1
|
Huang C, Zhang C, Li J, Duan Y, Tang Q, Bi F. Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma. Cell Biol Toxicol 2025; 41:35. [PMID: 39871031 PMCID: PMC11772449 DOI: 10.1007/s10565-024-09979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/21/2024] [Indexed: 01/29/2025]
Abstract
Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora. Pirfenidone (PFD) can augment Sora's inhibitory effect on hepatocellular carcinoma by specifically targeting p38γ. Our study further uncovers that pirfenidone can synergistically boost the anti-hepatocellular carcinoma impact of Sora by impeding the autophagy heightened by p38γ. Taken together, our findings suggest that pirfenidone can work in concert with Sora to intensify its anti-tumor effect on hepatocellular carcinoma, thereby offering a novel therapeutic approach for Sora-mediated tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Cancer Center, 610041, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Cancer Center, 610041, Chengdu, Sichuan Province, China
| | - Jiajin Li
- Sichuan University, West China Hospital of Sichuan University, Chengdu, China
| | - Yichun Duan
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Cancer Center, 610041, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Feng Bi
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Cancer Center, 610041, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Qi X, Wang F, Thomas L, Ma S, Palen K, Lu Y, Sheinin Y, Gershan J, Fu L, Chen G. Protein tyrosine phosphatase PTPH1 potentiates receptor tyrosine kinase HER2 oncogenesis via a PDZ-coupled and phosphorylation-driven scaffold. Am J Cancer Res 2024; 14:5734-5751. [PMID: 39803648 PMCID: PMC11711543 DOI: 10.62347/jrhh6478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis. PTPH1 de-phosphorylates HER2 and reciprocally increases HER2 protein expression dependent on cellular content. PTPH1 itself can be phosphorylated at S459 by redundant kinases p38γ and/or PBK, thereby distinctively regulating expression and/or turnover of scaffold proteins. Moreover, PTPH1 and HER2 cooperate to increase PBK and Yap1 transcription thus acting as an additional mechanism to activate the scaffold. PTPH1 protein levels are higher in HER2+ breast cancer in which their phosphorylated forms are inversely correlated, indicating an integrated oncogenic activity through coordinated PTPH1 phosphorylation and HER2 de-phosphorylation. Combinational, but not individual, application of scaffold-kinases' inhibitors suppresses xenograft growth in mice. Thus, a PDZ-coupled and phosphorylation-driven scaffold can integrate proliferative signaling of enzymatically distinct proteins as a super-oncogene and as a target for combination therapy.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Fang Wang
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, China
| | - Linda Thomas
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Shao Ma
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Department of Breast Surgery, Qilu Hospital of Shandong UniversityJinan 250012, Shandong, China
| | - Katie Palen
- Division of Pediatric Hematology and Oncology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Yan Lu
- Zhejiang Provincial Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital and Institute of Translational Medicine, Zhejiang University of MedicineHangzhou 310006, Zhejiang, China
| | - Yuri Sheinin
- Department of Pathology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Jill Gershan
- Division of Pediatric Hematology and Oncology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Liwu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical CenterMilwaukee, Wisconsin 53226, USA
| |
Collapse
|
3
|
Venkatesh J, Muthu M, Singaravelu I, Cheriyan VT, Sekhar SC, Acharige NCPN, Levi E, Assad H, Pflum MKH, Rishi AK. Phosphorylation of cell cycle and apoptosis regulatory protein-1 by stress activated protein kinase P38γ is a novel mechanism of apoptosis signaling by genotoxic chemotherapy. Front Oncol 2024; 14:1376666. [PMID: 38756656 PMCID: PMC11096501 DOI: 10.3389/fonc.2024.1376666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
CARP-1, a perinuclear phospho-protein, regulates cell survival and apoptosis signaling induced by genotoxic drugs. However, kinase(s) phosphorylating CARP-1 and down-stream signal transduction events remain unclear. Here we find that CARP-1 Serine (S)626 and Threonine (T)627 substitution to Alanines (AA) inhibits genotoxic drug-induced apoptosis. CARP-1 T627 is followed by a Proline (P), and this TP motif is conserved in vertebrates. Based on these findings, we generated affinity-purified, anti-phospho-CARP-1 T627 rabbit polyclonal antibodies, and utilized them to elucidate chemotherapy-activated, CARP-1-dependent cell growth signaling mechanisms. Our kinase profiling studies revealed that MAPKs/SAPKs phosphorylated CARP-1 T627. We then UV cross-linked protein extracts from Adriamycin-treated HeLa cervical cancer cells with a CARP-1 (614-638) peptide, and conducted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the peptide-bound protein complexes. This experiment revealed SAPK p38γ interaction with CARP-1 (614-638) peptide. Our studies further established that SAPK p38γ, but not other MAPKs, phosphorylates CARP-1 T627 in cancer cells treated with genotoxic drugs. Loss of p38γ abrogates CARP-1 T627 phosphorylation, and results in enhanced survival of breast cancer cells by genotoxic drugs. CARP-1 T627 phosphorylation was also noted in breast tumors from patients treated with radiation or endocrine therapies. We conclude that genotoxic drugs activate p38γ-dependent CARP-1 T627 phosphorylation to inhibit cell growth.
Collapse
Affiliation(s)
- Jaganathan Venkatesh
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Magesh Muthu
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Indulekha Singaravelu
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Vino T. Cheriyan
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Sreeja C. Sekhar
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | | | - Edi Levi
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Department of Pathology, Wayne State University, Detroit, MI, United States
| | - Hadeel Assad
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Arun K. Rishi
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
4
|
Qi XM, Chen G. p38γ MAPK Inflammatory and Metabolic Signaling in Physiology and Disease. Cells 2023; 12:1674. [PMID: 37443708 PMCID: PMC10341180 DOI: 10.3390/cells12131674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.
Collapse
Affiliation(s)
- Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
5
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
6
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
7
|
The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int J Mol Sci 2021; 23:ijms23010370. [PMID: 35008796 PMCID: PMC8745478 DOI: 10.3390/ijms23010370] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, β, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.
Collapse
|
8
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
9
|
Dougherty A, Hawaz MG, Hoang KG, Trac J, Keck JM, Ayes C, Deweese JE. Exploration of the Role of the C-Terminal Domain of Human DNA Topoisomerase IIα in Catalytic Activity. ACS OMEGA 2021; 6:25892-25903. [PMID: 34660952 PMCID: PMC8515377 DOI: 10.1021/acsomega.1c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Human topoisomerase IIα (TOP2A) is a vital nuclear enzyme involved in resolving knots and tangles in DNA during replication and cell division. TOP2A is a homodimer with a symmetrical, multidomain structure. While the N-terminal and core regions of the protein are well-studied, the C-terminal domain is poorly understood but is involved in enzyme regulation and is predicted to be intrinsically disordered. In addition, it appears to be a major region of post-translational modification and includes several Ser and Thr residues, many of which have not been studied for biochemical effects. Therefore, we generated a series of human TOP2A mutants where we changed specific Ser and Thr residues in the C-terminal domain to Ala, Gly, or Ile residues. We designed, purified, and examined 11 mutant TOP2A enzymes. The amino acid changes were made between positions 1272 and 1525 with 1-7 residues changed per mutant. Several mutants displayed increased levels of DNA cleavage without displaying any change in plasmid DNA relaxation or DNA binding. For example, mutations in the regions 1272-1279, 1324-1343, 1351-1365, and 1374-1377 produced 2-3 times more DNA cleavage in the presence of etoposide than wild-type TOP2A. Further, several mutants displayed changes in relaxation and/or decatenation activity. Together, these results support previous findings that the C-terminal domain of TOP2A influences catalytic activity and interacts with the substrate DNA. Furthermore, we hypothesize that it may be possible to regulate the enzyme by targeting positions in the C-terminal domain. Because the C-terminal domain differs between the two human TOP2 isoforms, this strategy may provide a means for selectively targeting TOP2A for therapeutic inhibition. Additional studies are warranted to explore these results in more detail.
Collapse
Affiliation(s)
- Ashley
C. Dougherty
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Mariam G. Hawaz
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Kristine G. Hoang
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Judy Trac
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Jacob M. Keck
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Carmen Ayes
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland
Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
10
|
Chang YW, Hsu CL, Tang CW, Chen XJ, Huang HC, Juan HF. Multiomics Reveals Ectopic ATP Synthase Blockade Induces Cancer Cell Death via a lncRNA-mediated Phospho-signaling Network. Mol Cell Proteomics 2020; 19:1805-1825. [PMID: 32788343 DOI: 10.1074/mcp.ra120.002219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 12/24/2022] Open
Abstract
The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Wei Tang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Xiang-Jun Chen
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Sagredou S, Dalezis P, Nikoleousakos N, Nikolaou M, Voura M, Almpanakis K, Panayiotidis MI, Sarli V, Trafalis DT. 3,6-Disubstituted 1,2,4-Triazolo[3,4- b]Thiadiazoles with Anticancer Activity Targeting Topoisomerase II Alpha. Onco Targets Ther 2020; 13:7369-7386. [PMID: 32801761 PMCID: PMC7395825 DOI: 10.2147/ott.s254856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Topoisomerase IIα (topIIα) maintains the topology of DNA in order to ensure the proper functioning of numerous DNA processes. Inhibition of topIIα leads to the killing of cancer cells thus constituting such inhibitors as useful tools in cancer therapeutics. Triazolo[3,4-b]thiadiazole derivatives are known for their wide range of pharmacological activities while previous studies have documented their in vitro anticancer activity. The purpose of the current study was to investigate if these chemical compounds can act as topIIα inhibitors in cell-free and cell-based systems. MATERIALS AND METHODS The MTT assay was performed in DLD-1, HT-29, and LoVo cancer cells so as to evaluate the antiproliferative activity of KA25, KA26, and KA39 triazolo[3,4-b]thiadiazole derivatives. The KA39 compound was tested as a potential topIIα inhibitor using the plasmid-based topoisomerase II drug screening kit. The inhibitory effect of the three derivatives on topIIα phosphorylation was studied in HT-29 and LoVo cancer cells according to Human Phospho-TOP2A/Topoisomerase II Alpha Cell-Based Phosphorylation ELISA Kit. Moreover, flow cytometry was utilized in order to explore apoptotic induction and cell cycle growth arrest, upon treatment with KA39, in DLD-1 and HT-29 cells, respectively. In silico studies were also carried out for further investigation. RESULTS All three triazolo[3,4-b]thiadiazole derivatives showed an in vitro antiproliferative effect with the KA39 compound being the most potent one. Our results indicated that KA39 induced both early and late apoptosis as well as cell cycle growth arrest in S phase. In addition, the compound blocked the relaxation of supercoiled DNA while it also inhibited topIIα phosphorylation (upon treatment; P<0.001). CONCLUSION Among the three triazolo[3,4-b]thiadiazole derivatives, KA39 was shown to be the most potent anticancer agent and catalytic inhibitor of topIIα phosphorylation as well.
Collapse
Affiliation(s)
- Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Michail Nikolaou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Maria Voura
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki, 54124, Greece
| | | | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia2371, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia1683, Cyprus
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki, 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| |
Collapse
|
12
|
Lotz C, Lamour V. The interplay between DNA topoisomerase 2α post-translational modifications and drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:149-160. [PMID: 35582608 PMCID: PMC9090595 DOI: 10.20517/cdr.2019.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 01/13/2023]
Abstract
The type 2 DNA topoisomerases (Top2) are conserved enzymes and biomarkers for cell proliferation. The catalytic activities of the human isoform Top2α are essential for the regulation of DNA topology during DNA replication, transcription, and chromosome segregation. Top2α is a prominent target for anti-cancer drugs and is highly regulated by post-translational modifications (PTM). Despite an increasing number of proteomic studies, the extent of PTM in cancer cells and its importance in drug response remains largely uncharacterized. In this review, we highlight the different modifications affecting the human Top2α in healthy and cancer cells, taking advantage of the structure-function information accumulated in the past decades. We also overview the regulation of Top2α by PTM, the level of PTM in cancer cells, and the resistance to therapeutic compounds targeting the Top2 enzyme. Altogether, this review underlines the importance of future studies addressing more systematically the interplay between PTM and Top2 drug resistance.
Collapse
Affiliation(s)
- Christophe Lotz
- Integrative Structural Biology Department, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch 67404, France
| | - Valérie Lamour
- Integrative Structural Biology Department, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch 67404, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
13
|
Targeting an oncogenic kinase/phosphatase signaling network for cancer therapy. Acta Pharm Sin B 2018; 8:511-517. [PMID: 30109176 PMCID: PMC6089844 DOI: 10.1016/j.apsb.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023] Open
Abstract
Protein kinases and phosphatases signal by phosphorylation and dephosphorylation to precisely control the activities of their individual and common substrates for a coordinated cellular outcome. In many situations, a kinase/phosphatase complex signals dynamically in time and space through their reciprocal regulations and their cooperative actions on a substrate. This complex may be essential for malignant transformation and progression and can therefore be considered as a target for therapeutic intervention. p38γ is a unique MAPK family member that contains a PDZ motif at its C-terminus and interacts with a PDZ domain-containing protein tyrosine phosphatase PTPH1. This PDZ-coupled binding is required for both PTPH1 dephosphorylation and inactivation of p38γ and for p38γ phosphorylation and activation of PTPH1. Moreover, the p38γ/PTPH1 complex can further regulate their substrates phosphorylation and dephosphorylation, which impacts Ras transformation, malignant growth and progression, and therapeutic response. This review will use the p38γ/PTPH1 signaling network as an example to discuss the potential of targeting the kinase/phosphatase signaling complex for development of novel targeted cancer therapy.
Collapse
|
14
|
Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain. Sci Rep 2018; 8:9272. [PMID: 29915179 PMCID: PMC6006247 DOI: 10.1038/s41598-018-27606-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.
Collapse
|
15
|
Chen YTS, Wu J, Modrich P, Hsieh TS. The C-terminal 20 Amino Acids of Drosophila Topoisomerase 2 Are Required for Binding to a BRCA1 C Terminus (BRCT) Domain-containing Protein, Mus101, and Fidelity of DNA Segregation. J Biol Chem 2016; 291:13216-28. [PMID: 27129233 DOI: 10.1074/jbc.m116.721357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic topoisomerase 2 (Top2) and one of its interacting partners, topoisomerase IIβ binding protein 1 (TopBP1) are two proteins performing essential cellular functions. We mapped the interacting domains of these two proteins using co-immunoprecipitation and pulldown experiments with truncated or mutant Drosophila Top2 with various Ser-to-Ala substitutions. We discovered that the last 20 amino acids of Top2 represent the key region for binding with Mus101 (the Drosophila homolog of TopBP1) and that phosphorylation of Ser-1428 and Ser-1443 is important for Top2 to interact with the N terminus of Mus101, which contains the BRCT1/2 domains. The interaction between Mus101 and the Top2 C-terminal regulatory domain is phosphorylation-dependent because treatment with phosphatase abolishes their association in pulldown assays. The binding affinity of N-terminal Mus101 with a synthetic phosphorylated peptide spanning the last 25 amino acids of Top2 (with Ser(P)-1428 and Ser(P)-1443) was determined by surface plasmon resonance with a Kd of 0.57 μm In an in vitro decatenation assay, Mus101 can specifically reduce the decatenation activity of Top2, and dephosphorylation of Top2 attenuates this response. Next, we endeavored to establish a cellular system for testing the biological function of Top2-Mus101 interaction. Top2-silenced S2 cells rescued by Top2Δ20, Top2 with 20 amino acids truncated from the C terminus, developed abnormally high chromosome numbers, which implies that Top2-Mus101 interaction is important for maintaining the fidelity of chromosome segregation during mitosis.
Collapse
Affiliation(s)
| | | | | | - Tao-Shih Hsieh
- From the Department of Biochemistry and the Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710 and
| |
Collapse
|
16
|
Ma S, Yin N, Qi X, Pfister SL, Zhang MJ, Ma R, Chen G. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget 2016; 6:13320-33. [PMID: 26079946 PMCID: PMC4537017 DOI: 10.18632/oncotarget.3645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.
Collapse
Affiliation(s)
- Shao Ma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Ning Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mei-Jie Zhang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rong Ma
- Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Topoisomerase 2 Alpha Cooperates with Androgen Receptor to Contribute to Prostate Cancer Progression. PLoS One 2015; 10:e0142327. [PMID: 26560244 PMCID: PMC4641711 DOI: 10.1371/journal.pone.0142327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
Overexpression of TOP2A is associated with risk of systemic progression in prostate cancer patients, and higher levels of TOP2A were found in hormone-resistant cases. To elucidate the mechanism by which high levels of TOP2A contribute to tumor progression we generated TOP2A overexpressing prostate cancer cell lines. We show that TOP2A promotes tumor aggressiveness by inducing chromosomal rearrangements of genes that contribute to a more invasive phenotype. Anti-androgen treatment alone was ineffective in killing TOP2A overexpressing cells due to activation of an androgen receptor network. TOP2A poisons killed tumor cells more efficiently early in the progression course, while at later stages they provided greater benefit when combined with anti-androgen therapy. Mechanistically, we find that TOP2A enhances androgen signaling by facilitating transcription of androgen responsive genes, thereby promoting tumor cell growth. These studies revealed a relationship between TOP2A and androgen receptor signaling pathway that contributes to prostate cancer progression and confers sensitivity to treatments.
Collapse
|
18
|
Qi X, Xie C, Hou S, Li G, Yin N, Dong L, Lepp A, Chesnik MA, Mirza SP, Szabo A, Tsai S, Basir Z, Wu S, Chen G. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget 2015; 5:4269-82. [PMID: 24962213 PMCID: PMC4147322 DOI: 10.18632/oncotarget.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A cancer phenotype is driven by several proteins and targeting a cluster of functionally interdependent molecules should be more effective for therapeutic intervention. This is specifically important for Ras-dependent cancer, as mutated (MT) Ras is non-druggable and targeting its interaction with effectors may be essential for therapeutic intervention. Here, we report that a protein-complex activated by the Ras effector p38γ MAPK is a novel therapeutic target for K-Ras-dependent colon cancer. Unbiased proteomic screening and immune-precipitation analyses identified p38γ interaction with heat shock protein 90 (Hsp90) and K-Ras in K-Ras MT, but not wild-type (WT), colon cancer cells, indicating a role of this complex in Ras-dependent growth. Further experiments showed that this complex requires p38γ and Hsp90 activity to maintain MT, but not WT, K-Ras protein expression. Additional studies demonstrated that this complex is activated by p38γ-induced Hsp90 phosphorylation at S595, which is important for MT K-Ras stability and for K-Ras dependent growth. Of most important, pharmacologically inhibition of Hsp90 or p38γ activity disrupts the complex, decreases K-Ras expression, and selectively inhibits the growth of K-Ras MT colon cancer in vitro and in vivo. These results demonstrated that the p38γ-activated ternary complex is a novel therapeutic target for K-Ras-dependent colon cancer.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | - Shixiu Wu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
19
|
Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 2014; 34:4019-31. [PMID: 25328138 PMCID: PMC4404185 DOI: 10.1038/onc.2014.332] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may play a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors have been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
Collapse
Affiliation(s)
- T Chen
- 1] Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Department of Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kopetz
- Department of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Suresh PS, Ma S, Migliaccio A, Chen G. Protein-Tyrosine Phosphatase H1 Increases Breast Cancer Sensitivity to Antiestrogens by Dephosphorylating Estrogen Receptor at Tyr537. Mol Cancer Ther 2013; 13:230-8. [DOI: 10.1158/1535-7163.mct-13-0610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Merlin JL, Harlé A, Lion M, Ramacci C, Leroux A. Expression and activation of P38 MAP kinase in invasive ductal breast cancers: correlation with expression of the estrogen receptor, HER2 and downstream signaling phosphorylated proteins. Oncol Rep 2013; 30:1943-8. [PMID: 23900300 DOI: 10.3892/or.2013.2645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/28/2013] [Indexed: 11/06/2022] Open
Abstract
MAP kinase signaling proteins have major implications in the molecular oncogenesis of breast cancers and have been extensively investigated as putative targets for therapy. This study reports the investigation of the expression of P38 MAPK and its phosphorylated form (p-P38 MAPK) in clinical specimens of invasive breast carcinomas and their correlation with estrogen receptor (ER) and HER2 expression, as well as MAPK and PI3 kinase-AKT pathway signaling phosphorylated proteins. Expression levels of P38 MAPK and p-P38 MAPK as well as p-AKT, p-GSK3β, p-S6 kinase, p-MEK1 and p-ERK1/2 were quantitatively assessed using multiplex bead immunoassay in frozen specimens from 45 invasive ductal breast cancers. Twenty-nine specimens were ER+, 15 were HER2+ and 10 were triple‑negative breast cancers (TNBCs). P38 MAPK was found to be expressed in all tumor specimens and was significantly (P=0.002) overexpressed in ER+ tumors. P38 MAPK expression was lower in TNBCs than in all of the other tumors. The median expression of p-P38 MAPK was also higher in ER+ tumors while lower in the TNBCs. HER2 status had no effect on P38 MAPK and p-P38 MAPK expression. No variation in the phosphorylation rate of P38 MAPK was observed in relation with ER, HER2 or TNBC status. Significantly higher (P=0.0048) expression of p-AKT was observed in HER2+ tumors. No significant difference in p-MEK1, p-GSK3β and p-S6K expression was found in any other comparisons based on ER and HER2 expression subtypes. Investigation of the expression of multiple phosphorylated signaling proteins can be used for personalized targeted therapy. In invasive breast cancer, the overexpression of P38 MAPK may serve as a biomarker for the evaluation of P38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jean-Louis Merlin
- Department of Biopathology, Institut de Cancérologie de Lorraine, 54519 Vandoeuvre les Nancy, France
| | | | | | | | | |
Collapse
|
22
|
Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013; 82:139-70. [PMID: 23495937 DOI: 10.1146/annurev-biochem-061809-100002] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.
Collapse
Affiliation(s)
- Stefanie Hartman Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
23
|
Kobayashi Y, Qi X, Chen G. MK2 Regulates Ras Oncogenesis through Stimulating ROS Production. Genes Cancer 2012; 3:521-30. [PMID: 23264852 DOI: 10.1177/1947601912462718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 09/01/2012] [Indexed: 12/17/2022] Open
Abstract
Ras signals through both mitogenic and stress pathways and studies of Ras regulatory effects of stress pathways hold great promise to control Ras-dependent malignancies. Our previous work showed Ras activation of a stress kinase (MAPK-activated protein kinase 2 [MK2]), and here, we examine regulatory effects of MK2 on Ras oncogenesis. MK2 knockout was shown to increase Ras transformation in mouse embryonic fibroblasts (MEFs) in vitro and to enhance the resultant tumor growth in mice, indicating a tumor suppressor activity. In Ras-dependent and -independent human colon cancer, however, MK2-forced expression increases and MK2 depletion decreases the malignant growth, suggesting its oncogenic activity. The oncogenic activity of MK2 couples with its activation by both stress and mitogenic signals through extracellular signal-regulated kinase and p38α pathways, whereas its tumor-suppressing effect links to its stimulation only by stress downstream of p38α. Of interest, MK2 was shown to decrease intracellular levels of reactive oxygen species (ROS) in MEFs but increase its production in human colon cancer cells, and experiments with antioxidants revealed that ROS is required for Ras oncogenesis in both systems. These results indicate that MK2 can increase or decrease Ras oncogenesis dependent of its ROS regulatory activities.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
24
|
Hou S, Suresh PS, Qi X, Lepp A, Mirza SP, Chen G. p38γ Mitogen-activated protein kinase signals through phosphorylating its phosphatase PTPH1 in regulating ras protein oncogenesis and stress response. J Biol Chem 2012; 287:27895-905. [PMID: 22730326 DOI: 10.1074/jbc.m111.335794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatase plays a crucial role in determining cellular fate by inactivating its substrate kinase, but it is not known whether a kinase can vice versa phosphorylate its phosphatase to execute this function. Protein-tyrosine phosphatase H1 (PTPH1) is a specific phosphatase of p38γ mitogen-activated protein kinase (MAPK) through PDZ binding, and here, we show that p38γ is also a PTPH1 kinase through which it executes its oncogenic activity and regulates stress response. PTPH1 was identified as a substrate of p38γ by unbiased proteomic analysis, and its resultant phosphorylation at Ser-459 occurs in vitro and in vivo through their complex formation. Genetic and pharmacological analyses showed further that Ser-459 phosphorylation is directly regulated by Ras signaling and is important for Ras, p38γ, and PTPH1 oncogenic activity. Moreover, experiments with physiological stimuli revealed a novel stress pathway from p38γ to PTPH1/Ser-459 phosphorylation in regulating cell growth and cell death by a mechanism dependent on cellular environments but independent of canonical MAPK activities. These results thus reveal a new mechanism by which a MAPK regulates Ras oncogenesis and stress response through directly phosphorylating its phosphatase.
Collapse
Affiliation(s)
- Songwang Hou
- Department of Pharmacology and Toxicology, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
25
|
Qi X, Zhi H, Lepp A, Wang P, Huang J, Basir Z, Chitambar CR, Myers CR, Chen G. p38γ mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c-Jun transcription. J Biol Chem 2012; 287:14681-91. [PMID: 22399296 DOI: 10.1074/jbc.m112.349357] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor (ER) α promotes breast cancer growth by regulating gene expression through classical estrogen response element (ERE) binding and nonclassical (interaction with c-Jun at AP-1 sites) pathways. ER is the target for anti-estrogens such as tamoxifen (TAM). However, the potential for classical versus nonclassical ER signaling to influence hormone sensitivity is not known. Moreover, anti-estrogens frequently activate several signaling cascades besides the target ER, and the implications of these "off-target" signaling events have not been explored. Here, we report that p38γ MAPK is selectively activated by treatment with TAM. This results in both phosphorylation of ER at Ser-118 and stimulation of c-Jun transcription, thus switching ER signaling from the classical to the nonclassical pathway leading to increased hormone sensitivity. Unexpectedly, phosphorylation at Ser-118 is required for ER to bind both p38γ and c-Jun, thereby promoting ER relocation from ERE to AP-1 promoter sites. Thus, ER/Ser-118 phosphorylation serves as a central mechanism by which p38γ regulates signaling transduction of ER with its inhibitor TAM.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|