1
|
Zhu H, Li Q, Zhao Y, Peng H, Guo L, Zhu J, Jiang Z, Zeng Z, Xu B, Chen S. Vaccinia-related kinase 2 drives pancreatic cancer progression by protecting Plk1 from Chfr-mediated degradation. Oncogene 2021; 40:4663-4674. [PMID: 34140642 DOI: 10.1038/s41388-021-01893-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
As a key cell cycle regulator, polo-like kinase 1 (Plk1) has been recognized as a crucial factor involved in the progression of pancreatic cancer (PC). However, its regulatory mechanism is poorly understood. Here, we present evidence that Plk1 is a novel substrate of vaccinia-related kinase 2 (VRK2), a serine-threonine kinase that is highly expressed and predicts poor prognosis in PC. VRK2 phosphorylates Plk1 at threonine 210 and protects it from ubiquitin-dependent proteasomal degradation. We showed that mechanistically complement factor H-related protein (CFHR), as a major E3 ligase, promotes Plk1 degradation by ubiquitinating it at lysine 209. Phosphorylation of Plk1 at threonine 210 by VRK2 interferes with the interaction of Chfr with Plk1 and antagonizes Plk1 ubiquitination, thereby stabilizing the Plk1 protein. Taken together, our data reveal a mechanism of Plk1 overexpression in PC and provide evidence for targeting VRK2 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hengqing Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Thyroid Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulan Zhao
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People's Liberation Army Joint, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasound, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhu
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Kannan S, Aitken MJL, Herbrich SM, Golfman LS, Hall MG, Mak DH, Burks JK, Song G, Konopleva M, Mullighan CG, Chandra J, Zweidler-McKay PA. Antileukemia Effects of Notch-Mediated Inhibition of Oncogenic PLK1 in B-Cell Acute Lymphoblastic Leukemia. Mol Cancer Ther 2019; 18:1615-1627. [PMID: 31227645 PMCID: PMC6726528 DOI: 10.1158/1535-7163.mct-18-0706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/08/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023]
Abstract
In B-cell acute lymphoblastic leukemia (B-ALL), activation of Notch signaling leads to cell-cycle arrest and apoptosis. We aimed to harness knowledge acquired by understanding a mechanism of Notch-induced cell death to elucidate a therapeutically viable target in B-ALL. To this end, we identified that Notch activation suppresses Polo-like kinase 1 (PLK1) in a B-ALL-specific manner. We identified that PLK1 is expressed in all subsets of B-ALL and is highest in Philadelphia-like (Ph-like) ALL, a high-risk subtype of disease. We biochemically delineated a mechanism of Notch-induced PLK1 downregulation that elucidated stark regulation of p53 in this setting. Our findings identified a novel posttranslational cascade initiated by Notch in which CHFR was activated via PARP1-mediated PARylation, resulting in ubiquitination and degradation of PLK1. This led to hypophosphorylation of MDM2Ser260, culminating in p53 stabilization and upregulation of BAX. shRNA knockdown or pharmacologic inhibition of PLK1 using BI2536 or BI6727 (volasertib) in B-ALL cell lines and patient samples led to p53 stabilization and cell death. These effects were seen in primary human B-ALL samples in vitro and in patient-derived xenograft models in vivo These results highlight PLK1 as a viable therapeutic target in B-ALL. Efficacy of clinically relevant PLK1 inhibitors in B-ALL patient-derived xenograft mouse models suggests that use of these agents may be tailored as an additional therapeutic strategy in future clinical studies.
Collapse
Affiliation(s)
| | - Marisa J L Aitken
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Shelley M Herbrich
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Leonard S Golfman
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mandy G Hall
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan H Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guangchun Song
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles G Mullighan
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Joya Chandra
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
3
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
4
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
5
|
Castellano L, Dabrowska A, Pellegrino L, Ottaviani S, Cathcart P, Frampton AE, Krell J, Stebbing J. Sustained expression of miR-26a promotes chromosomal instability and tumorigenesis through regulation of CHFR. Nucleic Acids Res 2017; 45:4401-4412. [PMID: 28126920 PMCID: PMC5416844 DOI: 10.1093/nar/gkx022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNA 26a (miR-26a) reduces cell viability in several cancers, indicating that miR-26a could be used as a therapeutic option in patients. We demonstrate that miR-26a not only inhibits G1-S cell cycle transition and promotes apoptosis, as previously described, but also regulates multiple cell cycle checkpoints. We show that sustained miR-26a over-expression in both breast cancer (BC) cell lines and mouse embryonic fibroblasts (MEFs) induces oversized cells containing either a single-large nucleus or two nuclei, indicating defects in mitosis and cytokinesis. Additionally, we demonstrate that miR-26a induces aneuploidy and centrosome defects and enhances tumorigenesis. Mechanistically, it acts by targeting G1-S transition genes as well as genes involved in mitosis and cytokinesis such as CHFR, LARP1 and YWHAE. Importantly, we show that only the re-expression of CHFR in miR-26a over-expressing cells partially rescues normal mitosis and impairs the tumorigenesis exerted by miR-26a, indicating that CHFR represents an important miR-26a target in the regulation of such phenotypes. We propose that miR-26a delivery might not be a viable therapeutic strategy due to the potential deleterious oncogenic activity of this miRNA.
Collapse
Affiliation(s)
- Leandro Castellano
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Aleksandra Dabrowska
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Loredana Pellegrino
- Division of Cancer Therapeutic, The Institute of Cancer Research (ICR), Sutton, London SM2 5NG, UK
| | - Silvia Ottaviani
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Paul Cathcart
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
6
|
Lee HS, Park YY, Cho MY, Chae S, Yoo YS, Kwon MH, Lee CW, Cho H. The chromatin remodeller RSF1 is essential for PLK1 deposition and function at mitotic kinetochores. Nat Commun 2015; 6:7904. [PMID: 26259146 PMCID: PMC4918322 DOI: 10.1038/ncomms8904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/22/2015] [Indexed: 01/04/2023] Open
Abstract
Accumulation of PLK1 at kinetochores is essential for chromosome alignment and segregation; however, the mechanism underlying PLK1 recruitment to kinetochores remains unresolved. The chromatin remodeller RSF1 tightly associates with centromere proteins, but its mitotic function is unknown. Here we show that RSF1 localizes at mitotic kinetochores and directly binds PLK1. RSF1 depletion disrupts localization of PLK1 at kinetochores; the C-terminal fragment of RSF1, which can bind PLK1, is sufficient to restore PLK1 localization. Moreover, CDK1 phosphorylates RSF1 at Ser1375, and this phosphorylation is necessary for PLK1 recruitment. Subsequently, PLK1 phosphorylates RSF1 at Ser1359, stabilizing PLK1 deposition. Importantly, RSF1 depletion mimicks the chromosome misalignment phenotype resulting from PLK1 knockdown; these defects are rescued by RSF1 S1375D or RSF1 S1359D but not RSF1 S1375A, showing a functional link between phosphorylation of RSF1 and chromosome alignment. Together, these data show that RSF1 is an essential centromeric component that recruits PLK1 to kinetochores and plays a crucial role in faithful cell division.
Collapse
Affiliation(s)
- Ho-Soo Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| | - Yong-Yea Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Mi-Young Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| | - Sunyoung Chae
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Young-Suk Yoo
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-380, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 443-380, Korea
| |
Collapse
|
7
|
Zlatanou A, Stewart GS. Damaged replication forks tolerate USP7 to maintain genome stability. Mol Cell Oncol 2015; 3:e1063571. [PMID: 27308573 DOI: 10.1080/23723556.2015.1063571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
RAD18 functions to promote DNA damage tolerance (DTT), a process that ensures faithful genome duplication. Protein ubiquitylation/deubiquitylation is a critical regulatory mechanism controlling DTT. Recently, we have identified the deubiquitylating enzyme USP7 as a component of the DTT machinery that acts to protect RAD18 from proteasome-dependent degradation.
Collapse
Affiliation(s)
| | - Grant S Stewart
- School of Cancer Sciences, University of Birmingham , Birmingham, UK
| |
Collapse
|
8
|
Derks S, Cleven AHG, Melotte V, Smits KM, Brandes JC, Azad N, van Criekinge W, de Bruïne AP, Herman JG, van Engeland M. Emerging evidence for CHFR as a cancer biomarker: from tumor biology to precision medicine. Cancer Metastasis Rev 2015; 33:161-71. [PMID: 24375389 PMCID: PMC3988518 DOI: 10.1007/s10555-013-9462-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel insights in the biology of cancer have switched the paradigm of a “one-size-fits-all” cancer treatment to an individualized biology-driven treatment approach. In recent years, a diversity of biomarkers and targeted therapies has been discovered. Although these examples accentuate the promise of personalized cancer treatment, for most cancers and cancer subgroups no biomarkers and effective targeted therapy are available. The great majority of patients still receive unselected standard therapies with no use of their individual molecular characteristics. Better knowledge about the underlying tumor biology will lead the way toward personalized cancer treatment. In this review, we summarize the evidence for a promising cancer biomarker: checkpoint with forkhead and ring finger domains (CHFR). CHFR is a mitotic checkpoint and tumor suppressor gene, which is inactivated in a diverse group of solid malignancies, mostly by promoter CpG island methylation. CHFR inactivation has shown to be an indicator of poor prognosis and sensitivity to taxane-based chemotherapy. Here we summarize the current knowledge of altered CHFR expression in cancer, the impact on tumor biology and implications for personalized cancer treatment.
Collapse
Affiliation(s)
- Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjen H. G. Cleven
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Kim M. Smits
- Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johann C. Brandes
- Department of Hematology and Oncology, Atlanta VA Medical Center Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Nilofer Azad
- Department of Gastrointestinal Oncology, The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Wim van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
- MDxHealth, Irvine, CA USA
| | - Adriaan P. de Bruïne
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - James G. Herman
- Department of Tumor Biology, The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
9
|
The fine-tuning of TRAF2-GSTP1-1 interaction: effect of ligand binding and in situ detection of the complex. Cell Death Dis 2014; 5:e1015. [PMID: 24457959 PMCID: PMC4040697 DOI: 10.1038/cddis.2013.529] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 01/25/2023]
Abstract
We provide the first biochemical evidence of a direct interaction between the glutathione transferase P1-1 (GSTP1-1) and the TRAF domain of TNF receptor-associated factor 2 (TRAF2), and describe how ligand binding modulates such an equilibrium. The dissociation constant of the heterocomplex is Kd=0.3 μM; however the binding affinity strongly decreases when the active site of GSTP1-1 is occupied by the substrate GSH (Kd≥2.6 μM) or is inactivated by oxidation (Kd=1.7 μM). This indicates that GSTP1-1's TRAF2-binding region involves the GSH-binding site. The GSTP1-1 inhibitor NBDHEX further decreases the complex's binding affinity, as compared with when GSH is the only ligand; this suggests that the hydrophobic portion of the GSTP1-1 active site also contributes to the interaction. We therefore hypothesize that TRAF2 binding inactivates GSTP1-1; however, analysis of the data, using a model taking into account the dimeric nature of GSTP1-1, suggests that GSTP1-1 engages only one subunit in the complex, whereas the second subunit maintains the catalytic activity or binds to other proteins. We also analyzed GSTP1-1's association with TRAF2 at the cellular level. The TRAF2–GSTP1-1 complex was constitutively present in U-2OS cells, but strongly decreased in S, G2 and M phases. Thus the interaction appears regulated in a cell cycle-dependent manner. The variations in the levels of individual proteins seem too limited to explain the complex's drastic decline observed in cells progressing from the G0/G1 to the S–G2–M phases. Moreover, GSH's intracellular content was so high that it always saturated GSTP1-1. Interestingly, the addition of NBDHEX maintains the TRAF2–GSTP1-1 complex at low levels, thus causing a prolonged cell cycle arrest in the G2/M phase. Overall, these findings suggest that a reversible sequestration of TRAF2 into the complex may be crucial for cell cycle progression and that multiple factors are involved in the fine-tuning of this interaction.
Collapse
|
10
|
Sanbhnani S, Yeong FM. CHFR: a key checkpoint component implicated in a wide range of cancers. Cell Mol Life Sci 2012; 69:1669-87. [PMID: 22159584 PMCID: PMC11114665 DOI: 10.1007/s00018-011-0892-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023]
Abstract
CHFR (Checkpoint with Forkhead-associated and RING finger domains) has been implicated in a checkpoint regulating entry into mitosis. However, the details underlying its roles and regulation are unclear due to conflicting lines of evidence supporting different notions of its functions. We provide here an overview of how CHFR is thought to contribute towards regulating mitotic entry and present possible explanations for contradictory observations published on the functions and regulation of CHFR. Furthermore, we survey key data showing correlations between promoter hypermethylation or down-regulation of CHFR and cancers, with a view on the likely reasons why different extents of correlations have been reported. Lastly, we explore the possibilities of exploiting CHFR promoter hypermethylation status in diagnostics and therapeutics for cancer patients. With keen interest currently focused on the association between hypermethylation of CHFR and cancers, details of how CHFR functions require further study to reveal how its absence might possibly contribute to tumorigenesis.
Collapse
Affiliation(s)
- Sheru Sanbhnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore
| | | |
Collapse
|