1
|
Zhao T, He X, Liang X, Kellum AH, Tang F, Yin J, Guo S, Wang Y, Gao Z, Wang Y. HMGB3 and SUB1 Bind to and Facilitate the Repair of N2-Alkylguanine Lesions in DNA. J Am Chem Soc 2024; 146:22553-22562. [PMID: 39101269 PMCID: PMC11412153 DOI: 10.1021/jacs.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
N2-Alkyl-2'-deoxyguanosine (N2-alkyl-dG) is a major type of minor-groove DNA lesions arising from endogenous metabolic processes and exogenous exposure to environmental contaminants. The N2-alkyl-dG lesions, if left unrepaired, can block DNA replication and transcription and induce mutations in these processes. Nevertheless, the repair pathways for N2-alkyl-dG lesions remain incompletely elucidated. By utilizing a photo-cross-linking coupled with mass spectrometry-based quantitative proteomic analysis, we identified a series of candidate N2-alkyl-dG-binding proteins. We found that two of these proteins, i.e., high-mobility group protein B3 (HMGB3) and SUB1, could bind directly to N2-nBu-dG-containing duplex DNA in vitro and promote the repair of this lesion in cultured human cells. In addition, HMGB3 and SUB1 protected cells against benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). SUB1 exhibits preferential binding to both the cis and trans diastereomers of N2-BPDE-dG over unmodified dG. On the other hand, HMGB3 binds favorably to trans-N2-BPDE-dG; the protein, however, does not distinguish cis-N2-BPDE-dG from unmodified dG. Consistently, genetic ablation of HMGB3 conferred diminished repair of trans-N2-BPDE-dG, but not its cis counterpart, whereas loss of SUB1 conferred attenuated repair of both diastereomers. Together, we identified proteins involved in the cellular sensing and repair of minor-groove N2-alkyl-dG lesions and documented a unique role of HMGB3 in the stereospecific recognition and repair of N2-BPDE-dG.
Collapse
Affiliation(s)
- Ting Zhao
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Xiaomei He
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Xiaochen Liang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Andrew H Kellum
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Feng Tang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Yinan Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Zi Gao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
2
|
Guo S, Li L, Yu K, Tan Y, Wang Y. LC-MS/MS for Assessing the Incorporation and Repair of N2-Alkyl-2'-deoxyguanosine in Genomic DNA. Chem Res Toxicol 2022; 35:1814-1820. [PMID: 35584366 PMCID: PMC9588702 DOI: 10.1021/acs.chemrestox.2c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the occurrence, repair, and biological consequences of DNA damage is important in environmental toxicology and risk assessment. The most common way to assess DNA damage elicited by exogenous sources in a laboratory setting is to expose cells or experimental animals with chemicals that modify DNA. Owing to the lack of reaction specificities of DNA damaging agents, the approach frequently does not allow for induction of a specific DNA lesion. Herein, we employed metabolic labeling to selectively incorporate N2-methyl-dG (N2-MedG) and N2-n-butyl-dG (N2-nBudG) into genomic DNA of cultured mammalian cells, and investigated how the levels of the two lesions in cellular DNA are modulated by different DNA repair factors. Our results revealed that nucleotide excision repair (NER) exert moderate effects on the removal of N2-MedG and N2-nBudG from genomic DNA. We also observed that DNA polymerases κ and η contribute to the incorporation of N2-MedG into genomic DNA and modulate its repair in human cells. In addition, loss of ALKBH3 resulted in higher frequencies of N2-MedG and N2-nBuG incorporation into genomic DNA, suggesting a role of oxidative dealkylation in the reversal of these lesions. Together, our study provided new insights into the repair of minor-groove N2-alkyl-dG lesions in mammalian cells.
Collapse
Affiliation(s)
- Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Kailin Yu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Ying Tan
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
3
|
Liu Y, Zhu X, Wang Z, Dai X, You C. Next-Generation Sequencing-Based Analysis of the Roles of DNA Polymerases ν and θ in the Replicative Bypass of 8-Oxo-7,8-dihydroguanine in Human Cells. ACS Chem Biol 2022; 17:2315-2319. [PMID: 35815634 DOI: 10.1021/acschembio.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerase (Pol) ν and Pol θ are two specialized A-family DNA polymerases that function in the translesion synthesis of certain DNA lesions. However, the biological functions of human Pols ν and θ in cellular replicative bypass of 8-oxo-7,8-dihydroguanine (8-oxoG), an important carcinogenesis-related biomarker of oxidative DNA damage, remain unclear. Herein, we showed that depletion of Pols ν and θ in human cells could cause an elevated hypersensitivity to oxidative stress induced by hydrogen peroxide. Using next-generation sequencing-based lesion bypass and mutagenesis assay, we further demonstrated that Pols ν and θ had important roles in promoting translesion synthesis of 8-oxoG in human cells. We also found that the depletion of Pol ν, but not Pol θ, caused a substantial reduction in G → T mutation frequency for 8-oxoG. These findings provided novel insights into the involvement of A-family DNA polymerases in oxidative DNA damage response.
Collapse
Affiliation(s)
- Yini Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaowen Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ziyu Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Zheng X, Chen D, Zhao Y, Dai X, You C. Development of an Endonuclease V-Assisted Analytical Method for Sequencing Analysis of Deoxyinosine in DNA. Anal Chem 2022; 94:11627-11632. [PMID: 35942621 DOI: 10.1021/acs.analchem.2c02126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deoxyinosine (dI) is a highly mutagenic lesion that preferentially pairs with deoxycytidine during replication, which may induce A to G transition and ultimately contribute to carcinogenesis. Therefore, finding the site of dI modification in DNA is of great value for both basic research and clinical applications. Herein, we developed a novel method to sequence the dI modification site in DNA, which utilizes endonuclease V (EndoV)-dependent deamination repair to specifically label the modification site with biotin-14-dATP that allows the affinity enrichment of dI-bearing DNA for sequencing. We have achieved efficient determination of the location of the modified nucleotide in dI-bearing plasmid DNA with the assistance of EndoV-dependent deamination repair. We have also successfully applied this approach to locate the dI modification sites in the mitochondrial DNA of human cells. Our method should be generally applicable for genome-wide sequencing analysis of dI modifications in living organisms.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Di Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Yingqi Zhao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Yang Y, Wang Z, Wang J, Dai X, You C. Next-Generation Sequencing-Based Analysis of the Effects of N1- and N6-Methyldeoxyadenosine Adducts on DNA Transcription. Anal Chem 2022; 94:11248-11254. [PMID: 35924299 DOI: 10.1021/acs.analchem.2c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation can occur naturally or be induced by various environmental and chemotherapeutic agents. The regioisomeric N1- and N6-methyldeoxyadenosine (1mdA and 6mdA, respectively) represent an important class of methylated DNA adducts. In this study, we developed a shuttle vector- and next-generation sequencing-based assay to quantitatively assess the effects of 1mdA and 6mdA on the accuracy and efficiency of DNA transcription. Our results revealed that 1mdA can induce multiple types of mutant transcripts and strongly inhibit DNA transcription, whereas 6mdA is a nonmutagenic DNA adduct that can exhibit a subtle but significant inhibitory effect on DNA transcription in vitro and in human cells. Moreover, our results demonstrated that the transcription-coupled nucleotide excision repair pathway is dispensable for the removal of 1mdA and 6mdA from the template DNA strand in human cells. These findings provided new important insights into the functional interplay between DNA methylation modifications and transcription in mammalian cells.
Collapse
Affiliation(s)
- Ying Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ziyu Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Juan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
7
|
Wang J, Sheng Y, Yang Y, Dai X, You C. Next-generation sequencing-based analysis of the effect of N6-methyldeoxyadenosine modification on DNA replication in human cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Tan Y, Guo S, Wu J, Du H, Li L, You C, Wang Y. DNA Polymerase η Promotes the Transcriptional Bypass of N2-Alkyl-2'-deoxyguanosine Adducts in Human Cells. J Am Chem Soc 2021; 143:16197-16205. [PMID: 34555898 DOI: 10.1021/jacs.1c07374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To cope with unrepaired DNA lesions, cells are equipped with DNA damage tolerance mechanisms, including translesion synthesis (TLS). While TLS polymerases are well documented in facilitating replication across damaged DNA templates, it remains unknown whether TLS polymerases participate in transcriptional bypass of DNA lesions in cells. Herein, we employed the competitive transcription and adduct bypass assay to examine the efficiencies and fidelities of transcription across N2-alkyl-2'-deoxyguanosine (N2-alkyl-dG, alkyl = methyl, ethyl, n-propyl, or n-butyl) lesions in HEK293T cells. We found that N2-alkyl-dG lesions strongly blocked transcription and elicited CC → AA tandem mutations in nascent transcripts, where adenosines were misincorporated opposite the lesions and their adjacent 5' nucleoside. Additionally, genetic ablation of Pol η, but not Pol κ, Pol ι, or Pol ζ, conferred marked diminutions in the transcriptional bypass efficiencies of the N2-alkyl-dG lesions, which is exacerbated by codepletion of Rev1 in Pol η-deficient background. We also observed that the repair of N2-nBu-dG was not pronouncedly affected by genetic depletion of Pol η or Rev1. Hence, our results provided insights into transcriptional perturbations induced by N2-alkyl-dG lesions and expanded the biological functions of TLS DNA polymerases.
Collapse
Affiliation(s)
- Ying Tan
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Jun Wu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Hua Du
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States.,Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
9
|
Ghodke PP, Pradeepkumar PI. Site‐Specific
N
2
‐dG DNA Adducts: Formation, Synthesis, and TLS Polymerase‐Mediated Bypass. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha P. Ghodke
- Department of Biochemistry Vanderbilt University School of Medicine 638B Robinson Research Building 2200 Pierce Avenue 37323‐0146 Nashville Tennessee United States
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai Powai India
| | | |
Collapse
|
10
|
Du H, Wang P, Wu J, He X, Wang Y. The roles of polymerases ν and θ in replicative bypass of O6- and N2-alkyl-2'-deoxyguanosine lesions in human cells. J Biol Chem 2020; 295:4556-4562. [PMID: 32098870 PMCID: PMC7135994 DOI: 10.1074/jbc.ra120.012830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Indexed: 12/28/2022] Open
Abstract
Exogenous and endogenous chemicals can react with DNA to produce DNA lesions that may block DNA replication. Not much is known about the roles of polymerase (Pol) ν and Pol θ in translesion synthesis (TLS) in cells. Here we examined the functions of these two polymerases in bypassing major-groove O6-alkyl-2'-deoxyguanosine (O6-alkyl-dG) and minor-groove N2-alkyl-dG lesions in human cells, where the alkyl groups are ethyl, n-butyl (nBu), and, for O6-alkyl-dG, pyridyloxobutyl. We found that Pol ν and Pol θ promote TLS across major-groove O6-alkyl-dG lesions. O6-alkyl-dG lesions mainly induced G→A mutations that were modulated by the two TLS polymerases and the structures of the alkyl groups. Simultaneous ablation of Pol ν and Pol θ resulted in diminished mutation frequencies for all three O6-alkyl-dG lesions. Depletion of Pol ν alone reduced mutations only for O6-nBu-dG, and sole loss of Pol θ attenuated the mutation rates for O6-nBu-dG and O6-pyridyloxobutyl-dG. Replication across the two N2-alkyl-dG lesions was error-free, and Pol ν and Pol θ were dispensable for their replicative bypass. Together, our results provide critical knowledge about the involvement of Pol ν and Pol θ in bypassing alkylated guanine lesions in human cells.
Collapse
Affiliation(s)
- Hua Du
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Jun Wu
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Xiaomei He
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
11
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
12
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
13
|
Wu J, Du H, Li L, Price NE, Liu X, Wang Y. The Impact of Minor-Groove N2-Alkyl-2'-deoxyguanosine Lesions on DNA Replication in Human Cells. ACS Chem Biol 2019; 14:1708-1716. [PMID: 31347832 DOI: 10.1021/acschembio.9b00129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endogenous metabolites and exogenous chemicals can induce covalent modifications on DNA, producing DNA lesions. The N2 of guanine was shown to be a common alkylation site in DNA; however, not much is known about the influence of the size of the alkyl group in N2-alkyldG lesions on cellular DNA replication or how translesion synthesis (TLS) polymerases modulate DNA replication past these lesions in human cells. To answer these questions, we employ a robust shuttle vector method to investigate the impact of four N2-alkyldG lesions (i.e., with the alkyl group being a methyl, ethyl, n-propyl, or n-butyl group) on DNA replication in human cells. We find that replication through the N2-alkyldG lesions was highly efficient and accurate in HEK293T cells or isogenic CRISPR-engineered cells with deficiency in polymerase (Pol) ζ or Pol η. Genetic ablation of Pol ι, Pol κ, or Rev1, however, results in decreased bypass efficiencies and elicits substantial frequencies of G → A transition and G → T transversion mutations for these lesions. Moreover, further depletion of Pol ζ in Pol κ- or Pol ι-deficient cells gives rise to elevated rates of G → A and G → T mutations and substantially decreased bypass efficiencies. Cumulatively, we demonstrate that the error-free replication past the N2-alkyldG lesions is facilitated by a specific subset of TLS polymerases, and we find that longer alkyl chains in these lesions induce diminished bypass efficiency and fidelity in DNA replication.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Hua Du
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Nathan E. Price
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
14
|
Biological Evaluation of DNA Biomarkers in a Chemically Defined and Site-Specific Manner. TOXICS 2019; 7:toxics7020036. [PMID: 31242562 PMCID: PMC6631660 DOI: 10.3390/toxics7020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
As described elsewhere in this Special Issue on biomarkers, much progress has been made in the detection of modified DNA within organisms at endogenous and exogenous levels of exposure to chemical species, including putative carcinogens and chemotherapeutic agents. Advances in the detection of damaged or unnatural bases have been able to provide correlations to support or refute hypotheses between the level of exposure to oxidative, alkylative, and other stresses, and the resulting DNA damage (lesion formation). However, such stresses can form a plethora of modified nucleobases, and it is therefore difficult to determine the individual contribution of a particular modification to alter a cell's genetic fate, as measured in the form of toxicity by stalled replication past the damage, by subsequent mutation, and by lesion repair. Chemical incorporation of a modification at a specific site within a vector (site-specific mutagenesis) has been a useful tool to deconvolute what types of damage quantified in biologically relevant systems may lead to toxicity and/or mutagenicity, thereby allowing researchers to focus on the most relevant biomarkers that may impact human health. Here, we will review a sampling of the DNA modifications that have been studied by shuttle vector techniques.
Collapse
|
15
|
Hakura A, Sui H, Sonoda J, Matsuda T, Nohmi T. DNA polymerase kappa counteracts inflammation-induced mutagenesis in multiple organs of mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:320-330. [PMID: 30620413 DOI: 10.1002/em.22272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 05/07/2023]
Abstract
In vitro studies indicate that DNA polymerase kappa (Polκ) is able to accurately and efficiently perform DNA synthesis using templates containing various types of DNA damage, including benzo[a]pyrene (BP)-induced N2 -deoxyguanosine adducts. In this study, we examined sensitivity of inactivated Polk knock-in (Polk-/- ) mice to BP carcinogenicity in the colon by administering an oral dose of BP plus dextran sulfate sodium (DSS), an inflammation causing promoter of carcinogenesis. Although colon cancer was successfully induced by BP plus DSS, there was no significant difference in tumor incidence or multiplicity between Polk-/- and Polk+/+ mice. Malignant lymphoma was induced in thymus by the treatment only in Polk-/- mice, but it lacked statistical significance. Mutant frequencies (MFs) in the gpt reporter gene were strongly enhanced in colon; almost to the same extent in both types of mice. Micronucleus formation in bone marrow at the high dose of BP and DNA adducts in colon and lung was not significantly different between two types of mice. Surprisingly, however, Polk-/- mice exhibited significantly higher MFs in colon and lung than did Polk+/+ mice when they were treated with DSS alone. The most prominent mutation induced by DSS treatment was G:C to C:G transversion, whose specific MF in proximal colon was 30 times higher in Polk-/- than in Polk+/+ mice. DSS alone did not enhance MF at all in Polk+/+ mice. The results indicate that Polκ does not suppress BP-induced mutagenesis and carcinogenesis in the colon, but counteracts inflammation-induced mutagenesis in multiple organs. Environ. Mol. Mutagen. 60:320-330, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atsushi Hakura
- Tsukuba Drug Safety, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Hajime Sui
- Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, Japan
| | - Jiro Sonoda
- GLP, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| |
Collapse
|
16
|
Wang P, Leng J, Wang Y. DNA replication studies of N-nitroso compound-induced O6-alkyl-2'-deoxyguanosine lesions in Escherichia coli. J Biol Chem 2019; 294:3899-3908. [PMID: 30655287 PMCID: PMC6422096 DOI: 10.1074/jbc.ra118.007358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
N-Nitroso compounds (NOCs) are common DNA-alkylating agents, are abundantly present in food and tobacco, and can also be generated endogenously. Metabolic activation of some NOCs can give rise to carboxymethylation and pyridyloxobutylation/pyridylhydroxybutylation of DNA, which are known to be carcinogenic and can lead to gastrointestinal and lung cancer, respectively. Herein, using the competitive replication and adduct bypass (CRAB) assay, along with MS- and NMR-based approaches, we assessed the cytotoxic and mutagenic properties of three O6-alkyl-2'-deoxyguanosine (O6-alkyl-dG) adducts, i.e. O6-pyridyloxobutyl-dG (O6-POB-dG) and O6-pyridylhydroxybutyl-dG (O6-PHB-dG), derived from tobacco-specific nitrosamines, and O6-carboxymethyl-dG (O6-CM-dG), induced by endogenous N-nitroso compounds. We also investigated two neutral analogs of O6-CM-dG, i.e. O6-aminocarbonylmethyl-dG (O6-ACM-dG) and O6-hydroxyethyl-dG (O6-HOEt-dG). We found that, in Escherichia coli cells, these lesions mildly (O6-POB-dG), moderately (O6-PHB-dG), or strongly (O6-CM-dG, O6-ACM-dG, and O6-HOEt-dG) impede DNA replication. The strong blockage effects of the last three lesions were attributable to the presence of hydrogen-bonding donor(s) located on the alkyl functionality of these lesions. Except for O6-POB-dG, which also induced a low frequency of G → T transversions, all other lesions exclusively stimulated G → A transitions. SOS-induced DNA polymerases played redundant roles in bypassing all the O6-alkyl-dG lesions investigated. DNA polymerase IV (Pol IV) and Pol V, however, were uniquely required for inducing the G → A transition for O6-CM-dG exposure. Together, our study expands our knowledge about the recognition of important NOC-derived O6-alkyl-dG lesions by the E. coli DNA replication machinery.
Collapse
Affiliation(s)
- Pengcheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403 and
- the Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, China
| | - Jiapeng Leng
- From the Department of Chemistry, University of California, Riverside, California 92521-0403 and
| | - Yinsheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403 and
| |
Collapse
|
17
|
Masumura K, Toyoda-Hokaiwado N, Niimi N, Grúz P, Wada NA, Takeiri A, Jishage KI, Mishima M, Nohmi T. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:644-653. [PMID: 29076178 DOI: 10.1002/em.22146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/20/2017] [Accepted: 09/20/2017] [Indexed: 05/07/2023]
Abstract
DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Naomi Toyoda-Hokaiwado
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Naoko A Wada
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Akira Takeiri
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kou-Ichi Jishage
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Masayuki Mishima
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
18
|
Price NE, Li L, Gates KS, Wang Y. Replication and repair of a reduced 2΄-deoxyguanosine-abasic site interstrand cross-link in human cells. Nucleic Acids Res 2017; 45:6486-6493. [PMID: 28431012 PMCID: PMC5499640 DOI: 10.1093/nar/gkx266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/13/2017] [Indexed: 02/02/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, or abasic sites, which are a common type of endogenous DNA damage, can forge interstrand DNA–DNA cross-links via reaction with the exocyclic amino group on a nearby 2΄-deoxyguanosine or 2΄-deoxyadenosine in the opposite strand. Here, we utilized a shuttle vector method to examine the efficiency and fidelity with which a reduced dG–AP cross-link-containing plasmid was replicated in cultured human cells. Our results showed that the cross-link constituted strong impediments to DNA replication in HEK293T cells, with the bypass efficiencies for the dG- and AP-containing strands being 40% and 20%, respectively. While depletion of polymerase (Pol) η did not perturb the bypass efficiency of the lesion, the bypass efficiency was markedly reduced (to 1–10%) in the isogenic cells deficient in Pol κ, Pol ι or Pol ζ, suggesting the mutual involvement of multiple translesion synthesis polymerases in bypassing the lesion. Additionally, replication of the cross-linked AP residue in HEK293T cells was moderately error-prone, inducing a total of ∼26% single-nucleobase substitutions at the lesion site, whereas replication past the cross-linked dG component occurred at a mutation frequency of ∼8%. Together, our results provided important insights into the effects of an AP-derived interstrand cross-link on the efficiency and accuracy of DNA replication in human cells.
Collapse
Affiliation(s)
- Nathan E Price
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Lin Li
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
19
|
Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proc Natl Acad Sci U S A 2017; 114:E7082-E7091. [PMID: 28784758 DOI: 10.1073/pnas.1708748114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, interfere with the efficiency and accuracy of DNA replication and transcription. However, the molecular mechanisms of DNA alkylation-induced transcriptional stalling and mutagenesis remain unknown. In this study, we systematically investigated how RNA polymerase II (pol II) recognizes and bypasses regioisomeric O2-, N3-, and O4-ethylthymidine (O2-, N3-, and O4-EtdT) lesions. We observed distinct pol II stalling profiles for the three regioisomeric EtdT lesions. Intriguingly, pol II stalling at O2-EtdT and N3-EtdT sites is exacerbated by TFIIS-stimulated proofreading activity. Assessment for the impact of the EtdT lesions on individual fidelity checkpoints provided further mechanistic insights, where the transcriptional lesion bypass routes for the three EtdT lesions are controlled by distinct fidelity checkpoints. The error-free transcriptional lesion bypass route is strongly favored for the minor-groove O2-EtdT lesion. In contrast, a dominant error-prone route stemming from GMP misincorporation was observed for the major-groove O4-EtdT lesion. For the N3-EtdT lesion that disrupts base pairing, multiple transcriptional lesion bypass routes were found. Importantly, the results from the present in vitro transcriptional studies are well correlated with in vivo transcriptional mutagenesis analysis. Finally, we identified a minor-groove-sensing motif from pol II (termed Pro-Gate loop). The Pro-Gate loop faces toward the minor groove of RNA:DNA hybrid and is involved in modulating the translocation of minor-groove alkylated DNA template after nucleotide incorporation opposite the lesion. Taken together, this work provides important mechanistic insights into transcriptional stalling, lesion bypass, and mutagenesis of alkylated DNA lesions.
Collapse
|
20
|
Translesion Synthesis DNA Polymerase Kappa Is Indispensable for DNA Repair Synthesis in Cisplatin Exposed Dorsal Root Ganglion Neurons. Mol Neurobiol 2017; 55:2506-2515. [PMID: 28391554 DOI: 10.1007/s12035-017-0507-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In the peripheral nervous system (PNS) in the absence of tight blood barrier, neurons are at increased risk of DNA damage, yet the question of how effectively PNS neurons manage DNA damage remains largely unanswered. Genotoxins in systemic circulation include chemotherapeutic drugs that reach peripheral neurons and damage their DNA. Because neurotoxicity of platinum-based class of chemotherapeutic drugs has been implicated in PNS neuropathies, we utilized an in vitro model of Dorsal Root Ganglia (DRGs) to investigate how peripheral neurons respond to cisplatin that forms intra- and interstrand crosslinks with their DNA. Our data revealed strong transcriptional upregulation of the translesion synthesis DNA polymerase kappa (Pol κ), while expression of other DNA polymerases remained unchanged. DNA Pol κ is involved in bypass synthesis of diverse DNA lesions and considered a vital player in cellular survival under injurious conditions. To assess the impact of Pol κ deficiency on cisplatin-exposed DRG neurons, Pol κ levels were reduced using siRNA. Pol κ targeting siRNA diminished the cisplatin-induced nuclear Pol κ immunoreactivity in DRG neurons and decreased the extent of cisplatin-induced DNA repair synthesis, as reflected in reduced incorporation of thymidine analog into nuclear DNA. Moreover, Pol κ depletion exacerbated global transcriptional suppression induced by cisplatin in DRG neurons. Collectively, these findings provide the first evidence for critical role of Pol κ in DNA damage response in the nervous system and call attention to implications of polymorphisms that modify Pol κ activity, on maintenance of genomic integrity and neuronal function in exogenously challenged PNS.
Collapse
|
21
|
Frank EG, McDonald JP, Yang W, Woodgate R. Mouse DNA polymerase ι lacking the forty-two amino acids encoded by exon-2 is catalytically inactive in vitro. DNA Repair (Amst) 2017; 50:71-76. [PMID: 28077247 PMCID: PMC5303534 DOI: 10.1016/j.dnarep.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022]
Abstract
In 2003, we reported that 129-derived strains of mice carry a naturally occurring nonsense mutation at codon 27 of the Poli gene that would produce a polι peptide of just 26 amino acids, rather then the full-length 717 amino acid wild-type polymerase. In support of the genomic analysis, no polι protein was detected in testes extracts from 129X1/SvJmice, where wild-type polι is normally highly expressed. The early truncation in polι occurs before any structural domains of the polymerase are synthesized and as a consequence, we reasoned that 129-derived strains of mice should be considered as functionally defective in polι activity. However, it has recently been reported that during the maturation of the Poli mRNA in 129-derived strains, exon- 2 is sometimes skipped and that an exon-2-less polι protein of 675 amino acids is synthesized that retains catalytic activity in vitro and in vivo. From a structural perspective, we found this idea untenable, given that the amino acids encoded by exon-2 include residues critical for the coordination of the metal ions required for catalysis, as well as the structural integrity of the DNA polymerase. To determine if the exon-2-less polι isoform possesses catalytic activity in vitro, we have purified a glutathione-tagged full-length exon-2-less (675 amino acid) polι protein from baculovirus infected insect cells and compared the activity of the isoform to full-length (717 amino acid) GST-tagged wild-type mouse polι in vitro. Reaction conditions were performed under a range of magnesium or manganese concentrations, as well as different template sequence contexts. Wild-type mouse polι exhibited robust characteristic properties previously associated with human polι's biochemical properties. However, we did not detect any polymerase activity associated with the exon-2-less polι enzyme under the same reaction conditions and conclude that exon-2-less polι is indeed rendered catalytically inactive in vitro.
Collapse
Affiliation(s)
- Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
22
|
Räz MH, Dexter HR, Millington CL, van Loon B, Williams DM, Sturla SJ. Bypass of Mutagenic O(6)-Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases. Chem Res Toxicol 2016; 29:1493-503. [PMID: 27404553 DOI: 10.1021/acs.chemrestox.6b00168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The generation of chemical alkylating agents from nitrosation of glycine and bile acid conjugates in the gastrointestinal tract is hypothesized to initiate carcinogenesis. O(6)-carboxymethylguanine (O(6)-CMG) is a product of DNA alkylation derived from nitrosated glycine. Although the tendency of the structurally related adduct O(6)-methylguanine to code for the misincoporation of TTP during DNA replication is well-established, the impact of the presence of the O(6)-CMG adduct in a DNA template on the efficiency and fidelity of translesion DNA synthesis (TLS) by human DNA polymerases (Pols) has hitherto not been described. Herein, we characterize the ability of the four human TLS Pols η, ι, κ, and ζ and the replicative Pol δ to bypass O(6)-CMG in a prevalent mutational hot-spot for colon cancer. The results indicate that Pol η replicates past O(6)-CMG, incorporating dCMP or dAMP, whereas Pol κ incorporates dCMP only, and Pol ι incorporates primarily dTMP. Additionally, the subsequent extension step was carried out with high efficiency by TLS Pols η, κ, and ζ, while Pol ι was unable to extend from a terminal mismatch. These results provide a first basis of O(6)-CMG-promoted base misincorporation by Y- and B-family polymerases potentially leading to mutational signatures associated with colon cancer.
Collapse
Affiliation(s)
- Michael H Räz
- Department of Health Sciences and Technology, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Hannah R Dexter
- Center for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Christopher L Millington
- Center for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Barbara van Loon
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU) , Erling Skjalgssons gate 1, 7491 Trondheim, Norway
| | - David M Williams
- Center for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
23
|
You C, Wang Y. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts. Acc Chem Res 2016; 49:205-13. [PMID: 26758048 DOI: 10.1021/acs.accounts.5b00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription, where liquid chromatography-tandem mass spectrometry is employed for the identification, and sometimes quantification, of the progeny products arising from the replication or transcription of lesion-bearing DNA substrates in vitro and in mammalian cells. We also highlight their applications to lesion bypass, mutagenesis, and repair studies of three representative types of DNA lesions, that is, the methylglyoxal-induced N(2)-CEdG, oxidatively induced 8,5'-cyclopurine-2'-deoxynucleosides, and regioisomeric alkylated thymidine lesions. Specially, we discuss the similar and distinct effects of the minor-groove DNA lesions including N(2)-CEdG and O(2)-alkylated thymidine lesions, as well as the major-groove O(4)-alkylated thymidine lesions on DNA replication and transcription machinery. For example, we found that the addition of an alkyl group to the O(4) position of thymine may facilitate its preferential pairing with guanine and thus induce exclusively the misincorporation of guanine nucleotide opposite the lesion, whereas alkylation of thymine at the O(2) position may render the nucleobase unfavorable in pairing with any of the canonical nucleobases and thus exhibit promiscuous miscoding properties during DNA replication and transcription. The MS-based strategies described herein should be generally applicable for quantitative measurement of the biological consequences and repair of other DNA lesions in vitro and in cells.
Collapse
Affiliation(s)
- Changjun You
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
24
|
Aude-Garcia C, Dalzon B, Ravanat JL, Collin-Faure V, Diemer H, Strub JM, Cianferani S, Van Dorsselaer A, Carrière M, Rabilloud T. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. J Proteomics 2016; 134:174-185. [DOI: 10.1016/j.jprot.2015.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
|
25
|
Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44:7829-54. [PMID: 26204249 PMCID: PMC4787602 DOI: 10.1039/c5cs00316d] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2-3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography- or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed.
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA and Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
| |
Collapse
|
26
|
Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:650-62. [PMID: 26031400 DOI: 10.1002/em.21961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 05/07/2023]
Abstract
DNA polymerase κ (Pol κ) is a specialized DNA polymerase involved in translesion DNA synthesis. Although its bypass activities across lesions are well characterized in biochemistry, its cellular protective roles against genotoxic insults are still elusive. To better understand the in vivo protective roles, we have established a human cell line deficient in the expression of Pol κ (KO) and another expressing catalytically dead Pol κ (CD), to examine the cytotoxic sensitivity to 11 genotoxins including ultraviolet C light (UV). These cell lines were established in a genetic background of Nalm-6-MSH+, a human lymphoblastic cell line that has high efficiency for gene targeting, and functional p53 and mismatch repair activities. We classified the genotoxins into four groups. Group 1 includes benzo[a]pyrene diolepoxide, mitomycin C, and bleomycin, where the sensitivity was equally higher in KO and CD than in the cell line expressing wild-type Pol κ (WT). Group 2 includes hydrogen peroxide and menadione, where hypersensitivity was observed only in KO. Group 3 includes methyl methanesulfonate and ethyl methanesulfonate, where hypersensitivity was observed only in CD. Group 4 includes UV and three chemicals, where the chemicals exhibited similar cytotoxicity to all three cell lines. The results suggest that Pol κ not only protects cells from genotoxic DNA lesions via DNA polymerase activities, but also contributes to genome integrity by acting as a non-catalytic protein against oxidative damage caused by hydrogen peroxide and menadione. The non-catalytic roles of Pol κ in protection against oxidative damage by hydrogen peroxide are discussed.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
- Division of Toxicology, Department of Pharmacology Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-Ku, Tokyo, 142-0064, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, Joso-Shi, Ibaraki, 303-0043, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
27
|
McIntyre J, McLenigan MP, Frank EG, Dai X, Yang W, Wang Y, Woodgate R. Posttranslational Regulation of Human DNA Polymerase ι. J Biol Chem 2015; 290:27332-27344. [PMID: 26370087 PMCID: PMC4646365 DOI: 10.1074/jbc.m115.675769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/25/2023] Open
Abstract
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys11- and Lys48-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys11 and Lys48 rather than oxidative damage per se.
Collapse
Affiliation(s)
- Justyna McIntyre
- Laboratory of Genomic Integrity, NICHD, National Institutes of Health, Bethesda, Maryland 20892-3371,; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, NICHD, National Institutes of Health, Bethesda, Maryland 20892-3371
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, NICHD, National Institutes of Health, Bethesda, Maryland 20892-3371
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Roger Woodgate
- Laboratory of Genomic Integrity, NICHD, National Institutes of Health, Bethesda, Maryland 20892-3371,.
| |
Collapse
|
28
|
You C, Wang J, Dai X, Wang Y. Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA. Nucleic Acids Res 2015; 43:1012-8. [PMID: 25572317 PMCID: PMC4333421 DOI: 10.1093/nar/gku1391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
N-nitroso compounds represent a common type of environmental and endogenous DNA-damaging agents. After metabolic activation, many N-nitroso compounds are converted into a diazoacetate intermediate that can react with nucleobases to give carboxymethylated DNA adducts such as N3-carboxymethylthymidine (N3-CMdT) and O4-carboxymethylthymidine (O4-CMdT). In this study, we constructed non-replicative plasmids carrying a single N3-CMdT or O4-CMdT, site-specifically positioned in the transcribed strand, to investigate how these lesions compromise the flow of genetic information during transcription. Our results revealed that both N3-CMdT and O4-CMdT substantially inhibited DNA transcription mediated by T7 RNA polymerase or human RNA polymerase II in vitro and in human cells. In addition, we found that N3-CMdT and O4-CMdT were miscoding lesions and predominantly directed the misinsertion of uridine and guanosine, respectively. Our results also suggested that these carboxymethylated thymidine lesions may constitute efficient substrates for transcription-coupled nucleotide excision repair in human cells. These findings provided important new insights into the biological consequences of the carboxymethylated DNA lesions in living cells.
Collapse
Affiliation(s)
- Changjun You
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Jianshuang Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
29
|
Wit N, Buoninfante OA, van den Berk PCM, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2014; 43:282-94. [PMID: 25505145 PMCID: PMC4288191 DOI: 10.1093/nar/gku1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Collapse
Affiliation(s)
- Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Paul C M van den Berk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc A Hogenbirk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
30
|
You C, Wang P, Dai X, Wang Y. Transcriptional bypass of regioisomeric ethylated thymidine lesions by T7 RNA polymerase and human RNA polymerase II. Nucleic Acids Res 2014; 42:13706-13. [PMID: 25404131 PMCID: PMC4267633 DOI: 10.1093/nar/gku1183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alkylative damage to DNA can be induced by environmental chemicals, endogenous metabolites and some commonly prescribed chemotherapeutic agents. The regioisomeric N3-, O(2)- and O(4)-ethylthymidine (N3-, O(2)- and O(4)-EtdT, respectively) represent an important class of ethylated DNA lesions. Using nonreplicative double-stranded vectors containing an N3-EtdT, O(2)-EtdT or O(4)-EtdT at a defined site in the template strand, herein we examined the effects of these lesions on DNA transcription mediated by single-subunit T7 RNA polymerase or multisubunit human RNA polymerase II in vitro and in human cells. We found that O(4)-EtdT is highly mutagenic and exclusively induces the misincorporation of guanine opposite the lesion, whereas N3-EtdT and O(2)-EtdT display promiscuous miscoding properties during transcription. In addition, N3-EtdT and O(2)-EtdT were found to inhibit strongly DNA transcription in vitro and in certain human cells. Moreover, N3-EtdT, but not O(2)-EtdT or O(4)-EtdT, is an efficient substrate for transcription-coupled nucleotide excision repair. These findings provide new important insights into how these alkylated DNA lesions compromise the flow of genetic information, which may help to understand the risk of these lesions in living cells.
Collapse
Affiliation(s)
- Changjun You
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
31
|
Effects of Tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells. Sci Rep 2014; 4:7052. [PMID: 25394478 PMCID: PMC4231326 DOI: 10.1038/srep07052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022] Open
Abstract
5-methylcytosine (5-mC) is a well-characterized epigenetic regulator in mammals. Recent studies showed that Ten-eleven translocation (Tet) proteins can catalyze the stepwise oxidation of 5-mC to produce 5-hydroxymethylcytosine (5-HmC), 5-formylcytosine (5-FoC) and 5-carboxylcytosine (5-CaC). The exciting discovery of these novel cytosine modifications has stimulated substantial research interests about their roles in epigenetic regulation. Here we systematically examined the effects of the oxidized 5-mC derivatives on the efficiency and fidelity of DNA transcription using a recently developed competitive transcription and adduct bypass assay. Our results showed that, when located on the transcribed strand, 5-FoC and 5-CaC exhibited marginal mutagenic and modest inhibitory effects on DNA transcription mediated by single-subunit T7 RNA polymerase or multi-subunit human RNA polymerase II in vitro and in human cells. 5-HmC displayed relatively milder blocking effects on transcription, and no mutant transcript could be detectable for 5-HmC in vitro or in cells. The lack of considerable mutagenic effects of the oxidized 5-mC derivatives on transcription was in agreement with their functions in epigenetic regulation. The modest blocking effects on transcription suggested that 5-FoC and 5-CaC may function in transcriptional regulation. These findings provided new evidence for the potential functional interplay between cytosine methylation status and transcription.
Collapse
|
32
|
Kim J, Song I, Jo A, Shin JH, Cho H, Eoff RL, Guengerich FP, Choi JY. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis. Chem Res Toxicol 2014; 27:1837-52. [PMID: 25162224 PMCID: PMC4203391 DOI: 10.1021/tx5002755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
DNA
polymerase (pol) ι is the most error-prone among the
Y-family polymerases that participate in translesion synthesis (TLS).
Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G,
8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently
with low fidelity. We assessed the biochemical effects of six reported
genetic variations of human pol ι on its TLS properties, using
the recombinant pol ι (residues 1–445) proteins and DNA
templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25
variant, which is the N-terminal truncation of 25
residues resulting from an initiation codon variant (c.3G > A)
and
also is the formerly misassigned wild-type, exhibited considerably
higher polymerase activity than wild-type with Mg2+ (but
not with Mn2+), coinciding with its steady-state kinetic
data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation
opposite templates (only with Mg2+). The R96G variant,
which lacks a R96 residue known to interact with the incoming nucleotide,
lost much of its polymerase activity, consistent with the kinetic
data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation
opposite templates either with Mg2+ or Mn2+,
except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The
Δ1–25 variant bound DNA 20- to 29-fold more tightly than
wild-type (with Mg2+), but the R96G variant bound DNA 2-fold
less tightly than wild-type. The DNA-binding affinity of wild-type,
but not of the Δ1–25 variant, was ∼7-fold stronger
with 0.15 mM Mn2+ than with Mg2+. The results
indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι,
whereas the Δ1–25 variation selectively and substantially
enhances the Mg2+-dependent TLS capability of pol ι,
emphasizing the potential translational importance of these pol ι
genetic variations, e.g., individual differences in TLS, mutation,
and cancer susceptibility to genotoxic carcinogens.
Collapse
Affiliation(s)
- Jinsook Kim
- Division of Pharmacology, Department of Molecular Cell Biology, and ‡Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Facile enzymatic synthesis of base J-containing oligodeoxyribonucleotides and an analysis of the impact of base J on DNA replication in cells. PLoS One 2014; 9:e103335. [PMID: 25061973 PMCID: PMC4111573 DOI: 10.1371/journal.pone.0103335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/26/2014] [Indexed: 12/17/2022] Open
Abstract
We reported here the use of T4 bacteriophage β-glucosyltransferase (T4 β-GT) for the facile synthesis of base J-containing oligodeoxyribonucleotides (ODNs). We found that the enzyme could catalyze the glucosylation of 5-hydroxymethyl-2-deoxyuridine (5hmU) in both single- and double-stranded ODNs, though the latter reaction occurred only when 5hmU was mispaired with a guanine. In addition, base J blocked moderately DNA replication, but it did not induce mutations during replication in human cells.
Collapse
|
34
|
Ji D, You C, Wang P, Wang Y. Effects of tet-induced oxidation products of 5-methylcytosine on DNA replication in mammalian cells. Chem Res Toxicol 2014; 27:1304-9. [PMID: 24979327 PMCID: PMC4216192 DOI: 10.1021/tx500169u] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Recently 5-hydroxymethyl-2′-deoxycytidine
(5hmdC), 5-formyl-2′-deoxycytidine
(5fdC), and 5-carboxyl-2′-deoxycytidine (5cadC) were discovered
in mammalian DNA as oxidation products of 5-methyl-2′-deoxycytidine
(5mdC) induced by the ten-eleven translocation family of enzymes.
These oxidized derivatives of 5mdC may not only act as intermediates
of active cytosine demethylation in mammals but also serve as epigenetic
marks on their own. It remains unclear how 5hmdC, 5fdC, and 5cadC
affect DNA replication in mammalian cells. Here, we examined the effects
of the three modified nucleosides on the efficiency and accuracy of
DNA replication in HEK293T human kidney epithelial cells. Our results
demonstrated that a single, site-specifically incorporated 5fdC or
5cadC conferred modest drops, by approximately 30%, in replication
bypass efficiency without inducing detectable mutations in human cells,
whereas replicative bypass of 5hmdC is both accurate and efficient.
The lack of pronounced perturbation of these oxidized 5mdC derivatives
on DNA replication is consistent with their roles in epigenetic regulation
of gene expression.
Collapse
Affiliation(s)
- Debin Ji
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | | | | | | |
Collapse
|
35
|
Petrova KV, Millsap AD, Stec DF, Rizzo CJ. Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal. Chem Res Toxicol 2014; 27:1019-29. [PMID: 24801980 PMCID: PMC4060920 DOI: 10.1021/tx500068v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.
Collapse
Affiliation(s)
- Katya V Petrova
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | |
Collapse
|
36
|
Zhai Q, Wang P, Wang Y. Cytotoxic and mutagenic properties of regioisomeric O²-, N3- and O⁴-ethylthymidines in bacterial cells. Carcinogenesis 2014; 35:2002-6. [PMID: 24710626 DOI: 10.1093/carcin/bgu085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposure to environmental agents and endogenous metabolism can both give rise to DNA alkylation. Thymine is known to be alkylated at O(2), N3 and O(4) positions; however, it remains poorly explored how the regioisomeric alkylated thymidine lesions compromise the flow of genetic information by perturbing DNA replication in cells. Herein, we assessed the differential recognition of the regioisomeric O(2)-, N3- and O(4)-ethylthymidine (O(2)-, N3- and O(4)-EtdT) by the DNA replication machinery of Escherichia coli cells. We found that O(4)-EtdT did not inhibit appreciably DNA replication, whereas O(2)- and N3-EtdT were strongly blocking to DNA replication. In addition, O(4)-EtdT induced a very high frequency of T→C mutation, whereas nucleotide incorporation opposite O(2)- and N3-EtdT was promiscuous. Replication experiments with the use of polymerase-deficient cells revealed that Pol V constituted the major polymerase for the mutagenic bypass of all three EtdT lesions, though Pol IV also contributed to the T→G mutation induced by O(2)- and N3-EtdT. The distinct cytotoxic and mutagenic properties of the three regioisomeric lesions could be attributed to their unique chemical properties.
Collapse
Affiliation(s)
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
37
|
Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA, You C, Zhang Q, Chen J, Ott CA, Sun H, Luci DK, Yuan B, Simeonov A, Jadhav A, Xiao H, Wang Y, Maloney DJ, Zhuang Z. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol 2014; 10:298-304. [PMID: 24531842 DOI: 10.1038/nchembio.1455] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/11/2013] [Indexed: 12/31/2022]
Abstract
Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Qin Liang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Thomas S Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Andrew S Rosenthal
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Villamil
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Changjun You
- Department of Chemistry, University of California-Riverside, Riverside, California, USA
| | - Qiuting Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Junjun Chen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Christine A Ott
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Diane K Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Bifeng Yuan
- Department of Chemistry, University of California-Riverside, Riverside, California, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Xiao
- Laboratory of Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California-Riverside, Riverside, California, USA
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
38
|
Sassa A, Suzuki T, Kanemaru Y, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Honma M, Adachi N, Nohmi T. In vivo evidence that phenylalanine 171 acts as a molecular brake for translesion DNA synthesis across benzo[a]pyrene DNA adducts by human DNA polymerase κ. DNA Repair (Amst) 2014; 15:21-8. [PMID: 24461735 DOI: 10.1016/j.dnarep.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Humans possess multiple specialized DNA polymerases that continue DNA replication beyond a variety of DNA lesions. DNA polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. In the previous work, we changed the amino acids close to the adducts in the active site and examined the bypass efficiency. The substitution of alanine for phenylalanine 171 (F171A) enhanced by 18-fold in vitro, the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG. In the present study, we established human cell lines that express wild-type Pol κ (POLK+/-), F171A (POLK F171A/-) or lack expression of Pol κ (POLK-/-) to examine the in vivo significance. These cell lines were generated with Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, which has high efficiency for gene targeting. Mutations were analyzed with shuttle vectors having (-)- or (+)-trans-anti-BPDE-N(2)-dG in the supF gene. The frequencies of mutations were in the order of POLK-/->POLK+/->POLK F171A/- both in (-)- and (+)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 may function as a molecular brake for bypass across BPDE-N(2)-dG by Pol κ and raise the possibility that the cognate substrates for Pol κ are not BP adducts in DNA but may be lesions in DNA induced by endogenous mutagens.
Collapse
Affiliation(s)
- Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hirofumi Fujimoto
- Division of Radiological Protection and Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Atsushi Katafuchi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ramesh C Gupta
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Francis Johnson
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Toshihiro Ohta
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
39
|
Andersen N, Wang P, Wang Y. Replication across regioisomeric ethylated thymidine lesions by purified DNA polymerases. Chem Res Toxicol 2013; 26:1730-8. [PMID: 24134187 DOI: 10.1021/tx4002995] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Causal links exist between smoking cigarettes and cancer development. Some genotoxic agents in cigarette smoke are capable of alkylating nucleobases in DNA, and higher levels of ethylated DNA lesions were observed in smokers than in nonsmokers. In this study, we examined comprehensively how the regioisomeric O(2)-, N3-, and O(4)-ethylthymidine (O(2)-, N3-, and O(4)-EtdT, respectively) perturb DNA replication mediated by purified human DNA polymerases (hPols) η, κ, and ι, yeast DNA polymerase ζ (yPol ζ), and the exonuclease-free Klenow fragment (Kf(-)) of Escherichia coli DNA polymerase I. Our results showed that hPol η and Kf(-) could bypass all three lesions and generate full-length replication products, whereas hPol ι stalled after inserting a single nucleotide opposite the lesions. Bypass conducted by hPol κ and yPol ζ differed markedly among the three lesions. Consistent with its known ability to efficiently bypass the minor groove N(2)-substituted 2'-deoxyguanosine lesions, hPol κ was able to bypass O(2)-EtdT, though it experienced great difficulty in bypassing N3-EtdT and O(4)-EtdT. yPol ζ was only modestly blocked by O(4)-EtdT, but the polymerase was strongly hindered by O(2)-EtdT and N3-EtdT. LC-MS/MS analysis of the replication products revealed that DNA synthesis opposite O(4)-EtdT was highly error-prone, with dGMP being preferentially inserted, while the presence of O(2)-EtdT and N3-EtdT in template DNA directed substantial frequencies of misincorporation of dGMP and, for hPol ι and Kf(-), dTMP. Thus, our results suggested that O(2)-EtdT and N3-EtdT may also contribute to the AT → TA and AT → GC mutations observed in cells and tissues of animals exposed to ethylating agents.
Collapse
Affiliation(s)
- Nisana Andersen
- Department of Chemistry and ‡Environmental Toxicology Graduate Program, University of California , Riverside, California 92521-0403, United States
| | | | | |
Collapse
|
40
|
You C, Swanson AL, Dai X, Yuan B, Wang J, Wang Y. Translesion synthesis of 8,5'-cyclopurine-2'-deoxynucleosides by DNA polymerases η, ι, and ζ. J Biol Chem 2013; 288:28548-56. [PMID: 23965998 DOI: 10.1074/jbc.m113.480459] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species can give rise to a battery of DNA damage products including the 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) tandem lesions. The 8,5'-cyclopurine-2'-deoxynucleosides are quite stable lesions and are valid and reliable markers of oxidative DNA damage. However, it remains unclear how these lesions compromise DNA replication in mammalian cells. Previous in vitro biochemical assays have suggested a role for human polymerase (Pol) η in the insertion step of translesion synthesis (TLS) across the (5'S) diastereomers of cdA and cdG. Using in vitro steady-state kinetic assay, herein we showed that human Pol ι and a two-subunit yeast Pol ζ complex (REV3/REV7) could function efficiently in the insertion and extension steps, respectively, of TLS across S-cdA and S-cdG; human Pol κ and Pol η could also extend past these lesions, albeit much less efficiently. Results from a quantitative TLS assay showed that, in human cells, S-cdA and S-cdG inhibited strongly DNA replication and induced substantial frequencies of mutations at the lesion sites. Additionally, Pol η, Pol ι, and Pol ζ, but not Pol κ, had important roles in promoting replication through S-cdA and S-cdG in human cells. Based on these results, we propose a model for TLS across S-cdA and S-cdG in human cells, where Pol η and/or Pol ι carries out nucleotide insertion opposite the lesion, whereas Pol ζ executes the extension step.
Collapse
|
41
|
Iguchi M, Osanai M, Hayashi Y, Koentgen F, Lee GH. The error-prone DNA polymerase ι provides quantitative resistance to lung tumorigenesis and mutagenesis in mice. Oncogene 2013; 33:3612-7. [DOI: 10.1038/onc.2013.331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/19/2013] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
|
42
|
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
43
|
A quantitative assay for assessing the effects of DNA lesions on transcription. Nat Chem Biol 2013; 8:817-22. [PMID: 22902614 PMCID: PMC3509257 DOI: 10.1038/nchembio.1046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/22/2012] [Indexed: 12/12/2022]
Abstract
Most mammalian cells in nature are quiescent but actively transcribing mRNA for normal physiological processes; thus, it is important to investigate how endogenous and exogenous DNA damage compromises transcription in cells. Here we describe a new competitive transcription and adduct bypass (CTAB) assay to determine the effects of DNA lesions on the fidelity and efficiency of transcription. Using this strategy, we demonstrate that the oxidatively induced lesions 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) and the methylglyoxal-induced lesion N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) strongly inhibited transcription in vitro and in mammalian cells. In addition, cdA and cdG, but not N(2)-CEdG, induced transcriptional mutagenesis in vitro and in vivo. Furthermore, when located on the template DNA strand, all examined lesions were primarily repaired by transcription-coupled nucleotide excision repair in mammalian cells. This newly developed CTAB assay should be generally applicable for quantitatively assessing how other DNA lesions affect DNA transcription in vitro and in cells.
Collapse
|
44
|
Makarova AV, Kulbachinskiy AV. Structure of human DNA polymerase iota and the mechanism of DNA synthesis. BIOCHEMISTRY (MOSCOW) 2012; 77:547-61. [PMID: 22817454 DOI: 10.1134/s0006297912060016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.
Collapse
Affiliation(s)
- A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Kurchatova 2, 123182 Moscow, Russia.
| | | |
Collapse
|
45
|
Andersen N, Wang J, Wang P, Jiang Y, Wang Y. In-vitro replication studies on O(2)-methylthymidine and O(4)-methylthymidine. Chem Res Toxicol 2012; 25:2523-31. [PMID: 23113558 PMCID: PMC3502631 DOI: 10.1021/tx300325q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
O(2)- and O(4)-methylthymidine (O(2)-MdT and O(4)-MdT) can be induced in tissues of laboratory animals exposed with N-methyl-N-nitrosourea, a known carcinogen. These two O-methylated DNA adducts have been shown to be poorly repaired and may contribute to the mutations arising from exposure to DNA methylating agents. Here, in vitro replication studies with duplex DNA substrates containing site-specifically incorporated O(2)-MdT and O(4)-MdT showed that both lesions blocked DNA synthesis mediated by three different DNA polymerases, including the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I (Kf(-)), human DNA polymerase κ (pol κ), and Saccharomyces cerevisiae DNA polymerase η (pol η). Results from steady-state kinetic measurements and LC-MS/MS analysis of primer extension products revealed that Kf(-) and pol η preferentially incorporated the correct nucleotide (dAMP) opposite O(2)-MdT, while O(4)-MdT primarily directed dGMP misincorporation. While steady-state kinetic experiments showed that pol κ-mediated nucleotide insertion opposite O(2)-MdT and O(4)-MdT is highly promiscuous, LC-MS/MS analysis of primer extension products demonstrated that pol κ favorably incorporated the incorrect dGMP opposite both lesions. Our results underscored the limitation of the steady-state kinetic assay in determining how DNA lesions compromise DNA replication in vitro. In addition, the results from our study revealed that, if left unrepaired, O-methylated thymidine lesions may constitute important sources of nucleobase substitutions emanating from exposure to alkylating agents.
Collapse
Affiliation(s)
- Nisana Andersen
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Jianshuang Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| | - Yong Jiang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403
| |
Collapse
|
46
|
You C, Dai X, Yuan B, Wang Y. Effects of 6-thioguanine and S6-methylthioguanine on transcription in vitro and in human cells. J Biol Chem 2012; 287:40915-23. [PMID: 23076150 DOI: 10.1074/jbc.m112.418681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thiopurine drugs are extensively used as chemotherapeutic agents in clinical practice, even though there is concern about the risk of therapy-related cancers. It has been previously suggested that the cytotoxicity of thiopurine drugs involves their metabolic activation, the resultant generation of 6-thioguanine ((S)G) and S(6)-methylthioguanine (S(6)mG) in DNA, and the futile mismatch repair triggered by replication-induced (S)G:T and S(6)mG:T mispairs. Disruption of transcription is known to be one of the major consequences of DNA damage induced by many antiviral and antitumor agents; however, it remains undefined how (S)G and S(6)mG compromise the efficiency and fidelity of transcription. Using our recently developed competitive transcription and adduct bypass assay, herein we examined the impact of (S)G and S(6)mG on transcription in vitro and in human cells. Our results revealed that, when situated on the transcribed strand, S(6)mG exhibited both inhibitory and mutagenic effects during transcription mediated by single-subunit T7 RNA polymerase or multisubunit human RNA polymerase II in vitro and in human cells. Moreover, we found that the impact of S(6)mG on transcriptional efficiency and fidelity is modulated by the transcription-coupled nucleotide excision repair capacity. In contrast, (S)G did not considerably compromise the efficiency or fidelity of transcription, and it was a poor substrate for NER. We propose that S(6)mG might contribute, at least in part, to thiopurine-mediated cytotoxicity through inhibition of transcription and to potential therapy-related carcinogenesis via transcriptional mutagenesis.
Collapse
Affiliation(s)
- Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
47
|
Nay SL, Lee DH, Bates SE, O'Connor TR. Alkbh2 protects against lethality and mutation in primary mouse embryonic fibroblasts. DNA Repair (Amst) 2012; 11:502-10. [PMID: 22429847 DOI: 10.1016/j.dnarep.2012.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/14/2012] [Accepted: 02/23/2012] [Indexed: 12/11/2022]
Abstract
Alkylating agents modify DNA and RNA forming adducts that disrupt replication and transcription, trigger cell cycle checkpoints and/or initiate apoptosis. If left unrepaired, some of the damage can be cytotoxic and/or mutagenic. In Escherichia coli, the alkylation repair protein B (AlkB) provides one form of resistance to alkylating agents by eliminating mainly 1-methyladenine and 3-methylcytosine, thereby increasing survival and preventing mutation. To examine the biological role of the mammalian AlkB homologs Alkbh2 and Alkbh3, which both have similar enzymatic activities to that of AlkB, we evaluated the survival and mutagenesis of primary Big Blue mouse embryonic fibroblasts (MEFs) that had targeted deletions in the Alkbh2 or Alkbh3 genes. Both Alkbh2- and Alkbh3-deficient MEFs were ∼2-fold more sensitive to methyl methanesulfonate (MMS) induced cytotoxicity compared to the wild type control cells. Spontaneous mutant frequencies were similar for the wild type, Alkbh2-/- and Alkbh3-/- MEFs (average--1.3×10(-5)). However, despite the similar survival of the two mutant MEFs after MMS treatment, only the Alkbh2-deficient MEFs showed a statistically significant increase in mutant frequency compared to wild type MEFs after MMS treatment. Therefore, although both Alkbh2 and Alkbh3 can protect against MMS-induced cell death, only Alkbh2 shows statistically significant protection of MEF DNA against mutations following treatment with this exogenous methylating agent.
Collapse
Affiliation(s)
- Stephanie L Nay
- Biology Division, Beckman Research Institute, Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, United States
| | | | | | | |
Collapse
|
48
|
Swanson AL, Wang J, Wang Y. In vitro replication studies of carboxymethylated DNA lesions with Saccharomyces cerevisiae polymerase η. Biochemistry 2011; 50:7666-73. [PMID: 21809836 DOI: 10.1021/bi2007417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Humans are exposed to N-nitroso compounds (NOCs) both endogenously and exogenously from a number of environmental sources, and NOCs are both mutagenic and carcinogenic. After metabolic activation, some NOCs can induce carboxymethylation of nucleobases through a diazoacetate intermediate, which could give rise to p53 mutations similar to those seen in human gastrointestinal cancers. It was previously found that the growth of polymerase η-deficient human cells was inhibited by treatment with azaserine, a DNA carboxymethylation agent, suggesting the importance of this polymerase in bypassing the azaserine-induced carboxymethylated DNA lesions. In this study, we examined how carboxymethylated DNA lesions, which included N(6)-carboxymethyl-2'-deoxyadenosine (N(6)-CMdA), N(4)-carboxymethyl-2'-deoxycytidine (N(4)-CMdC), N3-carboxymethylthymidine (N3-CMdT), and O(4)-carboxymethylthymidine (O(4)-CMdT), perturbed the efficiency and fidelity of DNA replication mediated by Saccharomyces cerevisiae polymerase η (pol η). Our results from steady-state kinetic assay showed that pol η could readily bypass and extend past N(6)-CMdA and incorporated the correct nucleotides opposite the lesion and its neighboring 5'-nucleoside with high efficiency. By contrast, the polymerase could bypass N(4)-CMdC inefficiently, with substantial misincorporation of dCMP followed by dAMP, though pol η could extend past the lesion with high fidelity and efficiency when dGMP was incorporated opposite the lesion. On the other hand, yeast pol η experienced great difficulty in bypassing O(4)-CMdT and N3-CMdT, and the polymerase inserted preferentially the incorrect dGMP opposite these two DNA lesions; the extension step, nevertheless, occurred with high fidelity and efficiency when the correct dAMP was opposite the lesion, as opposed to the preferentially incorporated incorrect dGMP. These results suggest that these lesions may contribute significantly to diazoacetate-induced mutations and those in the p53 gene observed in human gastrointestinal tumors.
Collapse
Affiliation(s)
- Ashley L Swanson
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | | | | |
Collapse
|