1
|
Borgert L, Becker T, den Brave F. Conserved quality control mechanisms of mitochondrial protein import. J Inherit Metab Dis 2024; 47:903-916. [PMID: 38790152 DOI: 10.1002/jimd.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.
Collapse
Affiliation(s)
- Lion Borgert
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
He Z, Gu Y, Yang H, Fu Q, Zhao M, Xie Y, Liu Y, Du W. Identification and verification of a novel anoikis-related gene signature with prognostic significance in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:11661-11678. [PMID: 37402968 DOI: 10.1007/s00432-023-05012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE Clear cell renal cell carcinomas (ccRCCs) are the most common form of renal cancer in the world. The loss of extracellular matrix (ECM) stimulates cell apoptosis, known as anoikis. A resistance to anoikis in cancer cells is believed to contribute to tumor malignancy, particularly metastasis; however, the potential influence of anoikis on the prognosis of ccRCC patients is not fully understood. METHODS In this study, anoikis-related genes (ARGs) with discrepant expression were selected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The anoikis-related gene signature (ARS) was built using a combination of the univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. ARS was also evaluated for their prognostic value. We explored the tumor microenvironment and enrichment pathways between different clusters of ccRCC. We also examined differences in clinical characteristics, immune cell infiltration and drug sensitivity between the high- and low-risk sets. In addition, we utilized three external databases and quantitative real-time polymerase chain reaction (qRT-PCR) to validate the expression and prognosis of ARGs. RESULTS Eight ARGs (PLAUR, HMCN1, CDKN2A, BID, GLI2, PLG, PRKCQ and IRF6) were identified as anoikis-related prognostic factors. According to Kaplan-Meier (KM) analysis, ccRCC patients with high-risk ARGs have a worse prognosis. The risk score was found to be a significant independent prognostic indicator. According to tumor microenvironment (TME) scores, stromal score, immune score, and estimated score of the high-risk group were superior to those of the low-risk group. There were significant differences between the two groups regarding the amount of infiltrated immune cells, immune checkpoint expression as well as drug sensitivity. A nomogram was constructed using ccRCC clinical features and risk scores. The signature and the nomogram both performed well in predicting overall survival (OS) for ccRCC patients. According to a decision curve analysis (DCA), clinical treatment options for patients with ccRCC could be improved using this model. CONCLUSION The results of validation from external databases and qRT-PCR were basically agreement with findings in TCGA and GEO databases. The ARS serving as biomarkers may provide an important reference for individual therapy of ccRCC patients.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yufan Gu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huan Yang
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qian Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Maofang Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yuhan Xie
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yi Liu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Wei Z, Zhou C, Shen Y, Deng H, Shen Z. Identification of a new anoikis-related gene signature for prognostic significance in head and neck squamous carcinomas. Medicine (Baltimore) 2023; 102:e34790. [PMID: 37682196 PMCID: PMC10489427 DOI: 10.1097/md.0000000000034790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Anoikis, a mode of programmed cell death, is essential for normal development and homeostasis in the organism and plays an important role in the onset and progression of cancers. The authors of this research sought to establish a gene signature associated with anoikis to predict therapy outcomes and patient prognosis for individuals with head and neck squamous cell carcinoma (HNSCC). Transcriptome data of anoikis-related genes (ARGs) in individuals with HNSCC were retrieved from public databases to aid in the formulation of the gene signature. A novel ARG signature was then created using a combination of the Least Absolute Shrinkage and Selection Operator regression and Cox regression analysis. The relationship between ARGs and tumor immune microenvironment in HNSCC was explored using single-cell analysis. HNSCC individuals were classified into high-risk and low-risk groups as per the median value of risk score. The study also investigated the variations in the infiltration status of immune cells, tumor microenvironment, sensitivity to immunotherapy and chemotherapeutics, as well as functional enrichment between the low-risk and high-risk categories. A total of 18 ARGs were incorporated in the formulation of the signature. Our signature's validity as a standalone predictive predictor was validated by multivariate Cox regression analysis and Kaplan-Meier survival analysis. Generally, the prognosis was worse for high-risk individuals. Subjects in the low-risk groups had a better prognosis and responded in a better way to combination immunotherapy, had higher immunological ratings and activity levels, and had more immune cell infiltration. In addition, gene set enrichment analysis findings showed that the low-risk subjects exhibited heightened activity in several immune-related pathways. However, the high-risk patients responded better to chemotherapy. The aim of this research was to develop a new ARG signature to predict the prognosis and sensitivity to immunotherapeutic and chemotherapeutic schemes for HNSCC patient. As a result, this could help spur the creation of new chemotherapeutics and immunotherapeutic approaches for patients with HNSCC.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Yi Shen
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy. Semin Cell Dev Biol 2023; 143:66-74. [PMID: 35241367 DOI: 10.1016/j.semcdb.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/11/2023]
Abstract
Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.
Collapse
|
5
|
Sharkia R, Jain S, Mahajnah M, Habib C, Azem A, Al-Shareef W, Zalan A. PTRH2 Gene Variants: Recent Review of the Phenotypic Features and Their Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14051031. [PMID: 37239392 DOI: 10.3390/genes14051031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) is an evolutionarily highly conserved mitochondrial protein. The biallelic mutations in the PTRH2 gene have been suggested to cause a rare autosomal recessive disorder characterized by an infantile-onset multisystem neurologic endocrine and pancreatic disease (IMNEPD). Patients with IMNEPD present varying clinical manifestations, including global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, sensorineural hearing loss, and abnormalities of thyroid, pancreas, and liver. In the current study, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes in patients. Additionally, we reported on a new case with a previously documented mutation. A bioinformatics analysis of the various PTRH2 gene variants was also carried out from a structural perspective. It appears that the most common clinical characteristics among all patients include motor delay (92%), neuropathy (90%), distal weakness (86.4%), intellectual disability (84%), hearing impairment (80%), ataxia (79%), and deformity of head and face (~70%). The less common characteristics include hand deformity (64%), cerebellar atrophy/hypoplasia (47%), and pancreatic abnormality (35%), while the least common appear to be diabetes mellitus (~30%), liver abnormality (~22%), and hypothyroidism (16%). Three missense mutations were revealed in the PTRH2 gene, the most common one being Q85P, which was shared by four different Arab communities and was presented in our new case. Moreover, four different nonsense mutations in the PTRH2 gene were detected. It may be concluded that disease severity depends on the PTRH2 gene variant, as most of the clinical features are manifested by nonsense mutations, while only the common features are presented by missense mutations. A bioinformatics analysis of the various PTRH2 gene variants also suggested the mutations to be deleterious, as they seem to disrupt the structural confirmation of the enzyme, leading to loss of stability and functionality.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 38100, Israel
| | - Clair Habib
- Genetics Institute, Rambam Health Care Campus, Haifa 31096, Israel
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wasif Al-Shareef
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| |
Collapse
|
6
|
Ma B, Ni N, Shao W, Xu J, Ji J, Luo M. Bit1 is involved in regulation between integrin and TGFβ signaling in lens epithelial cells. Cell Cycle 2022; 21:2283-2297. [PMID: 35737738 PMCID: PMC9586669 DOI: 10.1080/15384101.2022.2092818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/03/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022] Open
Abstract
Bit1, as an integrin-specific effector, is specifically expressed in lens epithelial cells (LECs) and may be essential to maintain the normal function of LECs. The present study investigated the function of Bit1 and its regulatory mechanism in LECs. Knockdown of Bit1 was mediated by a lentivirus with a specific short-hairpin RNA against Bit1 in SRA01/04 cells. Cell proliferation ability was measured by CCK-8 assay. Cell migration was examined by transwell and wound-healing assays. The effect of Bit1 knockdown on genome-wide expression patterns was studied via a GeneChip® PrimeView™ Human Gene Expression Array. Based on the ingenuity pathway analysis (IPA), Bit1's regulation of target pathways and genes was verified by real-time qPCR and Western blotting. Bit1 knockdown inhibited proliferation, migration, and regulated cell cycle and apoptosis of LECs. Microarray gene expression analysis and IPA assays revealed that integrin and TGFβ signaling pathways were remarkably impacted by Bit1 expression. FAK, PAK2, ITGA5, and ITGB1 were identified as core node molecules under the control of Bit1. Bit1 participates in integrin and TGFβ signaling via regulating downstream FAK and PAK2 and subsequently affecting EMT-related gene expression including ITGA5, ITGB1, and αSMA. In conclusion, Bit1 plays as an important role in the regulation between integrin and TGFβ signaling, which affects cell survival, migration, and EMT of LECs.
Collapse
Affiliation(s)
- Bo Ma
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanyu Shao
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiali Ji
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
8
|
Oleanolic Acid's Semisynthetic Derivatives HIMOXOL and Br-HIMOLID Show Proautophagic Potential and Inhibit Migration of HER2-Positive Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:ijms222011273. [PMID: 34681931 PMCID: PMC8538366 DOI: 10.3390/ijms222011273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Approximately 20–30% of the diagnosed breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). This type of cancer is associated with a more aggressive phenotype; thus, there is a need for the discovery of new compounds that would improve the survival in HER2-positive breast cancer patients. It seems that one of the most promising therapeutic cancer strategies could be based on the biological activity of pentacyclic triterpenes’ derivatives and the best-known representative of this group, oleanolic acid (OA). The biological activity of oleanolic acid and its two semisynthetic derivatives, methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL) and 12α-bromo-3-hydroxyimonoolean-28→13-olide (Br-HIMOLID), was assessed in SK-BR-3 breast cancer cells (HER2-positive). Viability tests, cell cycle assessment, evaluation of apoptosis, autophagy, and adhesion/migration processes were performed using MTT, clonogenic, cytofluorometry, Western blot, and qPCR. Both derivatives revealed higher cytotoxicity in studied breast cancer cells than the maternal compound, OA. They also decreased cell viability, induced autophagy, and (when applied in sub-cytotoxic concentrations) decreased the migration of SK-BR-3 cells.This study is the first to report the cytostatic, proautophagic (mTOR/LC3/SQSTM/BECN1 pathway), and anti-migratory (integrin β1/FAK/paxillin pathway) activities of HIMOXOL and Br-HIMOLID in HER2-positive breast cancer cells.
Collapse
|
9
|
Bhat M, Pasini E, Pastrello C, Rahmati S, Angeli M, Kotlyar M, Ghanekar A, Jurisica I. Integrative analysis of layers of data in hepatocellular carcinoma reveals pathway dependencies. World J Hepatol 2021; 13:94-108. [PMID: 33584989 PMCID: PMC7856865 DOI: 10.4254/wjh.v13.i1.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The broader use of high-throughput technologies has led to improved molecular characterization of hepatocellular carcinoma (HCC).
AIM To comprehensively analyze and characterize all publicly available genomic, gene expression, methylation, miRNA and proteomic data in HCC, covering 85 studies and 3355 patient sample profiles, to identify the key dysregulated genes and pathways they affect.
METHODS We collected and curated all well-annotated and publicly available high-throughput datasets from PubMed and Gene Expression Omnibus derived from human HCC tissue. Comprehensive pathway enrichment analysis was performed using pathDIP for each data type (genomic, gene expression, methylation, miRNA and proteomic), and the overlap of pathways was assessed to elucidate pathway dependencies in HCC.
RESULTS We identified a total of 8733 abstracts retrieved by the search on PubMed on HCC for the different layers of data on human HCC samples, published until December 2016. The common key dysregulated pathways in HCC tissue across different layers of data included epidermal growth factor (EGFR) and β1-integrin pathways. Genes along these pathways were significantly and consistently dysregulated across the different types of high-throughput data and had prognostic value with respect to overall survival. Using CTD database, estradiol would best modulate and revert these genes appropriately.
CONCLUSION By analyzing and integrating all available high-throughput genomic, transcriptomic, miRNA, methylation and proteomic data from human HCC tissue, we identified EGFR, β1-integrin and axon guidance as pathway dependencies in HCC. These are master regulators of key pathways in HCC, such as the mTOR, Ras/Raf/MAPK and p53 pathways. The genes implicated in these pathways had prognostic value in HCC, with Netrin and Slit3 being novel proteins of prognostic importance to HCC. Based on this integrative analysis, EGFR, and β1-integrin are master regulators that could serve as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Mamatha Bhat
- Multi Organ transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Elisa Pasini
- Multi Organ transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health NetworkandKrembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Sara Rahmati
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health NetworkandKrembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Marc Angeli
- Multi Organ transplant Program, University Health Network, Toronto M5G2N2, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health NetworkandKrembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Anand Ghanekar
- Surgery, University Health Network, Toronto M5G 2C4, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health NetworkandKrembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto M5T 0S8, Canada
| |
Collapse
|
10
|
Corpuz AD, Ramos JW, Matter ML. PTRH2: an adhesion regulated molecular switch at the nexus of life, death, and differentiation. Cell Death Discov 2020; 6:124. [PMID: 33298880 PMCID: PMC7661711 DOI: 10.1038/s41420-020-00357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-1; Bit1) is an underappreciated regulator of adhesion signals and Bcl2 expression. Its key roles in muscle differentiation and integrin-mediated signaling are central to the pathology of a recently identified patient syndrome caused by a cluster of Ptrh2 gene mutations. These loss-of-function mutations were identified in patients presenting with severe deleterious phenotypes of the skeletal muscle, endocrine, and nervous systems resulting in a syndrome called Infantile-onset Multisystem Nervous, Endocrine, and Pancreatic Disease (IMNEPD). In contrast, in cancer PTRH2 is a potential oncogene that promotes malignancy and metastasis. PTRH2 modulates PI3K/AKT and ERK signaling in addition to Bcl2 expression and thereby regulates key cellular processes in response to adhesion including cell survival, growth, and differentiation. In this Review, we discuss the state of the science on this important cell survival, anoikis and differentiation regulator, and opportunities for further investigation and translation. We begin with a brief overview of the structure, regulation, and subcellular localization of PTRH2. We discuss the cluster of gene mutations thus far identified which cause developmental delays and multisystem disease. We then discuss the role of PTRH2 and adhesion in breast, lung, and esophageal cancers focusing on signaling pathways involved in cell survival, cell growth, and cell differentiation.
Collapse
Affiliation(s)
- Austin D Corpuz
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.,Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA.
| |
Collapse
|
11
|
Schneeberger PE, Kortüm F, Korenke GC, Alawi M, Santer R, Woidy M, Buhas D, Fox S, Juusola J, Alfadhel M, Webb BD, Coci EG, Abou Jamra R, Siekmeyer M, Biskup S, Heller C, Maier EM, Javaher-Haghighi P, Bedeschi MF, Ajmone PF, Iascone M, Peeters H, Ballon K, Jaeken J, Rodríguez Alonso A, Palomares-Bralo M, Santos-Simarro F, Meuwissen MEC, Beysen D, Kooy RF, Houlden H, Murphy D, Doosti M, Karimiani EG, Mojarrad M, Maroofian R, Noskova L, Kmoch S, Honzik T, Cope H, Sanchez-Valle A, Gelb BD, Kurth I, Hempel M, Kutsche K. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020; 143:2437-2453. [PMID: 32761064 PMCID: PMC7447524 DOI: 10.1093/brain/awaa204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Malik Alawi
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | - Stephanie Fox
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | | | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emanuele G Coci
- Department for Neuropediatrics, University Children's Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Pediatrics, Prignitz Hospital, Brandenburg Medical School, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Universitätsklinikum Leipzig - AöR, University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Corina Heller
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola F Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Katleen Ballon
- Centre for Developmental Disabilities, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Aroa Rodríguez Alonso
- Unidad de Patología Compleja, Servicio de Pediatría, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | | | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University, London, UK
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Liu Y, Ji J, Shao W, Luo M, Ma B. Bit1-a novel regulator of astrocyte function during retinal development: proliferation, migration, and paracrine effects on vascular endothelial cell. Hum Cell 2019; 32:418-427. [PMID: 31368047 DOI: 10.1007/s13577-019-00272-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/20/2019] [Indexed: 11/26/2022]
Abstract
Studies have shown that astrocyte plays an important role in the formation of retinal vasculature during development. For our study, we investigated the role of Bcl2 inhibitor of transcription 1 (Bit1) in regulating astrocyte function from developing retina and its paracrine effects on vascular endothelial cell. Expression pattern of Bit1 was analyzed by immunofluorescent staining of whole mount rat retina. Astrocytes and retinal microvascular endothelial cells (RMECs) were isolated from rat retina for cultural studies. The proliferation and migration of astrocytes and RMECs were evaluated by CCK-8 assay, scratch assay, and transwell migration assay. Cell apoptosis was detected by anoikis assay. Angiogenesis assay was used to measure the ability of RMECs to form tube-like microvascular structure. siRNA knockdown assay was employed to regulate Bit1 expression in astrocytes. Immunofluorescent staining showed Bit1 expression in migrating retinal astrocytes co-localized with the marker glial fibrillary acidic protein (GFAP). Isolated retinal astrocytes from post-natal rat eyes have an elevated expression of Bit1 and show increased cell survival and decreased anoikis as compared with retinal astrocytes from embryo. Suppressing Bit1 by siRNA assay leads to decreased cell proliferation, migration, and increased anoikis of astrocytes. Meanwhile, Bit1 knockdown could decrease the astrocytic vascular endothelial growth factor (VEGF) expression leading to inhibitory paracrine effects on RMECs angiogenesis. Our findings reveal that Bit1 promotes cell survival, proliferation, migration, and maintains VEGF expression of retinal astrocytes, leading to enhanced paracrine effects on angiogenesis of vascular endothelial cells. Bit1 may serve as a novel regulator of astrocyte biological behaviors interplaying with vascular endothelial cell during retinal development.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiali Ji
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wanyu Shao
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bo Ma
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
13
|
Ali NM, Niada S, Brini AT, Morris MR, Kurusamy S, Alholle A, Huen D, Antonescu CR, Tirode F, Sumathi V, Latif F. Genomic and transcriptomic characterisation of undifferentiated pleomorphic sarcoma of bone. J Pathol 2018; 247:166-176. [PMID: 30281149 DOI: 10.1002/path.5176] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Undifferentiated pleomorphic sarcoma of bone (UPSb) is a rare primary bone sarcoma that lacks a specific line of differentiation. There is very little information about the genetic alterations leading to tumourigenesis or malignant transformation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, can be challenging due to overlapping features. To explore the genomic and transcriptomic landscape of UPSb tumours, whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) were performed on UPSb tumours. All tumours lacked hotspot mutations in IDH1/2 132 or 172 codons, thereby excluding the diagnosis of dedifferentiated chondrosarcoma. Recurrent somatic mutations in TP53 were identified in four of 14 samples (29%). Moreover, recurrent mutations in histone chromatin remodelling genes, including H3F3A, ATRX and DOT1L, were identified in five of 14 samples (36%), highlighting the potential role of deregulated chromatin remodelling pathways in UPSb tumourigenesis. The majority of recurrent mutations in chromatin remodelling genes identified here are reported in COSMIC, including the H3F3A G34 and K36 hotspot residues. Copy number alteration analysis identified gains and losses in genes that have been previously altered in UPSb or UPS of soft tissue. Eight somatic gene fusions were identified by RNA-Seq, two of which, CLTC-VMP1 and FARP1-STK24, were reported previously in multiple cancers. Five gene fusions were genomically characterised. Hierarchical clustering analysis, using RNA-Seq data, distinctly clustered UPSb tumours from osteosarcoma and other sarcomas, thus molecularly distinguishing UPSb from other sarcomas. RNA-Seq expression profiling analysis and quantitative reverse transcription-polymerase chain reaction showed an elevated expression in FGF23, which can be a potential molecular biomarker for UPSb. To our knowledge, this study represents the first comprehensive WES and RNA-Seq analysis of UPSb tumours revealing novel protein-coding recurrent gene mutations, gene fusions and identifying a potential UPSb molecular biomarker, thereby broadening the understanding of the pathogenic mechanisms and highlighting the possibility of developing novel targeted therapeutics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Naser M Ali
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Anna T Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mark R Morris
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Sathishkumar Kurusamy
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Abdullah Alholle
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David Huen
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Tirode
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, Lyon, France
| | - Vaiyapuri Sumathi
- Department of Musculoskeletal Pathology, The Royal Orthopaedic Hospital, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Yao X, Gray S, Pham T, Delgardo M, Nguyen A, Do S, Ireland SK, Chen R, Abdel-Mageed AB, Biliran H. Downregulation of Bit1 expression promotes growth, anoikis resistance, and transformation of immortalized human bronchial epithelial cells via Erk activation-dependent suppression of E-cadherin. Biochem Biophys Res Commun 2018; 495:1240-1248. [PMID: 29170133 PMCID: PMC5736439 DOI: 10.1016/j.bbrc.2017.11.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 01/01/2023]
Abstract
The mitochondrial Bit1 protein exerts tumor-suppressive function in NSCLC through induction of anoikis and inhibition of EMT. Having this dual tumor suppressive effect, its downregulation in the established human lung adenocarcinoma A549 cell line resulted in potentiation of tumorigenicity and metastasis in vivo. However, the exact role of Bit1 in regulating malignant growth and transformation of human lung epithelial cells, which are origin of most forms of human lung cancers, has not been examined. To this end, we have downregulated the endogenous Bit1 expression in the immortalized non-tumorigenic human bronchial epithelial BEAS-2B cells. Knockdown of Bit1 enhanced the growth and anoikis insensitivity of BEAS-2B cells. In line with their acquired anoikis resistance, the Bit1 knockdown BEAS-2B cells exhibited enhanced anchorage-independent growth in vitro but failed to form tumors in vivo. The loss of Bit1-induced transformed phenotypes was in part attributable to the repression of E-cadherin expression since forced exogenous E-cadherin expression attenuated the malignant phenotypes of the Bit1 knockdown cells. Importantly, we show that the loss of Bit1 expression in BEAS-2B cells resulted in increased Erk activation, which functions upstream to promote TLE1-mediated transcriptional repression of E-cadherin. These collective findings indicate that loss of Bit1 expression contributes to the acquisition of malignant phenotype of human lung epithelial cells via Erk activation-induced suppression of E-cadherin expression.
Collapse
Affiliation(s)
- Xin Yao
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Selena Gray
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Tri Pham
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States; Department of Pathology, Wayne State University, Detroit, MI 48201, United States
| | - Mychael Delgardo
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - An Nguyen
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Stephen Do
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Shubha Kale Ireland
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Renwei Chen
- Center for Bioengineering, University of California, Santa Barbara, CA 93106, United States
| | - Asim B Abdel-Mageed
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Hector Biliran
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| |
Collapse
|
15
|
Sharkia R, Shalev SA, Zalan A, Marom-David M, Watemberg N, Urquhart JE, Daly SB, Bhaskar SS, Williams SG, Newman WG, Spiegel R, Azem A, Elpeleg O, Mahajnah M. Homozygous mutation in PTRH2 gene causes progressive sensorineural deafness and peripheral neuropathy. Am J Med Genet A 2017; 173:1051-1055. [PMID: 28328138 DOI: 10.1002/ajmg.a.38140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 01/18/2023]
Abstract
PTRH2 is an evolutionarily highly conserved mitochondrial protein that belongs to a family of peptidyl-tRNA hydrolases. Recently, patients from two consanguineous families with mutations in the PTRH2 gene were reported. Global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, and sensorineural hearing loss were present in all patients, while facial dysmorphism with widely spaced eyes, exotropia, thin upper lip, proximally placed thumbs, and deformities of the fingers and toes were present in some individuals. Here, we report a new family with three siblings affected by sensorineural hearing loss and peripheral neuropathy. Autozygosity mapping followed by exome sequencing identified a previously reported homozygous missense mutation in PTRH2 (c.254A>C; p.(Gln85Pro)). Sanger sequencing confirmed that the variant segregated with the phenotype. In contrast to the previously reported patient, the affected siblings had normal intelligence, milder microcephaly, delayed puberty, myopia, and moderate insensitivity to pain. Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants.
Collapse
Affiliation(s)
- Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Stavit A Shalev
- Genetic Institute, Emek Medical Center, Afula, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abdelnaser Zalan
- The Triangle Regional Research and Development Center, Kfar Qari', Israel
| | - Milit Marom-David
- Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathan Watemberg
- Sakler Faculty of Medicine, Child neurology Unit Mier Medical Cener, Tel-Aviv University, Tel-Aviv, Israel
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sarah B Daly
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Ronen Spiegel
- Genetic Institute, Emek Medical Center, Afula, Israel
| | - Abdussalam Azem
- Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Muhammad Mahajnah
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
16
|
Doe J, Kaindl AM, Jijiwa M, de la Vega M, Hu H, Griffiths GS, Fontelonga TM, Barraza P, Cruz V, Van Ry P, Ramos JW, Burkin DJ, Matter ML. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology. Hum Mol Genet 2017; 26:1458-1464. [PMID: 28175314 DOI: 10.1093/hmg/ddx048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness. We report here that the Ptrh2 knockout mouse model recapitulates the progressive congenital muscle pathology observed in patients. Ptrh2 null mice demonstrate multiple degenerating and regenerating muscle fibers, increased central nuclei, elevated creatine kinase activity and endomysial fibrosis. This progressive muscle pathology resembles the muscular dystrophy phenotype in humans and mice lacking the α7 integrin. We demonstrate that in normal muscle Ptrh2 associates in a complex with the α7β1 integrin at the sarcolemma and Ptrh2 expression is decreased in α7 integrin null muscle. Furthermore, Ptrh2 expression is altered in skeletal muscle of classical congenital muscular dystrophy mouse models. Ptrh2 levels were up-regulated in dystrophin deficient mdx muscle, which correlates with the elevated levels of the α7β1 integrin observed in mdx muscle and Duchenne muscular dystrophy patients. Similar to the α7 integrin, Ptrh2 expression was decreased in laminin-α2 dyW null gastrocnemius muscle. Our data establishes a PTRH2 mutation as a novel driver of congenital muscle degeneration and identifies a potential novel target to treat muscle myopathies.
Collapse
Affiliation(s)
- Jinger Doe
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology.,Department of Pediatric Neurology, Charité -Universitätsmedizin, 13353 Berlin, Germany
| | - Mayumi Jijiwa
- The University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | | - Hao Hu
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Pamela Barraza
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Vivian Cruz
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Pam Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Joe W Ramos
- The University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
17
|
Chen J, Liu H, Gao P, Hui Y, Yang Z, Zhang X, Xu P, Tian F, Fan T. Preliminary evaluation for Bit1 as a potential biomarker for squamous cell carcinoma and adenocarcinoma of esophagus. Tumour Biol 2017; 39:1010428317708267. [PMID: 28488526 DOI: 10.1177/1010428317708267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mounting evidence has demonstrated that Bit1 has been investigated as an etiological factor for certain cancers, including esophageal squamous cell carcinoma reported in our previous study, but data regarding possible roles of Bit1 in esophageal squamous cell carcinoma and esophageal adenocarcinoma remain to be elucidated. The purpose of this study was to examine whether Bit1 can be a novel diagnostic marker for the patients with esophageal squamous cell carcinoma and esophageal adenocarcinoma. The results revealed that Bit1 level in esophageal squamous cell carcinoma was significantly higher than that in esophageal adenocarcinoma tissues ( p < 0.05); notably, Bit1 level in esophageal adenocarcinoma tissues was lower than that in paired normal tissues but no difference was found ( p > 0.05). Bit1 expression patterns were completely in accordance with matrix metalloproteinase 2 and Bcl-2 in esophageal squamous cell carcinoma and esophageal adenocarcinoma. In addition, Bit1, Bcl-2, and matrix metalloproteinase 2 expression patterns in different differentiated esophageal squamous cell carcinoma were higher than those in corresponding normal esophageal tissues. Bit1 expression in poorly differentiated esophageal squamous cell carcinoma was significantly higher than that in normal esophageal tissues ( p < 0.05) but not in moderately and well-differentiated esophageal squamous cell carcinoma. Matrix metalloproteinase 2 expression patterns in poorly and moderately differentiated esophageal squamous cell carcinoma were significantly higher than those in corresponding normal esophageal tissues ( p < 0.01) but not in well-differentiated esophageal squamous cell carcinoma tissue ( p > 0.05). Bcl-2 expression patterns in various differentiated esophageal squamous cell carcinoma were higher than those in corresponding normal esophageal tissues with no statistical differences ( p > 0.05). Importantly, Bit1 expression was positively correlated with both matrix metalloproteinase 2 and Bcl-2 expression in esophageal squamous cell carcinoma and esophageal adenocarcinoma tissues ( p < 0.05). Collectively, these preliminary data support further investigation of Bit1 as an important diagnostic factor for esophageal squamous cell carcinoma and esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Jing Chen
- 1 Department of Oncology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.,2 Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Hongtao Liu
- 3 Laboratory for Cell Biology, School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Pan Gao
- 2 Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yiran Hui
- 2 Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Yang
- 2 Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaqing Zhang
- 3 Laboratory for Cell Biology, School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Peirong Xu
- 4 School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Tian
- 5 Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- 2 Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Das V, Kalyan G, Hazra S, Pal M. Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer. J Cell Physiol 2017; 233:168-185. [DOI: 10.1002/jcp.25821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| | - Gazal Kalyan
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
| | - Saugata Hazra
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
- Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeUttarakhandIndia
| | - Mintu Pal
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| |
Collapse
|
19
|
Xiao Y, Yang Y, Wang J, Li W. Bit1 Regulates Cell Migration and Survival in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2017:S0278-2391(17)30345-2. [PMID: 28419846 DOI: 10.1016/j.joms.2017.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 11/15/2022]
Abstract
PURPOSE Increasing evidence has shown that Bcl-2 inhibitor of transcription 1 (Bit1) involves a variety of biological processes in the process of tumor development and progression. We hypothesized that Bit1 would be overexpressed in oral squamous cell carcinoma (OSCC); therefore, we examined Bit1 gene expression and protein production, as well as explored the effect of elevated Bit1 levels on OSCC cells. MATERIALS AND METHODS We investigated the use of quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemistry analysis for Bit1 messenger RNA and protein levels. We used 75 OSCC specimens, 25 tumor-adjacent dysplasia specimens, and 25 normal oral tissue samples that matched OSCC specimens in this study. We also transfected Bit1 complementary DNA into human oral cancer cells (Tca8113) to further investigate the potential role of Bit1 in OSCC. RESULTS We found that Bit1 levels in OSCC tissues were significantly higher than those in tumor-adjacent dysplasia specimens and normal oral tissue (P < .05). We also confirmed that Bit1 overexpression in the cytosol of Tca8113 cells induced apoptosis. CONCLUSIONS Our findings suggest Bit1 overexpression may contribute to oral cancer cell survival and dissemination. In the future, Bit1 may be an important diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Yan Xiao
- Professor, Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Yang
- Professor, Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Professor, Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlu Li
- Department Head, Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Mao Y, Han Y, Shi W. The expression of aplysia ras homolog I (ARHI) and its inhibitory effect on cell biological behavior in esophageal squamous cell carcinoma. Onco Targets Ther 2017; 10:1217-1226. [PMID: 28280356 PMCID: PMC5338967 DOI: 10.2147/ott.s125742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Aplysia ras homolog I (ARHI) is a Ras-related maternally imprinted tumor suppressor gene. Loss of ARHI expression contributes to the malignant progression of various tumors. However, reports on the clinical implications and functional role of ARHI expression in esophageal squamous cell carcinoma (ESCC) are limited. This study examined the role of ARHI in ESCC. Methods In total, 81 patients diagnosed with ESCC based on histopathological evaluations who were subjected to surgical resection were included in the study. ARHI expression was analyzed by immunohistochemistry and western blotting, examining the correlations between ARHI expression and patient clinicopathological features. The functional effects of ARHI overexpression were examined using a Cell Counting Kit-8 assay, flow cytometry, a Transwell assay, wound healing, and western blotting in the ECA109 cell line. Results ARHI was highly expressed in 27.5% (22/81) of ESCC specimens (adjacent noncancerous tissues, 85.2%, 69/81; P<0.05). The ARHI expression level was significantly lower in patients with lymph node metastasis than in patients without (P<0.05). A Kaplan–Meier survival analysis showed that patients with low ARHI expression had shorter survival than patients with high expression (P<0.05), and a multivariate Cox analysis revealed that ARHI is an independent predictor of overall survival (P=0.029). Finally, overexpression of ARHI in ESCC cells indicates that ARHI suppresses proliferative capacity, invasive capacity, and cell cycle progression and may also suppress epithelial–mesenchymal transition and induce apoptosis and autophagy. Conclusion ARHI may be a prognostic biomarker and a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Yuqiang Mao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenjun Shi
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Yao X, Pham T, Temple B, Gray S, Cannon C, Chen R, Abdel-Mageed AB, Biliran H. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells. PLoS One 2016; 11:e0163228. [PMID: 27655370 PMCID: PMC5031426 DOI: 10.1371/journal.pone.0163228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental metastasis model. Taken together, our studies indicate Bit1 is an inhibitor of EMT and metastasis in lung cancer and hence can serve as a molecular target in curbing lung cancer aggressiveness.
Collapse
Affiliation(s)
- Xin Yao
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Tri Pham
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Brandi Temple
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Selena Gray
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Cornita Cannon
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Renwei Chen
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Asim B. Abdel-Mageed
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Hector Biliran
- Department of Biological and Public Health Sciences, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Picker-Minh S, Mignot C, Doummar D, Hashem M, Faqeih E, Josset P, Dubern B, Alkuraya FS, Kraemer N, Kaindl AM. Phenotype variability of infantile-onset multisystem neurologic, endocrine, and pancreatic disease IMNEPD. Orphanet J Rare Dis 2016; 11:52. [PMID: 27129381 PMCID: PMC4850685 DOI: 10.1186/s13023-016-0433-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/19/2016] [Indexed: 11/12/2022] Open
Abstract
Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) has been recently linked to biallelic mutation of the peptidyl-tRNA hydrolase 2 gene PTRH2. Two index patients with IMNEPD in the original report had multiple neurological symptoms such as postnatal microcephaly, intellectual disability, developmental delay, sensorineural deafness, cerebellar atrophy, ataxia, and peripheral neuropathy. In addition, distal muscle weakness and abnormalities of thyroid, pancreas, and liver were found. Here, we report five further IMNEPD patients with a different homozygous PTRH2 mutation, broaden the phenotypic spectrum of the disease and differentiate common symptoms and interindividual variability in IMNEPD associated with a unique mutation. We thereby hope to better define IMNEPD and promote recognition and diagnosis of this novel disease entity.
Collapse
Affiliation(s)
- Sylvie Picker-Minh
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Sozialpädiatrisches Zentrum (SPZ), Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Cell Biology and Neurobiology Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10115, Berlin, Germany
| | - Cyril Mignot
- Department of Genetics, AP-HP, Armand Trousseau Hospital, Avenue du Dr. Arnold-Netter 26, 75571, Paris, France
| | - Diane Doummar
- Department of Pediatric Neurology, AP-HP, Armand Trousseau Hospital, Avenue du Dr. Arnold-Netter 26, 75571, Paris, France
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Specialist Hospital, King Fahad Medical City, Riyadh, 59046, Saudi Arabia
| | - Patrice Josset
- Department of Anatomy and Pathology, AP-HP, Armand Trousseau Hospital, Avenue du Dr. Arnold-Netter 26, 75571, Paris, France
| | - Béatrice Dubern
- Department of Pediatric Nutrition and Gastroenterology, AP-HP, Armand Trousseau Hospital, Avenue du Dr. Arnold-Netter 26, 75571, Paris, France
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Nadine Kraemer
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Sozialpädiatrisches Zentrum (SPZ), Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Cell Biology and Neurobiology Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10115, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany. .,Sozialpädiatrisches Zentrum (SPZ), Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany. .,Institute of Cell Biology and Neurobiology Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10115, Berlin, Germany.
| |
Collapse
|
23
|
Wu X, Ruan J, Ma B, Luo M. Bit1-a potential positive regulator of epithelial-mesenchymal transition in lens epithelial cells. Graefes Arch Clin Exp Ophthalmol 2016; 254:1311-8. [PMID: 27122244 DOI: 10.1007/s00417-016-3357-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Posterior capsule opacification (PCO) is a common postoperative complication of cataract surgery. Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is an important initial step of PCO pathogenesis. We have previously shown that Bit1 expresses in rat LECs. In this study, we aim to investigate the role of Bit1 in the EMT of human LECs. METHODS The expression of Bit1 was firstly detected in human PCO-attached LECs and human lens cell line SRA01/04 by real-time PCR and immunofluorescence staining. The proliferation and migration of Bit1 knockdown SRA01/04 cells were evaluated by cell counting, wound-healing assay, and transwell migration assay. The EMT of LECs was triggered by TGF-β2, and then the effect of Bit1 on EMT with a key biomarker of α-smooth muscle actin (α-SMA) was analyzed by siRNA knockdown assay, and the reversal of EMT was validated by real-time PCR and western blot. RESULTS Bit1 was obviously augmented in LECs derived from PCO tissues and Bit1 expressed with high levels in the cytoplasm of cultured SRA01/04 cells. Cell proliferation, invasion, and migration, as well as α-SMA expression, were significantly decreased in Bit1 knockdown SRA01/04 cells. While TGF-β2 elevated Bit1 and α-SMA expression levels in a dose-dependent manner, with peak levels at 10 ng/ml of TGF-β2 treatment, suppression of Bit1 in SRA01/04 cells reversed the EMT process. TGF-β2 induced elevation of α-SMA expression level, as well as migration, and invasion abilities were all suppressed by Bit1 deficiency. CONCLUSIONS These findings reveal that Bit1 promotes TGF-β2 induced α-SMA expression and acts as an positive regulator of EMT. Suppressing Bit1 inhibits the proliferation, migration, and EMT of LECs. Bit1 may be a potential novel therapeutic target for the prevention and treatment of PCO.
Collapse
Affiliation(s)
- Xinhua Wu
- Department of Ophthalmology, Shanghai Ninth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bo Ma
- Department of Ophthalmology, Shanghai Ninth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
24
|
GUO YAXIONG, LIN DONGJING, ZHANG MINGZI, ZHANG XIAOWEI, LI YANRU, YANG RUAN, LU YAN, JIN XIANGSHU, YANG MINLAN, WANG MIAOMIAO, ZHAO SHUAI, QUAN CHENGSHI. CLDN6-induced apoptosis via regulating ASK1-p38/JNK signaling in breast cancer MCF-7 cells. Int J Oncol 2016; 48:2435-44. [DOI: 10.3892/ijo.2016.3469] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
|
25
|
Fan T, Chen J, Zhang L, Gao P, Hui Y, Xu P, Zhang X, Liu H. Bit1 knockdown contributes to growth suppression as well as the decreases of migration and invasion abilities in esophageal squamous cell carcinoma via suppressing FAK-paxillin pathway. Mol Cancer 2016; 15:23. [PMID: 26956728 PMCID: PMC4782287 DOI: 10.1186/s12943-016-0507-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/27/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is growing evidence that Bit1 exerts different roles in the development and progression of human cancers. Although Bit1 was highly exhibited in ESCC tissues in our previous study, its roles and molecular mechanisms implicated in development and progression of ESCC remain unknown. METHODS Bit1 protein expression in ESCC cell lines and normal esophageal epithelial cell was detected by Western blotting. Bit1 protein expression mediated by Bit1 shRNA was investigated by Western blotting. MTT, migration assay, invasion experiment, ELISA and Flow cytometry were utilized to determine the effects of Bit1 knockdown on cell proliferation, migration, invasion and apoptosis, respectively. A xenograft model was used to examine in vivo tumourigenicity, and immunohistochemistry and TUNEL were utilized to evaluate the related protein expression and apoptosis. Gene microarray was determined by Agilent SurePrint G3 Human GE 8 × 60 K Microarray, the interaction of Bit1 and FAK proteins were detected by Immunoprecipitation and the key protein expressions of FAK-paxillin pathway were detected by Western blotting. RESULTS We found Bit1 expression in all human ESCC cell lines tested was significantly higher than that in normal esophageal epithelial cell Het-1A (P < 0.05), in which EC9706 presented the highest Bit1 level. Bit1 protein level was significantly downregulated at day 1 after transfection with specific shRNA against Bit1 (P < 0.05). At days 2 and 3, Bit1 level reached the lowest value after transfection with Bit1 shRNA. Moreover, Bit1 depletion contributed to growth inhibition in vitro and in vivo, reduced cell migration and invasion abilities, and induced cell apoptosis in EC9706 and TE1 cells. More importantly, Bit1 downregulation significantly lowered Bcl-2 and MMP-2 levels in EC9706 xenografted tumor tissues, meanwhile triggered apoptosis after treatment with different doses of Bit1 shRNA. Further gene microarray revealed that 23 genes in Bit1-RNAi group were markedly downregulated, whereas 16 genes were obviously upregulated. Notably, Bit1 intrinsically interacted with FAK protein in EC9706 cells. Moreover, paxillin was downregulated at mRNA and protein levels in Bit1 shRNA group, coupled with the decreases of FAK mRNA and protein expressions. CONCLUSION Bit1 may be an important regulator in cell growth, apoptosis, migration and invasion of ESCC via targeting FAK-paxillin pathway, and thereby combinative manipulation of Bit1 and FAK-paxillin pathway may be the novel and promising therapeutic targets for the patients with ESCC.
Collapse
Affiliation(s)
- Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Jing Chen
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China. .,Department of Oncology, the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, P.R. China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Pan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Yiran Hui
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Peirong Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Xiaqing Zhang
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| | - Hongtao Liu
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
| |
Collapse
|
26
|
Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Front Pharmacol 2015; 6:279. [PMID: 26635609 PMCID: PMC4656837 DOI: 10.3389/fphar.2015.00279] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023] Open
Abstract
Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells, and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg (2011), integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Guillaume Renner
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Maxime Lehmann
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Isabelle Lelong-Rebel
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Sophie Martin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Monique Dontenwill
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| |
Collapse
|
27
|
Griffiths GS, Doe J, Jijiwa M, Van Ry P, Cruz V, de la Vega M, Ramos JW, Burkin DJ, Matter ML. Bit-1 is an essential regulator of myogenic differentiation. J Cell Sci 2015; 128:1707-17. [PMID: 25770104 DOI: 10.1242/jcs.158964] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/06/2015] [Indexed: 02/02/2023] Open
Abstract
Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2.
Collapse
Affiliation(s)
| | - Jinger Doe
- Department of Pharmacology, University of Nevada Medical School, Reno, NV 89557 USA
| | - Mayumi Jijiwa
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813 USA
| | - Pam Van Ry
- Department of Pharmacology, University of Nevada Medical School, Reno, NV 89557 USA
| | - Vivian Cruz
- Department of Pharmacology, University of Nevada Medical School, Reno, NV 89557 USA
| | - Michelle de la Vega
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813 USA
| | - Joe W Ramos
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813 USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada Medical School, Reno, NV 89557 USA
| | - Michelle L Matter
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813 USA University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813 USA
| |
Collapse
|
28
|
Zheng J, Zhou J, Xie X, Xie B, Lin J, Xu Z, Zhang W. Estrogen decreases anoikis of ovarian cancer cell line Caov-3 through reducing release of Bit1. DNA Cell Biol 2015; 33:847-53. [PMID: 25211327 DOI: 10.1089/dna.2014.2453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Few studies have referred to the implication of anoikis processes following hormonal treatment. No data are available on the influence of estrogen in ovarian cancer anoikis. To gain insights into the effects and mechanism of estrogen in ovarian cancer cells, we have carried out studies on the anoikis of ovarian cancer cells treated with estrogen and on the pathways involved. We observed an anti-anoikis role of E2 in suspended Caov-3 cells, and this was mainly due to the decreasing of Bit1 level in cytosol. We also found that estrogen receptor α (ERα) was the main mediator involved in this process. To study the signaling pathways well, phosphatidylinositol 3-kinase (PI3K)/AKT were further investigated. Results demonstrated that the decreasing of the Bit1 level in cytosol mediated by E2 binding to ERα was mainly through PI3K/AKT pathways. Overall, these findings disclose a new perspective for estrogen on ovarian cancer therapy.
Collapse
Affiliation(s)
- Jihua Zheng
- 1 Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command , Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu H, Matter ML, Issa-Jahns L, Jijiwa M, Kraemer N, Musante L, de la Vega M, Ninnemann O, Schindler D, Damatova N, Eirich K, Sifringer M, Schrötter S, Eickholt BJ, van den Heuvel L, Casamina C, Stoltenburg-Didinger G, Ropers HH, Wienker TF, Hübner C, Kaindl AM. Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness. Ann Clin Transl Neurol 2014; 1:1024-35. [PMID: 25574476 PMCID: PMC4284127 DOI: 10.1002/acn3.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). METHODS We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. RESULTS In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. INTERPRETATION We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease.
Collapse
Affiliation(s)
- Hao Hu
- Max Planck Institute for Molecular Genetics Berlin, Germany
| | | | - Lina Issa-Jahns
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin Berlin, Germany ; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Mayumi Jijiwa
- The University of Hawaii Cancer Center Honolulu, Hawaii
| | - Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin Berlin, Germany ; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin Berlin, Germany
| | | | | | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Würzburg Würzburg, Germany
| | - Natalia Damatova
- Department of Human Genetics, University of Würzburg Würzburg, Germany
| | - Katharina Eirich
- Department of Human Genetics, University of Würzburg Würzburg, Germany
| | - Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Sandra Schrötter
- Institute of Biochemistry and Cluster of Excellence Neurocure, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry and Cluster of Excellence Neurocure, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Lambert van den Heuvel
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center Nijmegen, The Netherlands
| | | | | | | | | | - Christoph Hübner
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin Berlin, Germany ; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
30
|
Li J, Cui G, Sun L, Wang SJ, Tian S, Guan Z, Fan WS, Yan ZF, Yang YZ, You YQ, Fu XY, Li LA, Huang K, Li YL, Meng YG. ARHI overexpression induces epithelial ovarian cancer cell apoptosis and excessive autophagy. Int J Gynecol Cancer 2014; 24:437-43. [PMID: 24476894 DOI: 10.1097/igc.0000000000000065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE ARHI is a maternally imprinted tumor suppressor gene that is responsible for initiating programmed cell death and inhibiting cancer cell growth. However, the influence of ARHI on epithelial ovarian cancer cell death and the underlying mechanisms behind how ARHI regulates cancer cells still require further studies. METHODS Epithelial ovarian cancer cells TOV112D and ES-2 were used in this in vitro study. Cell proliferation, apoptosis, and autophagy activities were compared in TOV112D and ES-2 cells transfected with ARHI vectors or control vectors. Bcl-2 siRNA was transfected into TOV112D cells to investigate the roles of Bcl-2 played in regulating apoptosis and autophagy. RESULTS ARHI expression was reduced in TOV112D and ES-2 cells compared with normal epithelial ovarian cells (NOE095 and HOSEpiC). Overexpressed ARHI inhibited cancer cell proliferation, whereas induced forced cell apoptosis and excessive formation of autophagosomes inhibited promoted cell death. Furthermore, we found that Bcl-2 expression moderately declined in response to ARHI overexpressing in ES-2 and TOV112D cells; meanwhile, more apoptotic cells and higher LC3 level presented after silence of Bcl-2 in TOV112D cells. Reduced Bcl-2-Beclin 1 complex were observed in ARHI overexpressing cells. Moreover, modulation of ARHI to Bcl-2 expression could be ascribed partially to the activation of PI3k/AKT pathway. The addition of LY294002 enabled to suppress Bcl-2 expression and cell proliferation. CONCLUSIONS The silence of ARHI expression in vitro seems to accelerate the malignant transformation of healthy ovarian cells by restraining apoptosis and autophagy. The overexpressed ARHI in TOV112D cancer cells suppresses the activation of PI3K/AKT and reduces the expression of Bcl-2, leading to enhanced cell apoptosis and autophagic cancer cell death.
Collapse
Affiliation(s)
- Jie Li
- Departments of *Gynecology and Obstetrics, †Orthopedics, and ‡Pathology, General Hospital of PLA, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Implications of Bit1 and AIF overexpressions in esophageal squamous cell carcinoma. Tumour Biol 2013; 35:519-27. [PMID: 23955799 DOI: 10.1007/s13277-013-1073-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022] Open
Abstract
Overwhelming evidence has demonstrated that Bit1 and AIF as mitochondrial proteins are implicated in the development and progression of a variety of tumors. However, their expressions and biological functions in esophageal squamous cell carcinoma (ESCC) remain to be delineated. In the present study, we found that Bit1, AIF, and Bcl-2 levels in ESCC tissues were significantly higher than those in normal esophageal epithelial tissues and dysplasia tissues (P < 0.05). Stepwise investigation demonstrated that Bit1 and Bcl-2 levels were both tightly associated with lymphatic metastasis and TNM staging (P < 0.05), and the levels of Bit1 mRNA as well as AIF and Bcl-2 proteins were both closely related to tumor differentiation (P < 0.05), but not related to the patients' age and gender (P > 0.05). Importantly, Bit1 mRNA and protein levels in ESCC with lymphatic metastasis and TNM staging in III and IV were markedly higher than that without lymphatic metastasis and TMN staging in I and II. Further analysis showed that expression of Bit1 protein was both positively correlated with expressions of AIF and Bcl-2 proteins (r = 0.408 and 0.405, respectively; P < 0.05). Correctively, our data cited earlier suggest that Bit1 plays pivotal roles in the development and progression of ESCC, and its biological functions in ESCC may be closely associated with AIF and Bcl-2 levels.
Collapse
|
32
|
Jenning S, Pham T, Ireland SK, Ruoslahti E, Biliran H. Bit1 in anoikis resistance and tumor metastasis. Cancer Lett 2013; 333:147-51. [PMID: 23376255 DOI: 10.1016/j.canlet.2013.01.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 01/02/2023]
Abstract
Epithelial cells and most adherent normal cells rely on adhesion-dependent, integrin-mediated survival signals from the extracellular matrix (ECM) to survive. When these cells are deprived of adhesion to the ECM, they undergo a specific form of apoptosis termed "anoikis." In contrast, malignant cells have attained mechanisms to enable them to survive in the absence of adhesion and are considered anchorage-independent. This review will focus on the biological function of the Bcl2-inhibitor of transcription (Bit1) protein in the anoikis process, the underlying molecular mechanism of Bit1 apoptotic function, and its role in tumor metastasis.
Collapse
Affiliation(s)
- Scott Jenning
- Department of Biology, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | | | | | | | | |
Collapse
|
33
|
Gatta V, Granzotto A, Fincati K, Drago D, Bolognin S, Zatta P, Sensi SL. Microarray analysis of gene expression profiles in human neuroblastoma cells exposed to Aβ–Zn and Aβ–Cu complexes. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aims: Abnormal metal accumulation is associated with Alzheimer’s disease and plays a relevant role in affecting amyloid-β (Aβ) peptide aggregation and neurotoxicity. Material & Methods: In the present study, employing a microarray analysis of 35,129 genes, we analyzed gene expression profile changes due to exposure to Aβ1-42 –Zn or Aβ1-42 –Cu complexes in neuronal-like cells (SH-SY5Y). Results: Microarray data indicated that Aβ–Zn or Aβ–Cu complexes selectively alter expression of genes mainly related to cell death, inflammatory responses, cytoprotective mechanisms and apoptosis. Conclusions: Taken together, these findings indicate that Aβ1–42 –Zn or Aβ1–42 –Cu show some commonalities in affecting Alzheimer’s disease-related target functions. The overall modulatory activity on these genes supports the idea of a possible net effect resulting in the activation of pathways that counteract toxic effects of Aβ–Zn or Aβ–Cu.
Collapse
Affiliation(s)
- Valentina Gatta
- Department of Oral Health & Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, Italy
- Functional Genetics Unit – Center of Excellence in Aging (Ce.S.I.), Chieti, Italy
| | | | | | - Denise Drago
- CNS Repair Unit – INSPE, Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bolognin
- Department of Neurological, Neuropsychological, Morphological & Motor Sciences – Physiology & Psychology Unit, Verona, Italy
| | - Paolo Zatta
- National Research Council, Biomedical Technology Institute (CNR-ITB), Metalloproteins Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L Sensi
- Department of Neuroscience & Imaging, “G. D’Annunzio” University, Chieti, Italy
| |
Collapse
|
34
|
Osborne TS, Khanna C. A review of the association between osteosarcoma metastasis and protein translation. J Comp Pathol 2012; 146:132-42. [PMID: 22297074 PMCID: PMC3496179 DOI: 10.1016/j.jcpa.2011.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 01/10/2023]
Abstract
The malignant transformation of mesenchymal cells within the bone leads to the development of osteosarcoma (OS), but the genetic underpinnings of these events are not understood. From a clinical perspective, primary tumour management can be achieved successfully in most patients. However, the development of metastasis to the lungs represents the most common cause of death in OS patients. A clearer understanding of metastasis biology is required to improve cancer mortality and improve outcomes. Modelling the genetics, biology and therapy of OS can be accomplished through research involving a number of species. Most notable is the naturally occurring form of OS that develops in dogs. Through a cross-species and comparative approach important questions can be asked within specific and suitable models to advance our understanding of this disease and its common metastatic outcome. A comparative perspective on the problem of OS metastasis that utilizes a cross-species approach may offer unique opportunities to assist in this prioritization and generate new hypotheses related to this important clinical problem.
Collapse
Affiliation(s)
- T S Osborne
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Boltzen U, Eisenreich A, Antoniak S, Weithaeuser A, Fechner H, Poller W, Schultheiss HP, Mackman N, Rauch U. Alternatively spliced tissue factor and full-length tissue factor protect cardiomyocytes against TNF-α-induced apoptosis. J Mol Cell Cardiol 2012; 52:1056-65. [PMID: 22326437 DOI: 10.1016/j.yjmcc.2012.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/21/2011] [Accepted: 01/23/2012] [Indexed: 01/04/2023]
Abstract
Tissue Factor (TF) is expressed in various cell types of the heart, such as cardiomyocytes. In addition to its role in the initiation of blood coagulation, the TF:FVIIa complex protects cells from apoptosis. There are two isoforms of Tissue Factor (TF): "full length" (fl)TF--an integral membrane protein, and alternatively spliced (as)TF--a protein that lacks a transmembrane domain and can thus be secreted in a soluble form. Whether asTF or flTF affects apoptosis of cardiomyocytes is unknown. In this study, we examined whether asTF or flTF protects murine cardiomyocytes from TNF-α-induced apoptosis. We used murine cardiomyocytic HL-1 cells and primary murine embryonic cardiomyocytes that overexpressed either murine asTF or murine flTF, and stimulated them with TNF-α to initiate cell death. Apoptosis was assessed by annexin-V assay, propidium iodide assay, as well as activation of caspase-3 and -9. In addition, signaling via integrins, Akt, NFκB and Erk1/2, and gene-expression of Bcl-2 family members were analyzed. We here report that overexpression of asTF reduced phosphatidylserine exposure upon TNF-α-stimulation. asTF overexpression led to an increased expression and phosphorylation of Akt, as well as up-regulation of the anti-apoptotic protein Bcl-x(L). The anti-apoptotic effects of asTF overexpression were mediated via α(V)β(3)/Akt/NFκB signaling and were dependent on Bcl-x(L) expression in HL-1 cells. The anti-apoptotic activity of asTF was also observed using primary cardiomyocytes. Analogous yet less pronounced anti-apoptotic sequelae were observed due to overexpression of flTF. Importantly, cardiomyocytes deficient in TF exhibited increased apoptosis compared to wild type cells. We propose that asTF and flTF protect cardiomyocytes against TNF-α-induced apoptosis via activation of specific signaling pathways, and up-regulation of anti-apoptotic members of the Bcl-2 protein family.
Collapse
Affiliation(s)
- U Boltzen
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Zentrum für Herz und Kreislaufmedizin, D-12200 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Karmali PP, Brunquell C, Tram H, Ireland SK, Ruoslahti E, Biliran H. Metastasis of tumor cells is enhanced by downregulation of Bit1. PLoS One 2011; 6:e23840. [PMID: 21886829 PMCID: PMC3160313 DOI: 10.1371/journal.pone.0023840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/27/2011] [Indexed: 01/30/2023] Open
Abstract
Background Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription) protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis. Methodology/Principal Findings Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk) levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining. Conclusions/Significance These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1 expression in cancer cells to circumvent metastasis at least in part through inhibition of the Erk pathway.
Collapse
Affiliation(s)
- Priya Prakash Karmali
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Chris Brunquell
- Sanford-Burnham Medical Research Institute, Santa Barbara, California, United States of America
| | - Hau Tram
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Shubha Kale Ireland
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Erkki Ruoslahti
- Sanford-Burnham Medical Research Institute, Santa Barbara, California, United States of America
| | - Hector Biliran
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|