuclear factor of activated T-cells activation. KEY RESULTS Pyr3, a previously suggested selective inhibitor of TRPC3, inhibited Orai1- and TRPC3-mediated Ca(2+) entry and currents as well as mast cell activation with similar potency. By contrast, Pyr6 exhibited a 37-fold higher potency to inhibit Orai1-mediated Ca(2+) entry as compared with TRPC3-mediated Ca(2+) entry and potently suppressed mast cell activation. The novel pyrazole Pyr10 displayed substantial selectivity for TRPC3-mediated responses (18-fold) and the selective block of TRPC3 channels by Pyr10 barely affected mast cell activation. CONCLUSIONS AND IMPLICATIONS The pyrazole derivatives Pyr6 and Pyr10 are able to distinguish between TRPC and Orai-mediated Ca(2+) entry and may serve as useful tools for the analysis of cellular functions of the underlying Ca(2+) channels.
Collapse
Affiliation(s)
- H Schleifer
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Muik M, Schindl R, Fahrner M, Romanin C. Ca(2+) release-activated Ca(2+) (CRAC) current, structure, and function. Cell Mol Life Sci 2012; 69:4163-76. [PMID: 22802126 PMCID: PMC3505497 DOI: 10.1007/s00018-012-1072-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/07/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Store-operated Ca(2+) entry describes the phenomenon that connects a depletion of internal Ca(2+) stores to an activation of plasma membrane-located Ca(2+) selective ion channels. Tremendous progress towards the underlying molecular mechanism came with the discovery of the two respective limiting components, STIM and Orai. STIM1 represents the ER-located Ca(2+) sensor and transmits the signal of store depletion to the plasma membrane. Here it couples to and activates Orai, the highly Ca(2+)-selective pore-forming subunit of Ca(2+) release-activated Ca(2+) channels. In this review, we focus on the molecular steps that these two proteins undergo from store-depletion to their coupling, the activation, and regulation of Ca(2+) currents.
Collapse
Affiliation(s)
- Martin Muik
- Institute of Biophysics, University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | | | | | | |
Collapse
|
43
|
Abstract
The field of agonist-activated Ca(2+) entry in non-excitable cells underwent a revolution some 5 years ago with the discovery of the Orai proteins as the essential pore-forming components of the low-conductance, highly Ca(2+)-selective CRAC channels whose activation is dependent on depletion of intracellular stores. Mammals possess three distinct Orai proteins (Orai1, 2 and 3) of which Orai3 is unique to this class, apparently evolving from Orai1. However, the sequence of Orai3 shows marked differences from that of Orai1, particularly in those regions of the protein outside of the essential pore-forming domains. Correspondingly, studies from several different groups have indicated that the inclusion of Orai3 is associated with the appearance of conductances that display unique features in their gating, selectivity, regulation and mode of activation. In this Topical Review, these features are discussed with the purpose of proposing that the evolutionary appearance of Orai3 in mammals, and the consequent development of conductances displaying novel properties - whether formed by Orai3 alone or in conjunction with the other Orai proteins - is associated with the specific role of this member of the Orai family in a unique range of distinct cellular activities.
Collapse
Affiliation(s)
- Trevor J Shuttleworth
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|