1
|
Ghazi Esfahani B, Walia N, Neselu K, Garg Y, Aragon M, Askenasy I, Wei HA, Mendez JH, Stroupe ME. Structure of dimerized assimilatory NADPH-dependent sulfite reductase reveals the minimal interface for diflavin reductase binding. Nat Commun 2025; 16:2955. [PMID: 40140349 PMCID: PMC11947256 DOI: 10.1038/s41467-025-58037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Escherichia coli NADPH-dependent assimilatory sulfite reductase (SiR) reduces sulfite by six electrons to make sulfide for incorporation into sulfur-containing biomolecules. SiR has two subunits: an NADPH, FMN, and FAD-binding diflavin flavoprotein and a siroheme/Fe4S4 cluster-containing hemoprotein. The molecular interactions that govern subunit binding have been unknown since the discovery of SiR over 50 years ago because SiR is flexible, thus has been intransigent for traditional high-resolution structural analysis. We use a combination of the chameleon® plunging system with a fluorinated lipid to overcome the challenges of preserving a flexible molecule to determine a 2.78 Å-resolution cryo-EM structure of a minimal heterodimer complex. Chameleon®, combined with the fluorinated lipid, overcomes persistent denaturation at the air-water interface. Using a previously characterized minimal heterodimer reduces the heterogeneity of a structurally heterogeneous complex to a level that we analyze using multi-conformer cryo-EM image analysis algorithms. Here, we report the near-atomic resolution structure of the flavoprotein/hemoprotein complex, revealing how they interact in a minimal interface. Further, we determine the structural elements that discriminate between pairing a hemoprotein with a diflavin reductase, as in the E. coli homolog, or a ferredoxin partner, as in maize (Zea mays).
Collapse
Affiliation(s)
- Behrouz Ghazi Esfahani
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Nidhi Walia
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Yashika Garg
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Mahira Aragon
- New York Structural Biology Center, New York, NY, USA
| | - Isabel Askenasy
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hui Alex Wei
- New York Structural Biology Center, New York, NY, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - M Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Ghazi Esfahani B, Walia N, Neselu K, Garg Y, Aragon M, Askenasy I, Wei HA, Mendez JH, Stroupe ME. Structure of dimerized assimilatory NADPH-dependent sulfite reductase reveals the minimal interface for diflavin reductase binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.14.599029. [PMID: 38915618 PMCID: PMC11195156 DOI: 10.1101/2024.06.14.599029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Escherichia coli NADPH-dependent assimilatory sulfite reductase (SiR) reduces sulfite by six electrons to make sulfide for incorporation into sulfur-containing biomolecules. SiR has two subunits: an NADPH, FMN, and FAD-binding diflavin flavoprotein and a siroheme/Fe4S4 cluster-containing hemoprotein. The molecular interactions that govern subunit binding have been unknown since the discovery of SiR over 50 years ago because SiR is flexible, thus has been intransigent for traditional high-resolution structural analysis. We used a combination of the chameleon® plunging system with a fluorinated lipid to overcome the challenges of preserving a flexible molecule to determine a 2.78 Å-resolution cryo-EM structure of a minimal heterodimer complex. chameleon®, combined with the fluorinated lipid, overcame persistent denaturation at the air-water interface. Using a previously characterized minimal heterodimer reduced the heterogeneity of a structurally heterogeneous complex to a level that could be analyzed using multi-conformer cryo-EM image analysis algorithms. Here, we report the first near-atomic resolution structure of the flavoprotein/hemoprotein complex, revealing how they interact in a minimal interface. Further, we determined the structural elements that discriminate between pairing a hemoprotein with a diflavin reductase, as in the E. coli homolog, or a ferredoxin partner, as in maize (Zea mays).
Collapse
Affiliation(s)
- Behrouz Ghazi Esfahani
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
| | - Nidhi Walia
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
- Current Location: Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kasahun Neselu
- New York Structural Biology Center, New York, NY, 10027, USA
| | - Yashika Garg
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
| | - Mahira Aragon
- New York Structural Biology Center, New York, NY, 10027, USA
| | - Isabel Askenasy
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
- Current Location: Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Hui Alex Wei
- New York Structural Biology Center, New York, NY, 10027, USA
- Current Location: Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren St. Room E440U, Newark, NJ, 07103
| | | | - M. Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
| |
Collapse
|
3
|
Marincean S, Al-Modhafir M, Lawson DB. π-π stacking interactions in tryptophan-lumiflavin-tyrosine: a structural model for riboflavin insertion into riboflavin-binding protein. J Mol Model 2025; 31:38. [PMID: 39775115 DOI: 10.1007/s00894-024-06233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
CONTEXT Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions. Density functional theory (DFT) served as the computation framework for all calculations, utilizing long-range corrected hybrid functionals LC-ωPBE and ωB97XD in conjunction with the 6-311+ +g** basis set. The solvation effects were incorporated through the implementation of the polarizable continuum model (PCM) simulating an aqueous solvent environment. The geometries of the five most stable complexes show exclusively p-p interactions among the aromatic moieties in a displaced parallel plane stacking arrangement with interplanar heights and displacements in the range of 3.22-3.62 Å and 0.50-0.63 Å, respectively, at ωB97XD level. The calculated total energies and binding energies indicate two stabilizing p-p interactions: lumiflavin-tyrosine and lumiflavin-tryptophan, with the later stronger for the more stable complexes by 2 kcal mol-1. The complexes are less entropically favored than the independent molecules as verified by the positive association free Gibbs energies with LC-ωPBE and nearly zero with ωB97XD. Orbital analysis indicates a smaller HOMO-LUMO gap for complexes compared to the individual compounds suggesting a charge transfer component to the interaction. Moreover, the HOMO is localized on tryptophan and HOMO-1 on tyrosine, consistent with the strength of the respective interactions with lumiflavin. METHODS The initial geometry was based on the atom coordinates of the bonding tryptophan-riboflavin-tyrosine region in the protein crystallographic data with the ribityl tail being discarded, leading to a model complex: tryptophan-lumiflavin-tyrosine. The initial conformational search using the Amber force field within the Gabedit led to 30 unique conformations. The subsequent calculations, energy optimization and orbital analysis, were performed in Guassian16 at density functional theory (DFT) level, utilizing long-range corrected hybrid functionals LC-ωPBE and ωB97XD in conjunction with the 6-311+ +g** basis set. The solvent, water, was accounted for using the polarized continuum model (PCM).
Collapse
Affiliation(s)
- Simona Marincean
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
| | - Moina Al-Modhafir
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Daniel B Lawson
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
4
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
5
|
Sun Y, Martinez-Ramos C, Chen E, Osawa Y, Zhang H. A General Method to Screen Nanobodies for Cytochrome P450 Enzymes from a Yeast Surface Display Library. Biomedicines 2024; 12:1863. [PMID: 39200327 PMCID: PMC11351928 DOI: 10.3390/biomedicines12081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The availability of yeast surface display nanobody (Nb) libraries offers a convenient way to acquire antigen-specific nanobodies that may be useful for protein structure-function studies and/or therapeutic applications, complementary to the conventional method of acquiring nanobodies through immunization in camelids. In this study, we developed a general approach to select nanobodies for cytochrome P450 enzymes from a highly diverse yeast display library. We tested our method on three P450 enzymes including CYP102A1, neuronal nitric oxide synthase (nNOS), and the complex of CYP2B4:POR, using a novel streamlined approach where biotinylated P450s were bound to fluorescent-labeled streptavidin for Nb screening. The Nb-antigen binders were selectively enriched using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). After two rounds of MACS, the population of positive binders was enriched by >5-fold compared to the naïve library. The subsequent FACS selection, with a gating of 0.1%, identified 634, 270, and 215 positive binders for CYP102A1, nNOS, and CYP2B4:POR, respectively. The positive binders for CYP102A1 were further triaged based on EC50 determined at various antigen concentrations. DNA sequencing of the top 30 binders of CYP102A1 resulted in 26 unique clones, 8 of which were selected for over-expression and characterization. They were found to inhibit CYP102A1-catalyzed oxidation of omeprazole with IC50 values in the range of 0.16-2.8 µM. These results validate our approach and may be applied to other protein targets for the effective selection of specific nanobodies.
Collapse
Affiliation(s)
- Yudong Sun
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| | - Cristian Martinez-Ramos
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| | - Eugene Chen
- Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA; (Y.S.); (C.M.-R.); (Y.O.)
| |
Collapse
|
6
|
Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model 2024; 64:6026-6040. [PMID: 38994927 DOI: 10.1021/acs.jcim.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important enzymes involved in drug metabolism. Genetic polymorphism can influence drug metabolism by CYP2D6 such that a therapy is seriously affected by under- or overdosing of drugs. However, a general explanation at the atomistic level for poor activity is missing so far. Here we show for the 20 most common single nucleotide polymorphisms (SNPs) of CYP2D6 that poor metabolism is driven by four mechanisms. We found in extensive all-atom molecular dynamics simulations that the rigidity of the I-helix (central helix), distance between central phenylalanines (stabilizing bound substrate), availability of basic residues on the surface of CYP2D6 (binding of cytochrome P450 reductase), and position of arginine 132 (electron transfer to heme) are essential for an extensive function of the enzyme. These results were applied to SNPs with unknown effects, and potential SNPs that may lead to poor drug metabolism were identified. The revealed molecular mechanisms might be important for other drug-metabolizing cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Mohali, Punjab 160 062, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
7
|
Xia S, Hirao H. The Dissociation Process of NADP + from NADPH-Cytochrome P450 Reductase Studied by Molecular Dynamics Simulation. J Phys Chem B 2024; 128:7148-7159. [PMID: 38991231 DOI: 10.1021/acs.jpcb.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
NADPH-cytochrome P450 reductase (CPR) plays a vital role as a redox partner for mammalian cytochrome P450 enzymes (P450s), facilitating the transfer of two electrons from NADPH to the P450 heme center in a sequential manner. Previous experimental studies revealed substantial domain movements of CPR, transitioning between closed and open states during the electron transfer (ET) cycle. These transitions are essential and are influenced by the binding of NADPH or the release of NADP+. However, the intricate molecular mechanisms governing the CPR-mediated ET cycle have largely remained elusive. This study employed molecular dynamics (MD) simulation techniques to explore the dissociation of NADP+ from CPR, a crucial step preceding the initial ET from CPR to a P450. Alongside the binding structure of NADP+ observed in a crystal structure (pose I), our MD simulations identified an alternative binding structure (pose II). Although pose II exhibits slightly lower stability than pose I, it can be formed through an approximate 210° counterclockwise rotation of the adenine group, with a free energy barrier of only 2.76 kcal/mol. The simulation results further suggest that NADP+ dissociation involves a tentative formation of pose II from pose I before complete dissociation, and that the binding of NADP+ to CPR is primarily governed by nonbonded interactions within the adenosine binding pocket.
Collapse
Affiliation(s)
- Songyan Xia
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
8
|
Ye RY, Song J, Zhang ZJ, Yu HL. Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases. Appl Microbiol Biotechnol 2023; 107:5727-5737. [PMID: 37477695 DOI: 10.1007/s00253-023-12678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in E. coli by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the C-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from Bacillus megaterium P450BM3 (CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family. KEY POINTS: • Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins. • The feasibility of three P450 reductase domains to CYP120As was evaluated. • Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.
Collapse
Affiliation(s)
- Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Juan Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
9
|
Burris-Hiday SD, Scott EE. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 2023; 299:105112. [PMID: 37517692 PMCID: PMC10481364 DOI: 10.1016/j.jbc.2023.105112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.
Collapse
Affiliation(s)
- Sarah D Burris-Hiday
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology and Biological Chemistry and the Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Esteves F, Almeida CMM, Silva S, Saldanha I, Urban P, Rueff J, Pompon D, Truan G, Kranendonk M. Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism. Biomolecules 2023; 13:1083. [PMID: 37509119 PMCID: PMC10377444 DOI: 10.3390/biom13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
Collapse
Affiliation(s)
- Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Inês Saldanha
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Denis Pompon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
11
|
Murray DT, Walia N, Weiss KL, Stanley CB, Nagy G, Stroupe ME. Neutron scattering maps the higher-order assembly of NADPH-dependent assimilatory sulfite reductase. Biophys J 2022; 121:1799-1812. [PMID: 35443926 DOI: 10.1016/j.bpj.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/09/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Precursor molecules for biomass incorporation must be imported into cells and made available to the molecular machines that build the cell. Sulfur-containing macromolecules require that sulfur be in its S2- oxidation state before assimilation into amino acids, cofactors, and vitamins that are essential to organisms throughout the biosphere. In α-proteobacteria, NADPH-dependent assimilatory sulfite reductase (SiR) performs the final six-electron reduction of sulfur. SiR is a dodecameric oxidoreductase composed of an octameric flavoprotein reductase (SiRFP) and four hemoprotein metalloenzyme oxidases (SiRHP). SiR performs the electron transfer reduction reaction to produce sulfide from sulfite through coordinated domain movements and subunit interactions without release of partially reduced intermediates. Efforts to understand the electron transfer mechanism responsible for SiR's efficiency are confounded by structural heterogeneity arising from intrinsically disordered regions throughout its complex, including the flexible linker joining SiRFP's flavin-binding domains. As a result, high-resolution structures of SiR dodecamer and its subcomplexes are unknown, leaving a gap in the fundamental understanding of how SiR performs this uniquely large-volume electron transfer reaction. Here, we use deuterium labeling, in vitro reconstitution, analytical ultracentrifugation (AUC), small-angle neutron scattering (SANS), and neutron contrast variation (NCV) to observe the relative subunit positions within SiR's higher-order assembly. AUC and SANS reveal SiR to be a flexible dodecamer and confirm the mismatched SiRFP and SiRHP subunit stoichiometry. NCV shows that the complex is asymmetric, with SiRHP on the periphery of the complex and the centers of mass between SiRFP and SiRHP components over 100 Å apart. SiRFP undergoes compaction upon assembly into SiR's dodecamer and SiRHP adopts multiple positions in the complex. The resulting map of SiR's higher-order structure supports a cis/trans mechanism for electron transfer between domains of reductase subunits as well as between tightly-bound or transiently-interacting reductase and oxidase subunits.
Collapse
Affiliation(s)
- Daniel T Murray
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Nidhi Walia
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christopher B Stanley
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - M Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
12
|
Zhang B, Kang C, Davydov DR. Conformational Rearrangements in the Redox Cycling of NADPH-Cytochrome P450 Reductase from Sorghum bicolor Explored with FRET and Pressure-Perturbation Spectroscopy. BIOLOGY 2022; 11:biology11040510. [PMID: 35453709 PMCID: PMC9030436 DOI: 10.3390/biology11040510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary NADPH-cytochrome P450 reductase (CPR) enzymes are known to undergo an ample conformational transition between the closed and open states in the process of their redox cycling. To explore the conformational landscape of CPR from the potential biofuel crop Sorghum bicolor (SbCPR), we incorporated a FRET donor/acceptor pair into the enzyme and employed rapid scanning stop-flow and pressure perturbation spectroscopy to characterize the equilibrium between its open and closed states at different stages of the redox cycle. Our results suggest the presence of several open conformational sub-states differing in the system volume change associated with the opening transition (ΔV0). Although the closed conformation always predominates in the conformational landscape, the population of the open conformations increases by order of magnitude upon the two-electron reduction and the formation of the disemiquinone state of the enzyme. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions. Abstract NADPH-cytochrome P450 reductase (CPR) from Sorghum bicolor (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. This transition is triggered by electron transfer between the FAD and FMN and provides access of the partner protein to the electron-donating FMN domain. To characterize the electron transfer mechanisms in the monolignol biosynthetic pathway better, we explore the conformational transitions in SbCPR with rapid scanning stop-flow and pressure-perturbation spectroscopy. We used FRET between a pair of donor and acceptor probes incorporated into the FAD and FMN domains of SbCPR, respectively, to characterize the equilibrium between the open and closed states and explore its modulation in connection with the redox state of the enzyme. We demonstrate that, although the closed conformation always predominates in the conformational landscape, the population of open state increases by order of magnitude upon the formation of the disemiquinone state. Our results are consistent with several open conformation sub-states differing in the volume change (ΔV0) of the opening transition. While the ΔV0 characteristic of the oxidized enzyme is as large as −88 mL/mol, the interaction of the enzyme with the nucleotide cofactor and the formation of the double-semiquinone state of CPR decrease this value to −34 and −18 mL/mol, respectively. This observation suggests that the interdomain electron transfer in CPR increases protein hydration, while promoting more open conformation. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions.
Collapse
|
13
|
Mohd Siddique MU, Thakur A, Shilkar D, Yasmin S, Halakova D, Kovacikova L, Prnova MS, Stefek M, Acevedo O, Dasararaju G, Devadasan V, Mondal SK, Jayaprakash V. Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives. Eur J Med Chem 2021; 223:113630. [PMID: 34175538 DOI: 10.1016/j.ejmech.2021.113630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
In search of dually active PPAR-modulators/aldose reductase (ALR2) inhibitors, 16 benzylidene thiazolidinedione derivatives, previously reported as partial PPARγ agonists, together with additional 18 structural congeners, were studied for aldose reductase inhibitory activity. While no compounds had dual property, our efforts led to the identification of promising inhibitors of ALR2. Eight compounds (11, 15-16, 20-24, 30) from the library of 33 compounds were identified as potent and selective inhibitors of ALR2. Compound 21 was the most effective and selective inhibitor with an IC50 value of 0.95 ± 0.11 and 13.52 ± 0.81 μM against ALR2 and aldehyde reductase (ALR1) enzymes, respectively. Molecular docking and dynamics studies were performed to understand inhibitor-enzyme interactions at the molecular level that determine the potency and selectivity. Compound 21 was further subjected to in silico and in vitro studies to evaluate the pharmacokinetic profile. Being less acidic (pKa = 9.8), the compound might have a superior plasma membrane permeability and reach the cytosolic ALR2. This fact together with excellent drug-likeness criteria points to improved bioavailability compared to the clinically used compound Epalrestat. The designed compounds represent a novel group of non-carboxylate inhibitors of aldose reductase with an improved physicochemical profile.
Collapse
Affiliation(s)
- Mohd Usman Mohd Siddique
- Department of Pharmaceutical Sciences & Technology, Mesra, Ranchi, 835215, (JH), India; Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, (MH), India.
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, 33146, USA.
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Mesra, Ranchi, 835215, (JH), India.
| | - Sabina Yasmin
- Department of Pharmaceutical Sciences & Technology, Mesra, Ranchi, 835215, (JH), India; Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia.
| | - Dominika Halakova
- Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, 33146, USA.
| | - Gayathri Dasararaju
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, (TN), India.
| | - Velmurugan Devadasan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, (TN), India.
| | - Susanta Kumar Mondal
- TCG Life Sciences Ltd, Block-EP & GP, BIPL, Tower-B, Saltlake, Sector-V, Kolkata, 700091, (WB), India.
| | | |
Collapse
|
14
|
Kim JE, Son SH, Oh SS, Kim SC, Lee JY. Pairing of orthogonal chaperones with a cytochrome P450 enhances terpene synthesis in Saccharomyces cerevisiae. Biotechnol J 2021; 17:e2000452. [PMID: 34269523 DOI: 10.1002/biot.202000452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
The supply of terpenes is often limited by their low extraction yield from natural resources, such as plants. Thus, microbial biosynthesis has emerged as an attractive platform for the production of terpenes. Many strategies have been applied to engineer microbes to improve terpene production capabilities; however, functional expression of heterologous proteins such as cytochrome P450 enzymes (P450s) in microbes is a major obstacle. This study reports the successful pairing of cognate chaperones and P450s for functional heterologous expression in Saccharomyces cerevisiae. This chaperone pairing was exploited to facilitate the functional assembly of the protopanaxadiol (PPD) biosynthesis pathway, which consists of a P450 oxygenase and a P450 reductase redox partner originating from Panax ginseng and Arabidopsis thaliana, respectively. We identified several chaperones required for protein folding in P. ginseng and A. thaliana and evaluated the impact of the coexpression of the corresponding chaperones on the synthesis and activity of PPD biosynthesis enzymes. Expression of a chaperone from P. ginseng (PgCPR5), a cognate of PPD biosynthesis enzymes, significantly increased PPD production by more than 2.5-fold compared with that in the corresponding control strain. Thus, pairing of chaperones with heterologous enzymes provides an effective strategy for the construction of challenging biosynthesis pathways in yeast.
Collapse
Affiliation(s)
- Jae-Eung Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - So-Hee Son
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| |
Collapse
|
15
|
Ducharme J, Sevrioukova IF, Thibodeaux CJ, Auclair K. Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase. Biochemistry 2021; 60:2259-2271. [PMID: 34196520 DOI: 10.1021/acs.biochem.1c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/β1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
16
|
Hubbard PA, Xia C, Shen AL, Kim JJP. Structural and kinetic investigations of the carboxy terminus of NADPH-cytochrome P450 oxidoreductase. Arch Biochem Biophys 2021; 701:108792. [PMID: 33556357 PMCID: PMC8020834 DOI: 10.1016/j.abb.2021.108792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
The influence of the side chains and positioning of the carboxy-terminal residues of NADPH-cytochrome P450 oxidoreductase (CYPOR) on catalytic activity, structure of the carboxy terminus, and interaction with cofactors has been investigated. A tandem deletion of residues Asp675 and Val676, that was expected to shift the position of the functionally important Trp677, resulted in higher cytochrome c reductase activity than that expected from previous studies on the importance of Asp675 and Trp677 in catalysis. Crystallographic determination of the structure of this variant revealed two conformations of the carboxy terminus. In one conformation (Mol A), the last α-helix is partially unwound, resulting in repositioning of all subsequent residues in β-strand 21, from Arg671 to Leu674 (corresponding to Ser673 and Val676 in the wild type structure). This results in the two C-terminal residues, Trp677 and Ser678, being maintained in their wild type positions, with the indole ring of Trp677 stacked against the isoalloxazine ring of FAD as seen in the wild type structure, and Ser673 occupying a similar position to the catalytic residue, Asp675. The other, more disordered conformation is a mixture of the Mol A conformation and one in which the last α-helix is not unwound and the nicotinamide ring is in one of two conformations, out towards the protein surface as observed in the wild type structure (1AMO), or stacked against the flavin ring, similar to that seen in the W677X structure that lacks Trp677 and Ser678 (1JA0). Further kinetic analysis on additional variants showed deletion or substitution of alanine or glycine for Trp677 in conjunction with deletion of Ser678 produced alterations in interactions of CYPOR with NADP+, 2'5'-ADP, and 2'-AMP, as well as the pH dependence of cytochrome c reductase activity. We postulate that deletion of bulky residues at the carboxy terminus permits increased mobility leading to decreased affinity for the 2'5'-ADP and 2'-AMP moieties of NADP+ and subsequent domain movement.
Collapse
Affiliation(s)
- Paul A Hubbard
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anna L Shen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
17
|
Small-angle neutron scattering solution structures of NADPH-dependent sulfite reductase. J Struct Biol 2021; 213:107724. [PMID: 33722582 DOI: 10.1016/j.jsb.2021.107724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022]
Abstract
Sulfite reductase (SiR), a dodecameric complex of flavoprotein reductase subunits (SiRFP) and hemoprotein oxidase subunits (SiRHP), reduces sulfur for biomass incorporation. Electron transfer within SiR requires intra- and inter-subunit interactions that are mediated by the relative position of each protein, governed by flexible domain movements. Using small-angle neutron scattering, we report the first solution structures of SiR heterodimers containing a single copy of each subunit. These structures show how the subunits bind and how both subunit binding and oxidation state impact SiRFP's conformation. Neutron contrast matching experiments on selectively deuterated heterodimers allow us to define the contribution of each subunit to the solution scattering. SiRHP binding induces a change in the position of SiRFP's flavodoxin-like domain relative to its ferredoxin-NADP+ reductase domain while compacting SiRHP's N-terminus. Reduction of SiRFP leads to a more open structure relative to its oxidized state, re-positioning SiRFP's N-terminal flavodoxin-like domain towards the SiRHP binding position. These structures show, for the first time, how both SiRHP binding to, and reduction of, SiRFP positions SiRFP for electron transfer between the subunits.
Collapse
|
18
|
Sellner M, Fischer A, Don CG, Smieško M. Conformational Landscape of Cytochrome P450 Reductase Interactions. Int J Mol Sci 2021; 22:1023. [PMID: 33498551 PMCID: PMC7864194 DOI: 10.3390/ijms22031023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
Oxidative reactions catalyzed by Cytochrome P450 enzymes (CYPs), which constitute the most relevant group of drug-metabolizing enzymes, are enabled by their redox partner Cytochrome P450 reductase (CPR). Both proteins are anchored to the membrane of the endoplasmic reticulum and the CPR undergoes a conformational change in order to interact with the respective CYP and transfer electrons. Here, we conducted over 22 microseconds of molecular dynamics (MD) simulations in combination with protein-protein docking to investigate the conformational changes necessary for the formation of the CPR-CYP complex. While some structural features of the CPR and the CPR-CYP2D6 complex that we highlighted confirmed previous observations, our simulations revealed additional mechanisms for the conformational transition of the CPR. Unbiased simulations exposed a movement of the whole protein relative to the membrane, potentially to facilitate interactions with its diverse set of redox partners. Further, we present a structural mechanism for the susceptibility of the CPR to different redox states based on the flip of a glycine residue disrupting the local interaction network that maintains inter-domain proximity. Simulations of the CPR-CYP2D6 complex pointed toward an additional interaction surface of the FAD domain and the proximal side of CYP2D6. Altogether, this study provides novel structural insight into the mechanism of CPR-CYP interactions and underlying conformational changes, improving our understanding of this complex machinery Cytochrome P450 reductase; CPR; conformational; dynamicsrelevant for drug metabolism.
Collapse
Affiliation(s)
| | | | | | - Martin Smieško
- Computational Pharmacy, Departement of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (M.S.); (A.F.); (C.G.D.)
| |
Collapse
|
19
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
20
|
Insight into the structural and functional analysis of the impact of missense mutation on cytochrome P450 oxidoreductase. J Mol Graph Model 2020; 100:107708. [PMID: 32805558 DOI: 10.1016/j.jmgm.2020.107708] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is a steroidogenic and drug-metabolizing enzyme. It helps in the NADPH dependent transfer of electrons to cytochrome P450 (CYP) enzymes for their biological activity. In this study, we employed integrative computational approaches to decipher the impact of proline to leucine missense mutation at position 384 (P384L) in the connecting/hinge domain region which is essential for the catalytic activity of POR. Analysis of protein stability using DUET, MUpro, CUPSAT, I-Mutant2.0, iStable and SAAFEC servers predicted that mutation might alter the structural stability of POR. The significant conformational changes induced by the mutation to the POR structure were analyzed by long-range molecular dynamics simulation. The results revealed that missense mutation decreased the conformational stability of POR as compared to wild type (WT). The PCA based FEL analysis described the mutant-specific conformational alterations and dominant motions essential for the biological activity of POR. The LIGPLOT interaction analysis showed the different binding architecture of FMN, FAD, and NADPH as a result of mutation. The increased number of hydrogen bonds in the FEL conformation of WT proved the strong binding of cofactors in the binding pocket as compared to the mutant. The porcupine plot analysis associated with cross-correlation analysis depicted the high-intensity flexible motion exhibited by functionally important FAD and NADPH binding domain regions. The computational findings unravel the impact of mutation at the structural level, which could be helpful in understanding the molecular mechanism of drug metabolism.
Collapse
|
21
|
Sugishima M, Wada K, Fukuyama K. Recent Advances in the Understanding of the Reaction Chemistries of the Heme Catabolizing Enzymes HO and BVR Based on High Resolution Protein Structures. Curr Med Chem 2020; 27:3499-3518. [PMID: 30556496 PMCID: PMC7509768 DOI: 10.2174/0929867326666181217142715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
In mammals, catabolism of the heme group is indispensable for life. Heme is first cleaved by the enzyme Heme Oxygenase (HO) to the linear tetrapyrrole Biliverdin IXα (BV), and BV is then converted into bilirubin by Biliverdin Reductase (BVR). HO utilizes three Oxygen molecules (O2) and seven electrons supplied by NADPH-cytochrome P450 oxidoreductase (CPR) to open the heme ring and BVR reduces BV through the use of NAD(P)H. Structural studies of HOs, including substrate-bound, reaction intermediate-bound, and several specific inhibitor-bound forms, reveal details explaining substrate binding to HO and mechanisms underlying-specific HO reaction progression. Cryo-trapped structures and a time-resolved spectroscopic study examining photolysis of the bond between the distal ligand and heme iron demonstrate how CO, produced during the HO reaction, dissociates from the reaction site with a corresponding conformational change in HO. The complex structure containing HO and CPR provides details of how electrons are transferred to the heme-HO complex. Although the tertiary structure of BVR and its complex with NAD+ was determined more than 10 years ago, the catalytic residues and the reaction mechanism of BVR remain unknown. A recent crystallographic study examining cyanobacterial BVR in complex with NADP+ and substrate BV provided some clarification regarding these issues. Two BV molecules are bound to BVR in a stacked manner, and one BV may assist in the reductive catalysis of the other BV. In this review, recent advances illustrated by biochemical, spectroscopic, and crystallographic studies detailing the chemistry underlying the molecular mechanism of HO and BVR reactions are presented.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
22
|
Sugishima M, Taira J, Sagara T, Nakao R, Sato H, Noguchi M, Fukuyama K, Yamamoto K, Yasunaga T, Sakamoto H. Conformational Equilibrium of NADPH-Cytochrome P450 Oxidoreductase Is Essential for Heme Oxygenase Reaction. Antioxidants (Basel) 2020; 9:antiox9080673. [PMID: 32731542 PMCID: PMC7464098 DOI: 10.3390/antiox9080673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) catalyzes heme degradation using electrons supplied by NADPH-cytochrome P450 oxidoreductase (CPR). Electrons from NADPH flow first to FAD, then to FMN, and finally to the heme in the redox partner. Previous biophysical analyses suggest the presence of a dynamic equilibrium between the open and the closed forms of CPR. We previously demonstrated that the open-form stabilized CPR (ΔTGEE) is tightly bound to heme-HO-1, whereas the reduction in heme-HO-1 coupled with ΔTGEE is considerably slow because the distance between FAD and FMN in ΔTGEE is inappropriate for electron transfer from FAD to FMN. Here, we characterized the enzymatic activity and the reduction kinetics of HO-1 using the closed-form stabilized CPR (147CC514). Additionally, we analyzed the interaction between 147CC514 and heme-HO-1 by analytical ultracentrifugation. The results indicate that the interaction between 147CC514 and heme-HO-1 is considerably weak, and the enzymatic activity of 147CC514 is markedly weaker than that of CPR. Further, using cryo-electron microscopy, we confirmed that the crystal structure of ΔTGEE in complex with heme-HO-1 is similar to the relatively low-resolution structure of CPR complexed with heme-HO-1 in solution. We conclude that the "open-close" transition of CPR is indispensable for electron transfer from CPR to heme-HO-1.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; (H.S.); (M.N.); (K.Y.)
- Correspondence: (M.S.); (H.S.)
| | - Junichi Taira
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan; (J.T.); (T.S.); (R.N.); (T.Y.)
| | - Tatsuya Sagara
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan; (J.T.); (T.S.); (R.N.); (T.Y.)
| | - Ryota Nakao
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan; (J.T.); (T.S.); (R.N.); (T.Y.)
| | - Hideaki Sato
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; (H.S.); (M.N.); (K.Y.)
| | - Masato Noguchi
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; (H.S.); (M.N.); (K.Y.)
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan;
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; (H.S.); (M.N.); (K.Y.)
| | - Takuo Yasunaga
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan; (J.T.); (T.S.); (R.N.); (T.Y.)
| | - Hiroshi Sakamoto
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan; (J.T.); (T.S.); (R.N.); (T.Y.)
- Correspondence: (M.S.); (H.S.)
| |
Collapse
|
23
|
Su M, Chakraborty S, Osawa Y, Zhang H. Cryo-EM reveals the architecture of the dimeric cytochrome P450 CYP102A1 enzyme and conformational changes required for redox partner recognition. J Biol Chem 2020; 295:1637-1645. [PMID: 31901079 PMCID: PMC7008367 DOI: 10.1074/jbc.ra119.011305] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/02/2020] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 family 102 subfamily A member 1 (CYP102A1) is a self-sufficient flavohemeprotein and a highly active bacterial enzyme capable of fatty acid hydroxylation at a >3,000 min-1 turnover rate. The CYP102A1 architecture has been postulated to be responsible for its extraordinary catalytic prowess. However, the structure of a functional full-length CYP102A1 enzyme remains to be determined. Herein, we used a cryo-EM single-particle approach, revealing that full-length CYP102A1 forms a homodimer in which both the heme and FAD domains contact each other. The FMN domain of one monomer was located close to the heme domain of the other monomer, exhibiting a trans configuration. Moreover, full-length CYP102A1 is highly dynamic, existing in multiple conformational states, including open and closed states. In the closed state, the FMN domain closely contacts the FAD domain, whereas in the open state, one of the FMN domains rotates away from its FAD domain and traverses to the heme domain of the other monomer. This structural arrangement and conformational dynamics may facilitate rapid intraflavin and trans FMN-to-heme electron transfers (ETs). Results with a variant having a 12-amino-acid deletion in the CYP102A1 linker region, connecting the catalytic heme and the diflavin reductase domains, further highlighted the importance of conformational dynamics in the ET process. Cryo-EM revealed that the Δ12 variant homodimer is conformationally more stable and incapable of FMN-to-heme ET. We conclude that closed-to-open alternation is crucial for redox partner recognition and formation of an active ET complex for CYP102A1 catalysis.
Collapse
Affiliation(s)
- Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.
| | - Sumita Chakraborty
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
24
|
Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis. Sci Rep 2019; 9:20088. [PMID: 31882753 PMCID: PMC6934812 DOI: 10.1038/s41598-019-56516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Cytochrome P450 reductases (CPRs) are diflavin oxidoreductases that supply electrons to type II cytochrome P450 monooxygenases (CYPs). In addition, it can also reduce other proteins and molecules, including cytochrome c, ferricyanide, and different drugs. Although various CPRs have been functionally and structurally characterized, the overall mechanism and its interaction with different redox acceptors remain elusive. One of the main problems regarding electron transfer between CPRs and CYPs is the so-called “uncoupling”, whereby NAD(P)H derived electrons are lost due to the reduced intermediates’ (FAD and FMN of CPR) interaction with molecular oxygen. Additionally, the decay of the iron-oxygen complex of the CYP can also contribute to loss of reducing equivalents during an unproductive reaction cycle. This phenomenon generates reactive oxygen species (ROS), leading to an inefficient reaction. Here, we present the study of the CPR from Candida tropicalis (CtCPR) lacking the hydrophobic N-terminal part (Δ2–22). The enzyme supports the reduction of cytochrome c and ferricyanide, with an estimated 30% uncoupling during the reactions with cytochrome c. The ROS produced was not influenced by different physicochemical conditions (ionic strength, pH, temperature). The X-ray structures of the enzyme were solved with and without its cofactor, NADPH. Both CtCPR structures exhibited the closed conformation. Comparison with the different solved structures revealed an intricate ionic network responsible for the regulation of the open/closed movement of CtCPR.
Collapse
|
25
|
Ebrecht AC, van der Bergh N, Harrison STL, Smit MS, Sewell BT, Opperman DJ. Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis. Sci Rep 2019; 9:20088. [PMID: 31882753 DOI: 10.1101/711317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 05/28/2023] Open
Abstract
Cytochrome P450 reductases (CPRs) are diflavin oxidoreductases that supply electrons to type II cytochrome P450 monooxygenases (CYPs). In addition, it can also reduce other proteins and molecules, including cytochrome c, ferricyanide, and different drugs. Although various CPRs have been functionally and structurally characterized, the overall mechanism and its interaction with different redox acceptors remain elusive. One of the main problems regarding electron transfer between CPRs and CYPs is the so-called "uncoupling", whereby NAD(P)H derived electrons are lost due to the reduced intermediates' (FAD and FMN of CPR) interaction with molecular oxygen. Additionally, the decay of the iron-oxygen complex of the CYP can also contribute to loss of reducing equivalents during an unproductive reaction cycle. This phenomenon generates reactive oxygen species (ROS), leading to an inefficient reaction. Here, we present the study of the CPR from Candida tropicalis (CtCPR) lacking the hydrophobic N-terminal part (Δ2-22). The enzyme supports the reduction of cytochrome c and ferricyanide, with an estimated 30% uncoupling during the reactions with cytochrome c. The ROS produced was not influenced by different physicochemical conditions (ionic strength, pH, temperature). The X-ray structures of the enzyme were solved with and without its cofactor, NADPH. Both CtCPR structures exhibited the closed conformation. Comparison with the different solved structures revealed an intricate ionic network responsible for the regulation of the open/closed movement of CtCPR.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Naadia van der Bergh
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Martha S Smit
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7700, South Africa.
| | - Diederik J Opperman
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa.
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa.
| |
Collapse
|
26
|
Parween S, Rojas Velazquez MN, Udhane SS, Kagawa N, Pandey AV. Variability in Loss of Multiple Enzyme Activities Due to the Human Genetic Variation P284T Located in the Flexible Hinge Region of NADPH Cytochrome P450 Oxidoreductase. Front Pharmacol 2019; 10:1187. [PMID: 31749697 PMCID: PMC6843080 DOI: 10.3389/fphar.2019.01187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Cytochromes P450 located in the endoplasmic reticulum require NADPH cytochrome P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause multiple disorders in humans related to the biosynthesis of steroid hormones and also affect drug-metabolizing cytochrome P450 activities. Electron transfer in POR occurs from NADH to FAD to FMN, and the flexible hinge region in POR is essential for domain movements to bring the FAD and FMN close together for electron transfer. We tested the effect of variations in the hinge region of POR to check if the effects would be similar across all redox partners or there will be differences in activities. Here we are reporting the effects of a POR genetic variant P284T located in the hinge region of POR that is necessary for the domain movements and internal electron transfer between co-factors. Human wild-type and P284T mutant of POR and cytochrome P450 proteins were expressed in bacteria, purified, and reconstituted for enzyme assays. We found that for the P284T variant of POR, the cytochrome c reduction activity was reduced to 47% of the WT and MTT reduction was reduced to only 15% of the WT. No impact on ferricyanide reduction activity was observed, indicating intact direct electron transfer from FAD to ferricyanide, but a severe loss of CYP19A1 (aromatase) activity was observed (9% of WT). In the assays of drug-metabolizing cytochrome P450 enzymes, the P284T variant of POR showed 26% activity for CYP2C9, 44% activity for CYP2C19, 23% activity for CYP3A4, and 44% activity in CYP3A5 assays compared to the WT POR. These results indicate a severe effect on several cytochrome P450 activities due to the P284T variation in POR, which suggests a negative impact on both the steroid as well as drug metabolism in the individuals carrying this variation. The negative impact of P284T mutation in the hinge region of POR seems to be due to disruption of FAD to FMN electron transfer. These results further emphasize the importance of hinge region in POR for protein flexibility and electron transfer within POR as well as the interaction of POR with different redox partners.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- School of Medicine, Nagoya University, Nagoya, Japan
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Velazquez MNR, Parween S, Udhane SS, Pandey AV. Variability in human drug metabolizing cytochrome P450 CYP2C9, CYP2C19 and CYP3A5 activities caused by genetic variations in cytochrome P450 oxidoreductase. Biochem Biophys Res Commun 2019; 515:133-138. [DOI: 10.1016/j.bbrc.2019.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 01/14/2023]
|
28
|
Xia C, Shen AL, Duangkaew P, Kotewong R, Rongnoparut P, Feix J, Kim JJP. Structural and Functional Studies of the Membrane-Binding Domain of NADPH-Cytochrome P450 Oxidoreductase. Biochemistry 2019; 58:2408-2418. [PMID: 31009206 PMCID: PMC6873807 DOI: 10.1021/acs.biochem.9b00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR), the essential flavoprotein of the microsomal cytochrome P450 monooxygenase system, is anchored in the phospholipid bilayer by its amino-terminal membrane-binding domain (MBD), which is necessary for efficient electron transfer to cytochrome P450. Although crystallographic and kinetic studies have established the structure of the soluble catalytic domain and the role of conformational motions in the control of electron transfer, the role of the MBD is largely unknown. We examined the role of the MBD in P450 catalysis through studies of amino-terminal deletion mutants and site-directed spin labeling. We show that the MBD spans the membrane and present a model for the orientation of CYPOR on the membrane capable of forming a complex with cytochrome P450. EPR power saturation measurements of CYPOR mutants in liposomes containing a lipid/Ni(II) chelate identified a region of the soluble domain interacting with the membrane. The deletion of more than 29 residues from the N-terminus of CYPOR decreases cytochrome P450 activity concomitant with alterations in electrophoretic mobility and an increased resistance to protease digestion. The altered kinetic properties of these mutants are consistent with electron transfer through random collisions rather than via formation of a stable CYPOR-P450 complex. Purified MBD binds weakly to cytochrome P450, suggesting that other interactions are also required for CYPOR-P450 complex formation. We propose that the MBD and flexible tether region of CYPOR, residues 51-63, play an important role in facilitating the movement of the soluble domain relative to the membrane and in promoting multiple orientations that permit specific interactions of CYPOR with its varied partners.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Anna L Shen
- McArdle Laboratory for Cancer Research , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Panida Duangkaew
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
- Department of Biochemistry, Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Rattanawadee Kotewong
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
- Department of Biochemistry, Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Pornpimol Rongnoparut
- Department of Biochemistry, Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Jimmy Feix
- Department of Biophysics , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Jung-Ja P Kim
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| |
Collapse
|
29
|
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci 2019; 28:928-940. [PMID: 30861250 DOI: 10.1002/pro.3603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane-bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2-CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2-CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid-solubilized CYP2J2-CPR system by increasing the Km and decreasing the Vmax , and effect that is size-dependent. Crowding also affects the CYP2J2-CPR-ND system by decreasing both the Km and Vmax for Dextran-based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2-CPR membrane protein system.
Collapse
Affiliation(s)
- Hannah C Huff
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Demetri Maroutsos
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Aditi Das
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, Division of Nutritional Science, Neuroscience Program, and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
30
|
Sugishima M, Sato H, Wada K, Yamamoto K. Crystal structure of a NADPH-cytochrome P450 oxidoreductase (CYPOR) and heme oxygenase 1 fusion protein implies a conformational change in CYPOR upon NADPH/NADP + binding. FEBS Lett 2019; 593:868-875. [PMID: 30883732 DOI: 10.1002/1873-3468.13360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
Heme oxygenase-1 (HMOX1) catalyzes heme degradation utilizing reducing equivalents supplied from NADPH-cytochrome P450 reductase (CYPOR). Recently, we determined the complex structure of NADP+ -bound open-conformation stabilized CYPOR and heme-HMOX1, but the resolution was limited to 4.3 Å. Here, we determined the crystal structure of the fusion protein of open-conformation stabilized CYPOR and heme-HMOX1 at 3.25 Å resolution. Unexpectedly, no NADP+ was bound to this fusion protein in the crystal. Structural comparison of the NADP+ -bound complex and the NADP+ -free fusion protein suggests that NADP+ binding regulates the conformational change in the FAD-binding domain of CYPOR. As a result of this change, the FMN-binding domain of CYPOR approaches heme-bound HMOX1 upon NADP+ binding to enhance the electron-transfer efficiency from FMN to heme.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Hideaki Sato
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
31
|
Tavolieri AM, Murray DT, Askenasy I, Pennington JM, McGarry L, Stanley CB, Stroupe ME. NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation unique to this diflavin reductase. J Struct Biol 2019; 205:170-179. [DOI: 10.1016/j.jsb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
|
32
|
Hedison TM, Scrutton NS. Tripping the light fantastic in membrane redox biology: linking dynamic structures to function in ER electron transfer chains. FEBS J 2019; 286:2004-2017. [PMID: 30657259 PMCID: PMC6563164 DOI: 10.1111/febs.14757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/16/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
How the dynamics of proteins assist catalysis is a contemporary issue in enzymology. In particular, this holds true for membrane‐bound enzymes, where multiple structural, spectroscopic and biochemical approaches are needed to build up a comprehensive picture of how dynamics influence enzyme reaction cycles. Of note are the recent studies of cytochrome P450 reductases (CPR)–P450 (CYP) endoplasmic reticulum redox chains, showing the relationship between dynamics and electron flow through flavin and haem redox centres and the impact this has on monooxygenation chemistry. These studies have led to deeper understanding of mechanisms of electron flow, including the timing and control of electron delivery to protein‐bound cofactors needed to facilitate CYP‐catalysed reactions. Individual and multiple component systems have been used to capture biochemical behaviour and these have led to the emergence of more integrated models of catalysis. Crucially, the effects of membrane environment and composition on reaction cycle chemistry have also been probed, including effects on coenzyme binding/release, thermodynamic control of electron transfer, conformational coupling between partner proteins and vectorial versus ‘off pathway’ electron flow. Here, we review these studies and discuss evidence for the emergence of dynamic structural models of electron flow along human microsomal CPR–P450 redox chains.
Collapse
Affiliation(s)
- Tobias M Hedison
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, UK
| |
Collapse
|
33
|
Campelo D, Esteves F, Brito Palma B, Costa Gomes B, Rueff J, Lautier T, Urban P, Truan G, Kranendonk M. Probing the Role of the Hinge Segment of Cytochrome P450 Oxidoreductase in the Interaction with Cytochrome P450. Int J Mol Sci 2018; 19:ijms19123914. [PMID: 30563285 PMCID: PMC6321550 DOI: 10.3390/ijms19123914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is the unique redox partner of microsomal cytochrome P450s (CYPs). CPR exists in a conformational equilibrium between open and closed conformations throughout its electron transfer (ET) function. Previously, we have shown that electrostatic and flexibility properties of the hinge segment of CPR are critical for ET. Three mutants of human CPR were studied (S243P, I245P and R246A) and combined with representative human drug-metabolizing CYPs (isoforms 1A2, 2A6 and 3A4). To probe the effect of these hinge mutations different experimental approaches were employed: CYP bioactivation capacity of pre-carcinogens, enzyme kinetic analysis, and effect of the ionic strength and cytochrome b5 (CYB5) on CYP activity. The hinge mutations influenced the bioactivation of pre-carcinogens, which seemed CYP isoform and substrate dependent. The deviations of Michaelis-Menten kinetic parameters uncovered tend to confirm this discrepancy, which was confirmed by CYP and hinge mutant specific salt/activity profiles. CPR/CYB5 competition experiments indicated a less important role of affinity in CPR/CYP interaction. Overall, our data suggest that the highly flexible hinge of CPR is responsible for the existence of a conformational aggregate of different open CPR conformers enabling ET-interaction with structural varied redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bernardo Brito Palma
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - José Rueff
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| |
Collapse
|
34
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
35
|
Hussain R, Ahmed M, Khan TA, Akhter Y. Augmentation of cytochrome P450 monooxygenase catalysis on its interaction with NADPH-cytochrome P450 reductase FMN domain from Trichoderma brevicompactum. Int J Biochem Cell Biol 2018; 103:74-80. [DOI: 10.1016/j.biocel.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022]
|
36
|
Askenasy I, Murray DT, Andrews RM, Uversky VN, He H, Stroupe ME. Structure-Function Relationships in the Oligomeric NADPH-Dependent Assimilatory Sulfite Reductase. Biochemistry 2018; 57:3764-3772. [PMID: 29787249 DOI: 10.1021/acs.biochem.8b00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central step in the assimilation of sulfur is a six-electron reduction of sulfite to sulfide, catalyzed by the oxidoreductase NADPH-dependent assimilatory sulfite reductase (SiR). SiR is composed of two subunits. One is a multidomain flavin binding reductase (SiRFP) and the other an iron-containing oxidase (SiRHP). Both enzymes are primarily globular, as expected from their functions as redox enzymes. Consequently, we know a fair amount about their structures but not how they assemble. Curiously, both structures have conspicuous regions that are structurally undefined, leaving questions about their functions and raising the possibility that they are critical in forming the larger complex. Here, we used ultraviolet-visible and circular dichroism spectroscopy, isothermal titration calorimetry, proteolytic sensitivity tests, electrospray ionization mass spectrometry, and activity assays to explore the effect of altering specific amino acids in SiRFP on their function in the holoenzyme complex. Additionally, we used computational analysis to predict the propensity for intrinsic disorder within both subunits and found that SiRHP's N-terminus is predicted to have properties associated with intrinsic disorder. Both proteins also contained internal regions with properties indicative of intrinsic disorder. We showed that SiRHP's N-terminal disordered region is critical for complex formation. Together with our analysis of SiRFP amino acid variants, we show how molecular interactions outside the core of each SiR globular enzyme drive complex assembly of this prototypical oxidoreductase.
Collapse
Affiliation(s)
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya strasse, 7 , Pushchino , Moscow Region 142290 , Russia
| | - Huan He
- Translational Science Laboratory, College of Medicine , Florida State University , Tallahassee , Florida 32306 , United States
| | | |
Collapse
|
37
|
Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem 2018; 183:117-136. [DOI: 10.1016/j.jinorgbio.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
|
38
|
Direct observation of multiple conformational states in Cytochrome P450 oxidoreductase and their modulation by membrane environment and ionic strength. Sci Rep 2018; 8:6817. [PMID: 29717147 PMCID: PMC5931563 DOI: 10.1038/s41598-018-24922-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is the primary electron donor in eukaryotic cytochrome P450 (CYP) containing systems. A wealth of ensemble biophysical studies of Cytochrome P450 oxidoreductase (POR) has reported a binary model of the conformational equilibrium directing its catalytic efficiency and biomolecular recognition. In this study, full length POR from the crop plant Sorghum bicolor was site-specifically labeled with Cy3 (donor) and Cy5 (acceptor) fluorophores and reconstituted in nanodiscs. Our single molecule fluorescence resonance energy transfer (smFRET) burst analyses of POR allowed the direct observation and quantification of at least three dominant conformational sub-populations, their distribution and occupancies. Moreover, the state occupancies were remodeled significantly by ionic strength and the nature of reconstitution environment, i.e. phospholipid bilayers (nanodiscs) composed of different lipid head group charges vs. detergent micelles. The existence of conformational heterogeneity in POR may mediate selective activation of multiple downstream electron acceptors and association in complexes in the ER membrane.
Collapse
|
39
|
Xia C, Rwere F, Im S, Shen AL, Waskell L, Kim JJP. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer. Biochemistry 2018; 57:945-962. [PMID: 29308883 PMCID: PMC5967631 DOI: 10.1021/acs.biochem.7b01102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conformational changes in NADPH-cytochrome P450 oxidoreductase (CYPOR) associated with electron transfer from NADPH to electron acceptors via FAD and FMN have been investigated via structural studies of the four-electron-reduced NADP+-bound enzyme and kinetic and structural studies of mutants that affect the conformation of the mobile Gly631-Asn635 loop (Asp632 loop). The structure of four-electron-reduced, NADP+-bound wild type CYPOR shows the plane of the nicotinamide ring positioned perpendicular to the FAD isoalloxazine with its carboxamide group forming H-bonds with N1 of the flavin ring and the Thr535 hydroxyl group. In the reduced enzyme, the C8-C8 atoms of the two flavin rings are ∼1 Å closer than in the fully oxidized and one-electron-reduced structures, which suggests that flavin reduction facilitates interflavin electron transfer. Structural and kinetic studies of mutants Asp632Ala, Asp632Phe, Asp632Asn, and Asp632Glu demonstrate that the carboxyl group of Asp632 is important for stabilizing the Asp632 loop in a retracted position that is required for the binding of the NADPH ribityl-nicotinamide in a hydride-transfer-competent conformation. Structures of the mutants and reduced wild type CYPOR permit us to identify a possible pathway for NADP(H) binding to and release from CYPOR. Asp632 mutants unable to form stable H-bonds with the backbone amides of Arg634, Asn635, and Met636 exhibit decreased catalytic activity and severely impaired hydride transfer from NADPH to FAD, but leave interflavin electron transfer intact. Intriguingly, the Arg634Ala mutation slightly increases the cytochrome P450 2B4 activity. We propose that Asp632 loop movement, in addition to facilitating NADP(H) binding and release, participates in domain movements modulating interflavin electron transfer.
Collapse
Affiliation(s)
- Chuanwu Xia
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Freeborn Rwere
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Sangchoul Im
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Anna L. Shen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lucy Waskell
- University of Michigan Medical School, Ann Arbor, Michigan 48105,Corresponding Author: Correspondence should be addressed to Lucy Waskell, M.D., Ph.D., Department of Anesthesiology, University of Michigan, Mail Stop 151, 2215 Fuller Rd., Ann Arbor, MI 48109-0112. . OR Jung Ja Kim, Ph.D., Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226.
| | - Jung-Ja P. Kim
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226,Corresponding Author: Correspondence should be addressed to Lucy Waskell, M.D., Ph.D., Department of Anesthesiology, University of Michigan, Mail Stop 151, 2215 Fuller Rd., Ann Arbor, MI 48109-0112. . OR Jung Ja Kim, Ph.D., Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226.
| |
Collapse
|
40
|
Galiakhmetov AR, Kovrigina EA, Xia C, Kim JJP, Kovrigin EL. Application of methyl-TROSY to a large paramagnetic membrane protein without perdeuteration: 13C-MMTS-labeled NADPH-cytochrome P450 oxidoreductase. JOURNAL OF BIOMOLECULAR NMR 2018; 70:21-31. [PMID: 29168021 PMCID: PMC5820150 DOI: 10.1007/s10858-017-0152-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/11/2017] [Indexed: 05/03/2023]
Abstract
NMR spectroscopy of membrane proteins involved in electron transport is difficult due to the presence of both the lipids and paramagnetic centers. Here we report the solution NMR study of the NADPH-cytochrome P450 oxidoreductase (POR) in its reduced and oxidized states. We interrogate POR, first, in its truncated soluble form (70 kDa), which is followed by experiments with the full-length protein incorporated in a lipid nanodisc (240 kDa). To overcome paramagnetic relaxation in the reduced state of POR as well as the signal broadening due to its high molecular weight, we utilized the methyl-TROSY approach. Extrinsic 13C-methyl groups were introduced by modifying the engineered surface-exposed cysteines with methyl-methanethiosulfonate. Chemical shift dispersion of the resonances from different sites in POR was sufficient to monitor differential effects of the reduction-oxidation process and conformation changes in the POR structure related to its function. Despite the high molecular weight of the POR-nanodisc complex, the surface-localized 13C-methyl probes were sufficiently mobile to allow for signal detection at 600 MHz without perdeuteration. This work demonstrates a potential of the solution methyl-TROSY in analysis of structure, dynamics, and function of POR, which may also be applicable to similar paramagnetic and flexible membrane proteins.
Collapse
Affiliation(s)
| | | | - Chuanwu Xia
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jung-Ja P Kim
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
41
|
Barnaba C, Taylor E, Brozik JA. Dissociation Constants of Cytochrome P450 2C9/Cytochrome P450 Reductase Complexes in a Lipid Bilayer Membrane Depend on NADPH: A Single-Protein Tracking Study. J Am Chem Soc 2017; 139:17923-17934. [PMID: 29148818 DOI: 10.1021/jacs.7b08750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450-reductase (CPR) is a versatile NADPH-dependent electron donor located in the cytoplasmic side of the endoplasmic reticulum. It is an electron transferase that is able to deliver electrons to a variety of membrane-bound oxidative partners, including the drug-metabolizing enzymes of the cytochrome P450s (P450). CPR is also stoichiometrically limited compared to its oxidative counterparts, and hypotheses have arisen about possible models that can overcome the stoichiometric imbalance, including quaternary organization of P450 and diffusion-limited models. Described here are results from a single-protein tracking study of fluorescently labeled CPR and cytochrome P450 2C9 (CYP2C9) molecules in which stochastic analysis was used to determine the dissociation constants of CPR/CYP2C9 complexes in a lipid bilayer membrane for the first time. Single-protein trajectories demonstrate the transient nature of these CPR-CYP2C9 interactions, and the measured Kd values are highly dependent on the redox state of CPR. It is shown that CPRox/CYP2C9 complexes have a much higher dissociation constant than CPR2-/CYP2C9 or CPR4-/CYP2C9 complexes, and a model is presented to account for these results. An Arrhenius analysis of diffusion constants was also carried out, demonstrating that the reduced forms of CPR and CYP2C9 interact differently with the biomimetic ER and may, in addition to protein conformational changes, contribute to the observed NADPH-dependent shift in Kd. Finally, it is also shown that the CPRox/CYP2C9 affinity depends on the nature of the ligand, being higher when a substrate is bound, compared to an inhibitor.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
42
|
Campelo D, Lautier T, Urban P, Esteves F, Bozonnet S, Truan G, Kranendonk M. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength. Front Pharmacol 2017; 8:755. [PMID: 29163152 PMCID: PMC5670117 DOI: 10.3389/fphar.2017.00755] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
43
|
Orchestrated Domain Movement in Catalysis by Cytochrome P450 Reductase. Sci Rep 2017; 7:9741. [PMID: 28852004 PMCID: PMC5575293 DOI: 10.1038/s41598-017-09840-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
NADPH-cytochrome P450 reductase is a multi-domain redox enzyme which is a key component of the P450 mono-oxygenase drug-metabolizing system. We report studies of the conformational equilibrium of this enzyme using small-angle neutron scattering, under conditions where we are able to control the redox state of the enzyme precisely. Different redox states have a profound effect on domain orientation in the enzyme and we analyse the data in terms of a two-state equilibrium between compact and extended conformations. The effects of ionic strength show that the presence of a greater proportion of the extended form leads to an enhanced ability to transfer electrons to cytochrome c. Domain motion is intrinsically linked to the functionality of the enzyme, and we can define the position of the conformational equilibrium for individual steps in the catalytic cycle.
Collapse
|
44
|
Dai Y, Haque MM, Stuehr DJ. Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis. J Biol Chem 2017; 292:6753-6764. [PMID: 28232486 DOI: 10.1074/jbc.m117.777219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/16/2017] [Indexed: 01/02/2023] Open
Abstract
The signaling molecule nitric oxide (NO) is synthesized in animals by structurally related NO synthases (NOSs), which contain NADPH/FAD- and FMN-binding domains. During catalysis, NADPH-derived electrons transfer into FAD and then distribute into the FMN domain for further transfer to internal or external heme groups. Conformational freedom of the FMN domain is thought to be essential for the electron transfer (ET) reactions in NOSs. To directly examine this concept, we utilized a "Cys-lite" neuronal NOS flavoprotein domain and substituted Cys for two residues (Glu-816 and Arg-1229) forming a salt bridge between the NADPH/FAD and FMN domains in the conformationally closed structure to allow cross-domain disulfide bond formation or cross-linking by bismaleimides of various lengths. The disulfide bond cross-link caused a ≥95% loss of cytochrome c reductase activity that was reversible with DTT treatment, whereas graded cross-link lengthening gradually increased activity, thus defining the conformational constraints in the catalytic process. We used spectroscopic and stopped-flow techniques to further investigate how the changes in FMN domain conformational freedom impact the following: (i) the NADPH interaction; (ii) kinetics of electron loading (flavin reduction); (iii) stabilization of open versus closed conformational forms in two different flavin redox states; (iv) reactivity of the reduced FMN domain toward cytochrome c; (v) response to calmodulin binding; and (vi) the rates of interflavin ET and the FMN domain conformational dynamics. Together, our findings help explain how the spatial and temporal behaviors of the FMN domain impact catalysis by the NOS flavoprotein domain and how these behaviors are governed to enable electron flow through the enzyme.
Collapse
Affiliation(s)
- Yue Dai
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
45
|
Niu G, Zhao S, Wang L, Dong W, Liu L, He Y. Structure of the
Arabidopsis thaliana
NADPH
‐cytochrome P450 reductase 2 (ATR2) provides insight into its function. FEBS J 2017; 284:754-765. [DOI: 10.1111/febs.14017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Guoqi Niu
- College of Life Sciences Capital Normal University Beijing China
| | - Shun Zhao
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lei Wang
- College of Life Sciences Capital Normal University Beijing China
| | - Wei Dong
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lin Liu
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yikun He
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
46
|
Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:104-116. [DOI: 10.1016/j.bbamem.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023]
|
47
|
Zhang HF, Li ZH, Liu JY, Liu TT, Wang P, Fang Y, Zhou J, Cui MZ, Gao N, Tian X, Gao J, Wen Q, Jia LJ, Qiao HL. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver. Drug Metab Dispos 2016; 44:1193-200. [PMID: 27271371 PMCID: PMC4986620 DOI: 10.1124/dmd.116.069849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhi-Hui Li
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jia-Yu Liu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ting-Ting Liu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ping Wang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Fang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jun Zhou
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming-Zhu Cui
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin Tian
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jie Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin-Jing Jia
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hai-Ling Qiao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
48
|
Mothersole RG, Meints CE, Louder A, Wolthers KR. Role of active site loop in coenzyme binding and flavin reduction in cytochrome P450 reductase. Arch Biochem Biophys 2016; 606:111-9. [PMID: 27461959 DOI: 10.1016/j.abb.2016.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 reductase (CPR) contains a loop within the active site (comprising Asp(634), Ala(635), Arg(636) and Asn(637); human CPR numbering) that relocates upon NADPH binding. Repositioning of the loop triggers the reorientation of an FAD-shielding tryptophan (Trp(679)) to a partially stacked conformer, reducing the energy barrier for displacement of the residue by the NADPH nicotinamide ring: an essential step for hydride transfer. We used site-directed mutagenesis and kinetic analysis to investigate if the amino acid composition of the loop influences the catalytic properties of CPR. The D634A and D634N variants elicited a modest increase in coenzyme binding affinity coupled with a 36- and 10-fold reduction in cytochrome c(3+) turnover and a 17- and 3-fold decrease in the pre-steady state rate of flavin reduction. These results, in combination with a reduction in the kinetic isotope effect for hydride transfer, suggest that diminished activity is due to destabilization of the partially stacked conformer of Trp(677) and slower release of NADP(+). In contrast, R636A, R636S and an A635G/R636S double mutant led to a modest increase in cytochrome c(3+) reduction, which is linked to weaker coenzyme binding and faster interflavin electron transfer. A potential mechanism by which Arg(636) influences catalysis is discussed.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Carla E Meints
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Alex Louder
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
49
|
Rwere F, Xia C, Im S, Haque MM, Stuehr DJ, Waskell L, Kim JJP. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone. J Biol Chem 2016; 291:14639-61. [PMID: 27189945 DOI: 10.1074/jbc.m116.724625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 oxidoreductase transfers electrons from NADPH to cytochromes P450 via its FAD and FMN. To understand the biochemical and structural basis of electron transfer from FMN-hydroquinone to its partners, three deletion mutants in a conserved loop near the FMN were characterized. Comparison of oxidized and reduced wild type and mutant structures reveals that the basis for the air stability of the neutral blue semiquinone is protonation of the flavin N5 and strong H-bond formation with the Gly-141 carbonyl. The ΔGly-143 protein had moderately decreased activity with cytochrome P450 and cytochrome c It formed a flexible loop, which transiently interacts with the flavin N5, resulting in the generation of both an unstable neutral blue semiquinone and hydroquinone. The ΔGly-141 and ΔG141/E142N mutants were inactive with cytochrome P450 but fully active in reducing cytochrome c In the ΔGly-141 mutants, the backbone amide of Glu/Asn-142 forms an H-bond to the N5 of the oxidized flavin, which leads to formation of an unstable red anionic semiquinone with a more negative potential than the hydroquinone. The semiquinone of ΔG141/E142N was slightly more stable than that of ΔGly-141, consistent with its crystallographically demonstrated more rigid loop. Nonetheless, both ΔGly-141 red semiquinones were less stable than those of the corresponding loop in cytochrome P450 BM3 and the neuronal NOS mutant (ΔGly-810). Our results indicate that the catalytic activity of cytochrome P450 oxidoreductase is a function of the length, sequence, and flexibility of the 140s loop and illustrate the sophisticated variety of biochemical mechanisms employed in fine-tuning its redox properties and function.
Collapse
Affiliation(s)
- Freeborn Rwere
- From the Department of Anesthesiology, University of Michigan and Veterans Affairs Medical Center, Ann Arbor, Michigan 48105
| | - Chuanwu Xia
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Sangchoul Im
- From the Department of Anesthesiology, University of Michigan and Veterans Affairs Medical Center, Ann Arbor, Michigan 48105
| | - Mohammad M Haque
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Lucy Waskell
- From the Department of Anesthesiology, University of Michigan and Veterans Affairs Medical Center, Ann Arbor, Michigan 48105,
| | - Jung-Ja P Kim
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| |
Collapse
|
50
|
Roux Y, Ricoux R, Avenier F, Mahy JP. Bio-inspired electron-delivering system for reductive activation of dioxygen at metal centres towards artificial flavoenzymes. Nat Commun 2015; 6:8509. [PMID: 26419885 PMCID: PMC4598860 DOI: 10.1038/ncomms9509] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023] Open
Abstract
Development of artificial systems, capable of delivering electrons to metal-based catalysts for the reductive activation of dioxygen, has been proven very difficult for decades, constituting a major scientific lock for the elaboration of environmentally friendly oxidation processes. Here we demonstrate that the incorporation of a flavin mononucleotide (FMN) in a water-soluble polymer, bearing a locally hydrophobic microenvironment, allows the efficient reduction of the FMN by NADH. This supramolecular entity is then capable of catalysing a very fast single-electron reduction of manganese(III) porphyrin by splitting the electron pair issued from NADH. This is fully reminiscent of the activity of natural reductases such as the cytochrome P450 reductases with kinetic parameters, which are three orders of magnitude faster compared with other artificial systems. Finally, we show as a proof of concept that the reduced manganese porphyrin activates dioxygen and catalyses the oxidation of organic substrates in water.
Collapse
Affiliation(s)
- Yoann Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182), Univ Paris Sud, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France
| | - Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182), Univ Paris Sud, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France
| | - Frédéric Avenier
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182), Univ Paris Sud, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France
| | - Jean-Pierre Mahy
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182), Univ Paris Sud, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France
| |
Collapse
|