1
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Abstract
Knowledge of the biology of ionotropic glutamate receptors (iGluRs) is a prerequisite for any student of the neurosciences. But yet, half a century ago, the situation was quite different. There was fierce debate on whether simple amino acids, such as l-glutamic acid (L-Glu), should even be considered as putative neurotransmitter candidates that drive excitatory synaptic signaling in the vertebrate brain. Organic chemist, Jeff Watkins, and physiologist, Dick Evans, were amongst the pioneering scientists who shed light on these tribulations. By combining their technical expertise, they performed foundational work that explained that the actions of L-Glu were, in fact, mediated by a family of ion-channels that they named NMDA-, AMPA- and kainate-selective iGluRs. To celebrate and reflect upon their seminal work, Neuropharmacology has commissioned a series of issues that are dedicated to each member of the Glutamate receptor superfamily that includes both ionotropic and metabotropic classes. This issue brings together nine timely reviews from researchers whose work has brought renewed focus on AMPA receptors (AMPARs), the predominant neurotransmitter receptor at central synapses. Together with the larger collection of papers on other GluR family members, these issues highlight that the excitement, passion, and clarity that Watkins and Evans brought to the study of iGluRs is unlikely to fade as we move into a new era on this most interesting of ion-channel families.
Collapse
|
3
|
Huang Z, Niu L. RNA aptamers for AMPA receptors. Neuropharmacology 2021; 199:108761. [PMID: 34509496 DOI: 10.1016/j.neuropharm.2021.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
RNA aptamers are single-stranded RNA molecules, and they are selected against a target of interest so that they can bind to and modulate the activity of the target, such as inhibiting the target activity, with high potency and selectivity. Antagonists, such as RNA aptamers, acting on AMPA receptors, a major subtype of ionotropic glutamate receptors, are potential drug candidates for treatment of a number of CNS diseases that involve excessive receptor activation and/or elevated receptor expression. Here we review the approach to discover RNA aptamers targeting AMPA receptors from a random sequence library (∼1014 sequences) through a process called systematic evolution of ligands by exponential enrichment (SELEX). As compared with small-molecule compounds, RNA aptamers are a new class of regulatory agents with interesting and desirable pharmacological properties. Some AMPA receptor aptamers we have developed are presented in this review. The promises and challenges of translating RNA aptamers into potential drugs and treatment options are also discussed. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Zhen Huang
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - Li Niu
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA.
| |
Collapse
|
4
|
Jaremko W, Huang Z, Karl N, Pierce VD, Lynch J, Niu L. A kainate receptor-selective RNA aptamer. J Biol Chem 2020; 295:6280-6288. [PMID: 32161119 PMCID: PMC7212664 DOI: 10.1074/jbc.ra119.011649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Indexed: 11/06/2022] Open
Abstract
Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are two major, closely related receptor subtypes in the glutamate ion channel family. Excessive activities of these receptors have been implicated in a number of central nervous system diseases. Designing potent and selective antagonists of these receptors, especially of kainate receptors, is useful for developing potential treatment strategies for these neurological diseases. Here, we report on two RNA aptamers designed to individually inhibit kainate and AMPA receptors. To improve the biostability of these aptamers, we also chemically modified these aptamers by substituting their 2'-OH group with 2'-fluorine. These 2'-fluoro aptamers, FB9s-b and FB9s-r, were markedly resistant to RNase-catalyzed degradation, with a half-life of ∼5 days in rat cerebrospinal fluid or serum-containing medium. Furthermore, FB9s-r blocked AMPA receptor activity. Aptamer FB9s-b selectively inhibited GluK1 and GluK2 kainate receptor subunits, and also GluK1/GluK5 and GluK2/GluK5 heteromeric kainate receptors with equal potency. This inhibitory profile makes FB9s-b a powerful template for developing tool molecules and drug candidates for treatment of neurological diseases involving excessive activities of the GluK1 and GluK2 subunits.
Collapse
Affiliation(s)
- William Jaremko
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Vincen D Pierce
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Janet Lynch
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
5
|
Developing RNA aptamers for potential treatment of neurological diseases. Future Med Chem 2019; 11:551-565. [PMID: 30912676 DOI: 10.4155/fmc-2018-0364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AMPA receptor antagonists are drug candidates for potential treatment of a number of CNS diseases that involve excessive receptor activation. To date, small-molecule compounds are the dominating drug candidates in the field. However, lower potency, cross activity and poor water solubility are generally associated with these compounds. Here we show the potential of RNA-based antagonists or RNA aptamers as drug candidates and some strategies to discover these aptamers from a random sequence library (∼1014 sequences). As an alternative to small molecule compounds, our aptamers exhibit higher potency and selectivity toward AMPA receptors. Because aptamers are RNA molecules, they are naturally water soluble. We also discuss the major challenges of translating RNA aptamers as lead molecules into drugs/treatment options.
Collapse
|
6
|
Huang Z, Wen W, Wu A, Niu L. Chemically Modified, α-Amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) Receptor RNA Aptamers Designed for in Vivo Use. ACS Chem Neurosci 2017; 8:2437-2445. [PMID: 28872832 DOI: 10.1021/acschemneuro.7b00211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate ion channels have three subtypes, that is, α-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA), kainate, and N-methyl-d-aspartate (NMDA) receptors. Excessive activity of these receptor subtypes either individually or collectively is involved in various neurological disorders. RNA aptamers as antagonists of these receptors are potential therapeutics. For developing aptamer therapeutics, the RNA aptamers must be chemically modified to become ribonuclease-resistant or stable in biological fluids. Using systematic evolution of ligands by exponential enrichment (SELEX) and a chemically modified library, prepared enzymatically (i.e., the library contains RNAs with 2'-fluoro modified nucleoside triphosphates or ATPs, CTPs and UTPs, but regular GTPs), we have isolated an aptamer. The short aptamer (69 nucleotides) FN1040s selectively inhibits the GluA1 and GluA2Qflip AMPA receptor subunits, whereas the full-length aptamer (101 nucleotides) FN1040 additionally inhibits GluK1, but not GluK2, kainate receptor, and GluN1a/2A and GluN1a/2B, the two major native NMDA receptors. The two aptamers show similar potency (2-4 μM) and are stable with a half-life of at least 2 days in serum-containing medium or cerebrospinal fluid. Therefore, these two aptamers are amenable for in vivo use.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Wei Wen
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Andrew Wu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Li Niu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|
7
|
Huang Z, Kangovi GN, Wen W, Lee S, Niu L. An RNA Aptamer Capable of Forming a Hydrogel by Self-Assembly. Biomacromolecules 2017; 18:2056-2063. [PMID: 28609610 DOI: 10.1021/acs.biomac.7b00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels are supramolecular assemblies with both solute transport properties like liquids and mechanical properties like elastomers. To date, every type of biomolecules except ribonucleic acid (RNA), is capable of forming a hydrogel. Here, we report an RNA that forms a hydrogel by self-assembly. This RNA is originally identified by systematic evolution of ligands by exponential enrichment (SELEX) to enhance the activity of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as a potential RNA drug for the treatment of cognitive disorders. The RNA hydrogel exhibits an elastic modulus plateau on the order of 102 Pa and shows dynamic RNA chain interactions with relaxation behaviors similar to living wormlike micellar solutions. Small-angle X-ray scattering and cryogenic electron microscopy characterization support the RNA network structures. By sequence mutation and rheological measurements, we reveal two key sequence motifs in the RNA responsible for intermolecular recognition and the formation of a polymer network by self-assembly.
Collapse
Affiliation(s)
- Zhen Huang
- Chemistry Department, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Gagan N Kangovi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Wei Wen
- Chemistry Department, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Li Niu
- Chemistry Department, University at Albany, State University of New York , Albany, New York 12222, United States
| |
Collapse
|
8
|
Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. J Biol Chem 2017; 292:7338-7347. [PMID: 28325839 PMCID: PMC5418036 DOI: 10.1074/jbc.m116.774752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
AMPA and kainate receptors, along with NMDA receptors, represent different subtypes of glutamate ion channels. AMPA and kainate receptors share a high degree of sequence and structural similarities, and excessive activity of these receptors has been implicated in neurological diseases such as epilepsy. Therefore, blocking detrimental activity of both receptor types could be therapeutically beneficial. Here, we report the use of an in vitro evolution approach involving systematic evolution of ligands by exponential enrichment with a single AMPA receptor target (i.e. GluA1/2R) to isolate RNA aptamers that can potentially inhibit both AMPA and kainate receptors. A full-length or 101-nucleotide (nt) aptamer selectively inhibited GluA1/2R with a KI of ∼5 μm, along with GluA1 and GluA2 AMPA receptor subunits. Of note, its shorter version (55 nt) inhibited both AMPA and kainate receptors. In particular, this shorter aptamer blocked equally potently the activity of both the GluK1 and GluK2 kainate receptors. Using homologous binding and whole-cell recording assays, we found that an RNA aptamer most likely binds to the receptor's regulatory site and inhibits it noncompetitively. Our results suggest the potential of using a single receptor target to develop RNA aptamers with dual activity for effectively blocking both AMPA and kainate receptors.
Collapse
Affiliation(s)
- William J Jaremko
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Wei Wen
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Andrew Wu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
9
|
Niu L. Mechanism-based design of 2,3-benzodiazepine inhibitors for AMPA receptors. Acta Pharm Sin B 2015; 5:500-5. [PMID: 26713266 PMCID: PMC4675808 DOI: 10.1016/j.apsb.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022] Open
Abstract
2,3-Benzodiazepine (2,3-BDZ) compounds represent a group of structurally diverse, small-molecule antagonists of (R, S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors. Antagonists of AMPA receptors are drug candidates for potential treatment of a number of neurological disorders such as epilepsy, stroke and amyotrophic lateral sclerosis (ALS). How to make better inhibitors, such as 2,3-BDZs, has been an enduring quest in drug discovery. Among a few available tools to address this specific question for making better 2,3-BDZs, perhaps the best one is to use mechanistic clues from studies of the existing antagonists to design and discover more selective and more potent antagonists. Here I review recent work in this area, and propose some ideas in the continuing effort of developing newer 2,3-BDZs for tighter control of AMPA receptor activities in vivo.
Collapse
|
10
|
AMPA receptor inhibitors for the treatment of neurological disorders. Future Med Chem 2015; 6:849-952. [PMID: 24962276 DOI: 10.4155/fmc.14.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Lee G, MacLean D, Ulrich H, Zhao X, Aronowski J, Jayaraman V. RNA based antagonist of NMDA receptors. ACS Chem Neurosci 2014; 5:559-67. [PMID: 24708087 PMCID: PMC4102967 DOI: 10.1021/cn500041k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/07/2014] [Indexed: 11/30/2022] Open
Abstract
The N-methyl d-aspartate (NMDA) class of ionotropic glutamate receptors plays important roles in learning and memory as well as in a number of neurological disorders including Huntington's disease and cerebral ischemia. Here, we describe the isolation and characterization of a 2' F-modified RNA aptamers directed against GluN2A-containing NMDA receptors. By adding a negative selection step toward the closely related AMPA and kainate receptors, the RNA aptamers specifically recognize NMDA receptors with dissociation constants in the nanomolar range. Electrophysiological characterization of these aptamers using rapid perfusion in outside-out patches reveals that they selectively inhibit the GluN2A containing subtype of NMDA receptors with little effect on the AMPA and kainate receptor subtypes. We also demonstrate that this RNA aptamer significantly reduces neurotoxicity in an in vitro model of cerebral ischemia. Given that the RNA based antagonist can be readily modified, it can be used as a tool in targeted drug delivery or for imaging purposes in addition to having the potential use as a therapeutic intervention in disorders involving glutamate receptors.
Collapse
MESH Headings
- Animals
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/pharmacology
- Base Sequence
- Cell Hypoxia/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Cerebral Cortex/drug effects
- Cerebral Cortex/physiology
- Consensus Sequence
- Glucose/deficiency
- Molecular Sequence Data
- Neurons/drug effects
- Neurons/physiology
- Neuroprotective Agents/chemistry
- Neuroprotective Agents/pharmacology
- Nucleic Acid Conformation
- Patch-Clamp Techniques
- Radioligand Assay
- Rats
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- Garam Lee
- Center for Membrane Biology, Department of Biochemistry
and Molecular Biology, and Department of Neurology, University of Texas Health Science Center, 6431 Fannin, Houston, Texas 77030, United States
| | - David
M. MacLean
- Center for Membrane Biology, Department of Biochemistry
and Molecular Biology, and Department of Neurology, University of Texas Health Science Center, 6431 Fannin, Houston, Texas 77030, United States
| | - Henning Ulrich
- Department
of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, S.P. 05508-900, Brazil
| | - Xiurong Zhao
- Center for Membrane Biology, Department of Biochemistry
and Molecular Biology, and Department of Neurology, University of Texas Health Science Center, 6431 Fannin, Houston, Texas 77030, United States
| | - Jaroslaw Aronowski
- Center for Membrane Biology, Department of Biochemistry
and Molecular Biology, and Department of Neurology, University of Texas Health Science Center, 6431 Fannin, Houston, Texas 77030, United States
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry
and Molecular Biology, and Department of Neurology, University of Texas Health Science Center, 6431 Fannin, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Wang C, Han Y, Wu A, Sólyom S, Niu L. Mechanism and site of inhibition of AMPA receptors: pairing a thiadiazole with a 2,3-benzodiazepine scaffold. ACS Chem Neurosci 2014; 5:138-47. [PMID: 24313227 DOI: 10.1021/cn400193u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
2,3-Benzodiazepine compounds are synthesized as drug candidates for treatment of various neurological disorders involving excessive activity of AMPA receptors. Here we report that pairing a thiadiazole moiety with a 2,3-benzodiazepine scaffold via the N-3 position yields an inhibitor type with >28-fold better potency and selectivity on AMPA receptors than the 2,3-benzodiazepine scaffold alone. Using whole-cell recording, we characterized two thiadiazolyl compounds, that is, one contains a 1,3,4-thiadiazole moiety and the other contains a 1,2,4-thiadiazole-3-one moiety. These compounds exhibit potent, equal inhibition of both the closed-channel and the open-channel conformations of all four homomeric AMPA receptor channels and two GluA2R-containing complex AMPA receptor channels. Furthermore, these compounds bind to the same receptor site as GYKI 52466 does, a site we previously termed as the "M" site. A thiadiazole moiety is thought to occupy more fully the side pocket of the receptor site or the "M" site, thereby generating a stronger, multivalent interaction between the inhibitor and the receptor binding site. We suggest that, as a heterocycle, a thiadiazole can be further modified chemically to produce a new class of even more potent, noncompetitive inhibitors of AMPA receptors.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Yan Han
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Andrew Wu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Sándor Sólyom
- CF Pharma Pharmaceutical Manufacturing Co., Ltd, H-1097 Budapest, Kén
utca 5, Hungary
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|
13
|
Zhou J, Bobbin ML, Burnett JC, Rossi JJ. Current progress of RNA aptamer-based therapeutics. Front Genet 2012; 3:234. [PMID: 23130020 PMCID: PMC3486975 DOI: 10.3389/fgene.2012.00234] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/15/2012] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acids that specifically recognize and bind tightly to their cognate targets due to their stable three-dimensional structure. Nucleic acid aptamers have been developed for various applications, including diagnostics, molecular imaging, biomarker discovery, target validation, therapeutics, and drug delivery. Due to their high specificity and binding affinity, aptamers directly block or interrupt the functions of target proteins making them promising therapeutic agents for the treatment of human maladies. Additionally, aptamers that bind to cell surface proteins are well suited for the targeted delivery of other therapeutics, such as conjugated small interfering RNAs (siRNA) that induce RNA interference (RNAi). Thus, aptamer-siRNA chimeras may offer dual-functions, in which the aptamer inhibits a receptor function, while the siRNA internalizes into the cell to target a specific mRNA. This review focuses on the current progress and therapeutic potential of RNA aptamers, including the use of cell-internalizing aptamers as cell-type specific delivery vehicles for targeted RNAi. In particular, we discuss emerging aptamer-based therapeutics that provide unique clinical opportunities for the treatment various cancers and neurological diseases.
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope Duarte, CA, USA
| | | | | | | |
Collapse
|
14
|
Berg KA, Patwardhan AM, Akopian AN. Receptor and channel heteromers as pain targets. Pharmaceuticals (Basel) 2012; 5:249-78. [PMID: 24281378 PMCID: PMC3763638 DOI: 10.3390/ph5030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/04/2012] [Accepted: 02/15/2012] [Indexed: 12/20/2022] Open
Abstract
Recent discoveries indicate that many G-protein coupled receptors (GPCRs) and channels involved in pain modulation are able to form receptor heteromers. Receptor and channel heteromers often display distinct signaling characteristics, pharmacological properties and physiological function in comparison to monomer/homomer receptor or ion channel counterparts. It may be possible to capitalize on such unique properties to augment therapeutic efficacy while minimizing side effects. For example, drugs specifically targeting heteromers may have greater tissue specificity and analgesic efficacy. This review will focus on current progress in our understanding of roles of heteromeric GPCRs and channels in pain pathways as well as strategies for controlling pain pathways via targeting heteromeric receptors and channels. This approach may be instrumental in the discovery of novel classes of drugs and expand our repertoire of targets for pain pharmacotherapy.
Collapse
Affiliation(s)
- Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
| | - Amol M. Patwardhan
- Department of Anesthesiology, Arizona Health Sciences Center, Tucson, AZ 85724, USA; (A.M.P.)
| | - Armen N. Akopian
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (K.A.B.)
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|