1
|
Truong JK, Li J, Li Q, Pachura K, Rao A, Gumber S, Fuchs CD, Feranchak AP, Karpen SJ, Trauner M, Dawson PA. Active enterohepatic cycling is not required for the choleretic actions of 24-norUrsodeoxycholic acid in mice. JCI Insight 2023; 8:e149360. [PMID: 36787187 PMCID: PMC10070106 DOI: 10.1172/jci.insight.149360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The pronounced choleretic properties of 24-norUrsodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and the role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), organic solute transporter-α (OSTα), and organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA stimulation of bile flow and biliary bicarbonate secretion. Chloride channels in biliary epithelial cells provide the driving force for biliary secretion. In mouse large cholangiocytes, norUDCA potently stimulated chloride currents that were blocked by siRNA silencing and pharmacological inhibition of calcium-activated chloride channel transmembrane member 16A (TMEM16A) but unaffected by ASBT inhibition. In agreement, blocking intestinal bile acid reabsorption by coadministration of an ASBT inhibitor or bile acid sequestrant did not impact norUDCA stimulation of bile flow in WT mice. The results indicate that these major bile acid transporters are not directly involved in the absorption, cholehepatic shunting, or choleretic actions of norUDCA. Additionally, the findings support further investigation of the therapeutic synergy between norUDCA and ASBT inhibitors or bile acid sequestrants for cholestatic liver disease.
Collapse
Affiliation(s)
- Jennifer K. Truong
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jianing Li
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Qin Li
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kimberly Pachura
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anuradha Rao
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine, Yerkes National Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claudia Daniela Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew P. Feranchak
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Saul J. Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Paul A. Dawson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kui XY, Gao Y, Liu XS, Zeng J, Yang JW, Zhou LM, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Comprehensive Analysis of SLC17A9 and Its Prognostic Value in Hepatocellular Carcinoma. Front Oncol 2022; 12:809847. [PMID: 35957868 PMCID: PMC9357942 DOI: 10.3389/fonc.2022.809847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Solute carrier family 17 member 9 (SLC17A9) encodes a member of a family of transmembrane proteins that are involved in the transport of small molecules. SLC17A9 is involved in the occurrence and development of various cancers, but its biological role in liver hepatocellular carcinoma (LIHC) is unclear. Methods The expression level of SLC17A9 was assessed using The Cancer Genome Atlas (TCGA) database and immunohistochemistry of tumor tissues and adjacent normal liver tissues. The receiver operating characteristic (ROC) and R software package performed diagnosis and prognosis. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment and co-expression of SLC17A9, gene–gene interaction (GGI), and protein–protein interaction (PPI) networks were performed using R, GeneMANIA, and STRING. Western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence, colony formation, wound scratch assay, ATP production assays, and high connotation were applied to determine the effect of SLC17A9 knockdown on HEPG2 (hepatocellular liver carcinoma) cells. TIMER, GEPIA, and TCGA analyzed the relationship between SLC17A9 expression and immune cells, m6A modification, and ferroptosis. Results SLC17A9 expression in LIHC tissues was higher than in normal liver tissues (p < 0.001), and SLC17A9 was related to sex, DSS (disease-specific survival), and PFI (progression-free interval) (p = 0.015, 0.006, and 0.023). SLC17A9 expression has diagnostic (AUC: 0.812; CI: 0.770–0.854) and prognostic potential (p = 0.015) in LIHC. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) functional enrichment analysis showed that SLC17A9 was closely related to neuronal cell body, presynapse, axonogenesis, PI3K/Akt signaling pathway. GGI showed that SLC17A9 was closely related to MYO5A. PPI showed that SLC17A9 was closely related to SLC18A3. SLC17A9 silencing inhibited HepG2 cells proliferation, migration, colony formation, and reduced their ATP level. SLC17A9 expression level was related to immune cells: B cells (r = 0.094, P = 8.06E-02), CD4+ T cells (r = 0.184, P = 5.95E-04), and macrophages (r = 0.137, P = 1.15E-02); m6A modification: HNRNPC (r = 0.220, p < 0.001), METTL3 (r = 0.180, p < 0.001), and WTAP (r = 0.130, p = 0.009); and ferroptosis: HSPA5 (r = 0.240, p < 0.001), SLC7A11 (r = 0.180, p < 0.001), and FANCD2 (r = 0.280, p < 0.001). Conclusion Our data show that SLC17A9 may influence LIHC progression. SLC17A9 expression correlates with tumor immune infiltration, m6A modification, and ferroptosis in LIHC and may have diagnostic and prognostic value in LIHC.
Collapse
Affiliation(s)
- Xue-Yan Kui
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jian-Wei Yang
- Department of Nuclear Medicine, Xiangyang Cenral Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
- *Correspondence: Zhi-Jun Pei,
| |
Collapse
|
3
|
Lysosomal ATP Transporter SLC17A9 Controls Cell Viability via Regulating Cathepsin D. Cells 2022; 11:cells11050887. [PMID: 35269509 PMCID: PMC8909234 DOI: 10.3390/cells11050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
SLC17A9 (solute carrier family 17 member 9) functions as an ATP transporter in lysosomes as well as other secretory vesicles. SLC17A9 inhibition or silence leads to cell death. However, the molecular mechanisms causing cell death are unclear. In this study, we report that cell death induced by SLC17A9 deficiency is rescued by the transcription factor EB (TFEB), a master gene for lysosomal protein expression, suggesting that SLC17A9 deficiency may be the main cause of lysosome dysfunction, subsequently leading to cell death. Interestingly, Cathepsin D, a lysosomal aspartic protease, is inhibited by SLC17A9 deficiency. Heterologous expression of Cathepsin D successfully rescues lysosomal dysfunction and cell death induced by SLC17A9 deficiency. On the other hand, the activity of Cathepsin B, a lysosomal cysteine protease, is not altered by SLC17A9 deficiency, and Cathepsin B overexpression does not rescue lysosomal dysfunction and cell death induced by SLC17A9 deficiency. Our data suggest that lysosomal ATP and SLC17A9 play critical roles in lysosomal function and cell viability by regulating Cathepsin D activity.
Collapse
|
4
|
Kurisu R, Saigusa T, Aono Y, Hayashi Y, Hitomi S, Shimada M, Iwata K, Shinoda M. Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injury-induced mechanical allodynia. Oral Dis 2022; 29:1770-1781. [PMID: 35029007 DOI: 10.1111/odi.14129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The detailed pathological mechanism of orofacial neuropathic pain remains unknown. We aimed to examine the pannexin 1 (Panx1) signaling in the trigeminal ganglion (TG) involvement in infraorbital nerve injury (IONI)-induced orofacial neuropathic pain. MATERIALS AND METHODS Mechanical head-withdrawal threshold (MHWT) was measured in IONI-treated rats receiving intra-TG Panx1 inhibitor or metabotropic glutamate receptor 5 (mGluR5) antagonist administration and MHWTs in naive rats receiving intra-TG mGluR5 agonist administration post-IONI. Glutamate and Panx1 in the TG were measured post-IONI. Panx1, mGluR5, and glutamine synthetase expression in TG were immunohistochemically identified, and changes in the number of mGluR5-P2X3 -expressed TG neurons were examined. RESULTS MHWT was significantly decreased post-IONI, and this decrease was reversed by Panx1 inhibition or mGluR5 antagonism. mGluR5 agonism induced a decrease in the MHWT. IONI increased extracellular glutamate in TG. Panx1 was expressed in satellite glial cells and TG neurons, and intra-TG mGluR5 antagonism decreased the number of mGluR5 and P2X3 positive TG neurons post-IONI. CONCLUSIONS IONI facilitates glutamate release via Panx1 that activates mGluR5 which was expressed in the nociceptive TG neurons innervating the orofacial region. In turn, P2X3 receptor-expressed TG neurons is enhanced via mGluR5 signaling, resulting in orofacial neuropathic pain.
Collapse
Affiliation(s)
- Ryoko Kurisu
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiko Shimada
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
5
|
Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance. Life (Basel) 2021; 11:life11050430. [PMID: 34064654 PMCID: PMC8151306 DOI: 10.3390/life11050430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.
Collapse
|
6
|
Tatsushima K, Hasuzawa N, Wang L, Hiasa M, Sakamoto S, Ashida K, Sudo N, Moriyama Y, Nomura M. Vesicular ATP release from hepatocytes plays a role in the progression of nonalcoholic steatohepatitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166013. [PMID: 33212187 DOI: 10.1016/j.bbadis.2020.166013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming a growing public health problem along with the increase of metabolic syndrome worldwide. Extracellular nucleotides are known to serve as a danger signal by initiating purinergic signaling in many inflammatory disorders, although the role of purinergic signaling in the progression of NASH remains to be clarified. Vesicular nucleotide transporter (VNUT) is a key molecule responsible for vesicular ATP release to initiate purinergic signaling. Here, we studied the role of VNUT in the progression of nonalcoholic steatohepatitis. VNUT was expressed in mouse hepatocytes and associated, at least in part, with apolipoprotein B (apoB)-containing vesicles. High glucose stimulation evoked release of appreciable amount of ATP from hepatocytes, which disappeared in hepatocytes of Vnut knockout (Vnut-/-) mice. Glucose treatment also stimulated triglyceride secretion from hepatocytes, which was inhibited by PPADS and MRS211, antagonists of P2Y receptors, and clodronate, a VNUT inhibitor, and was significantly reduced in Vnut-/- mice. In vivo, postprandial secretion of triglyceride from hepatocytes was observed, while the serum triglyceride level was significantly reduced in Vnut-/- mice. On a high-fat diet, the liver of wild type mice exhibited severe inflammation, fibrosis, and macrophage infiltration, which is similar to NASH in humans, while this NASH pathology was not observed in Vnut-/- mice. These results suggest that VNUT-mediated vesicular ATP release regulates triglyceride secretion and involves in chronic inflammation in hepatocytes. Since blockade of vesicular ATP release protects against progression of steatohepatitis, VNUT may be a pharmacological target for NASH.
Collapse
Affiliation(s)
- Keita Tatsushima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Endocrine Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Lixiang Wang
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| |
Collapse
|
7
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
8
|
Diabetic bladder dysfunction in T2D KK-Ay mice and its changes in the level of relevant gene expression. Biomed Pharmacother 2020; 131:110706. [PMID: 33152907 DOI: 10.1016/j.biopha.2020.110706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Diabetic bladder dysfunction (DBD) is one of the most common and bothersome complications of diabetes mellitus (DM). The purpose of the present study is to investigate DBD in KK-Ay mice, and to identify the expression of relative genes. METHOD Totally twenty-seven KK-Ay mice and thirty C57BL/6 J mice, respectively, were randomly divided into 12-, 18-, and 25-week old groups. The weight, water intake, voided volume, the frequency of micturition, fasting blood glucose (FBG), oral glucose tolerance test (OGTT) were measured at varying time points. Maximum bladder volume (MBC), residual volume (RV), bladder compliance (BC), micturition efficiency (VE) and maximum micturition pressure (MVP) were assessed by urodynamic test, and contractile responses to α, β-methylene ATP, KCl, electrical-field stimulation, carbachol were performed by detrusor smooth muscle strips contractility test. The bladders were stained with hematoxylin and eosin (H&E) and Masson's trichrome to determine bladder wall thickness. Additionally, the mRNA expression of Myosin Va, SLC17A9, P2X1, M3 and M2 were then verified by qRT-PCR. RESULT The weight, water intake, voided volumes, micturition frequency, FBG, the blood glucose AUC0-2h of KK-Ay mice were significantly increased at three time points. MBC, RV and BC were significantly increased; VE was significantly lower at the age of 18 and 25 weeks in KK-Ay mice; MVP was significantly increased at the age of 25 weeks in KK-Ay mice. In DSM strips contractility test, the amplitude of the spontaneous activity in KK-Ay mice significant increased at 12 weeks and 18 weeks, while both the amplitude and frequency were significantly decreased at the age of 25 weeks. The level of Myosin Va, SLC17A9 and M3 receptor significantly decreased in KK-Ay mice at 12 weeks, while Myosin Va markedly increased at 18 weeks; P2X1 and M2 receptors of KK-Ay mice was significantly increased at all three time points. CONCLUSION Taken together, this study demonstrates that KK-Ay mice can be a proper model to investigate DBD whose transformation from compensatory state to decompensated state may ascribe to the time-dependent alternations of Myosin Va, SLC17A9, P2X1, M3 and M2 expression levels.
Collapse
|
9
|
Inoue A, Nakao-Kuroishi K, Kometani-Gunjigake K, Mizuhara M, Shirakawa T, Ito-Sago M, Yasuda K, Nakatomi M, Matsubara T, Tada-Shigeyama Y, Morikawa K, Kokabu S, Kawamoto T. VNUT/SLC17A9, a vesicular nucleotide transporter, regulates osteoblast differentiation. FEBS Open Bio 2020; 10:1612-1623. [PMID: 32592329 PMCID: PMC7396442 DOI: 10.1002/2211-5463.12918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoblasts release adenosine triphosphate (ATP) out of the cell following mechanical stress. Although it is well established that extracellular ATP affects bone metabolism via P2 receptors [such as purinergic receptor P2X7 (P2X7R) and purinergic receptor P2Y2 (P2Y2R)], the mechanism of ATP release from osteoblasts remains unknown. Recently, a vesicular nucleotide transporter [VNUT, solute carrier family 17 member 9 (SLC17A9)] that preserves ATP in vesicles has been identified. The purpose of this study was to elucidate the role of VNUT in osteoblast bone metabolism. mRNA and protein expression of VNUT were confirmed in mouse bone and in osteoblasts by quantitative real-time PCR (qPCR) and immunohistochemistry. Next, when compressive force was applied to MC3T3-E1 cells by centrifugation, the expression of Slc17a9, P2x7r, and P2y2r was increased concomitant with an increase in extracellular ATP levels. Furthermore, compressive force decreased the osteoblast differentiation capacity of MC3T3-E1 cells. shRNA knockdown of Slc17a9 in MC3T3-E1 cells reduced levels of extracellular ATP and also led to increased osteoblast differentiation after the application of compressive force as assessed by qPCR analysis of osteoblast markers such as Runx2, Osterix, and alkaline phosphatase (ALP) as well as ALP activity. Consistent with these observations, knockdown of P2x7r or P2y2r by siRNA partially rescued the downregulation of osteoblast differentiation markers, caused by mechanical loading. In conclusion, our results demonstrate that VNUT is expressed in osteoblasts and that VNUT inhibits osteoblast differentiation in response to compressive force by mechanisms related to ATP release and P2X7R and/or P2Y2R activity.
Collapse
Affiliation(s)
- Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kayoko Nakao-Kuroishi
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kaori Kometani-Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Misa Ito-Sago
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kazuma Yasuda
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu-shi, Japan
| |
Collapse
|
10
|
Fluorescent Labeling and Quantification of Vesicular ATP Release Using Live Cell Imaging. Methods Mol Biol 2020; 2041:209-221. [PMID: 31646491 DOI: 10.1007/978-1-4939-9717-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adenosine triphosphate (ATP) is actively transported into vesicles for purinergic neurotransmission by the vesicular nucleotide transporter, VNUT, encoded by the gene, solute carrier 17, member 9 (SLC17A9). In this chapter, methods are described for fluorescent labeling of VNUT positive cells and quantification of vesicular ATP release using live cell imaging. Directions for preparation of viable dissociated neurons and cellular labeling with an antibody against VNUT and for ATP containing synaptic vesicles with fluorescent ATP markers, quinacrine or MANT-ATP, are detailed. Using confocal microscope live cell imaging, cells positive for VNUT can be observed colocalized with fluorescent ATP vesicular markers, which occur as discrete puncta near the cell membrane. Vesicular release, stimulated with a depolarizing, high potassium physiological saline solution induces ATP marker fluorescence reduction at the cell membrane and this can be quantified over time to assess ATP release. Pretreatment with the voltage gated calcium channel blocker, cadmium, blocks depolarization-induced membrane fluorescence changes, suggesting that VNUT-positive neurons release ATP via calcium-dependent exocytosis. This technique may be applied for quantifying vesicular ATP release across the peripheral and central nervous system and is useful for unveiling the intricacies of purinergic neurotransmission.
Collapse
|
11
|
Li Q, Kresge C, Boggs K, Scott J, Feranchak A. Mechanosensor transient receptor potential vanilloid member 4 (TRPV4) regulates mouse cholangiocyte secretion and bile formation. Am J Physiol Gastrointest Liver Physiol 2020; 318:G277-G287. [PMID: 31760763 PMCID: PMC7052575 DOI: 10.1152/ajpgi.00176.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanosensitive signaling has emerged as a mechanism for the regulation of cholangiocyte transport and bile formation. The mechanical effect of fluid-flow, or shear, at the apical membrane of cholangiocytes regulates secretion through a process involving increases in [Ca2+]i and activation of Ca2+-activated Cl- channels. However, the initiating steps translating shear force to increases in intracellular calcium concentration ([Ca2+]i) are unknown. Transient receptor potential vanilloid member 4 (TRPV4), a nonselective cation channel present in the apical membrane of cholangiocytes, has been proposed as a potential mechanosensor. The aim of the present studies was to determine the potential role of TRPV4 in initiating mechanosensitive signaling in response to fluid-flow in cholangiocytes. TRPV4 expression was confirmed in both small and large mouse cholangiocytes. Exposure of cells to either fluid flow or specific TRPV4 pharmacological agonists rapidly increased both [Ca2+]i and membrane cation currents. Both flow- and agonist-stimulated currents displayed identical biophysical properties and were inhibited in the presence of TRPV4 antagonists or in cells after transfection with TRPV4 small interfering RNA. Transfection of mouse cholangiocytes with a TRPV4-enhanced green fluorescent protein construct increased the expression of TRPV4 and the magnitude of flow-stimulated currents. A specific TRPV4 agonist significantly increased the biliary concentration of ATP and bile flow in live mice when administered intravenously and increased ATP release from cholangiocyte monolayers when applied exogenously. The findings are consistent with a model in which activation of cholangiocyte TRPV4 translates shear force into an acute rise in membrane cation permeability, [Ca2+]i, ATP release, and bile flow. Understanding the role of mechanosensitive transport pathways may provide novel insights to modulate bile flow for the treatment of cholestatic liver disorders.NEW & NOTEWORTHY These studies functionally characterize TRPV4 as a mechanosensitive channel in mouse cholangiocytes. By mediating a rapid rise in intracellular Ca2+, necessary for Ca2+-dependent secretion, TRPV4 represents a mechanosensor responsible for translating fluid flow into intracellular signaling and biliary secretion. Furthermore, intravenous infusion of a specific TRPV4 agonist increases bile flow in live mice. Understanding the role of TRPV4 in mechanosensitive transport pathways may provide novel insights to modulate bile flow during cholestasis.
Collapse
Affiliation(s)
- Qin Li
- 1Department of Physiology, Jianghan University School of Medicine, Wuhan, China,3Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Charles Kresge
- 2Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kristy Boggs
- 3Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Julie Scott
- 3Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew Feranchak
- 3Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Yin Y, Hong J, Phạm TL, Shin J, Gwon DH, Kwon HH, Shin N, Shin HJ, Lee SY, Lee WH, Kim DW. Evans Blue Reduces Neuropathic Pain Behavior by Inhibiting Spinal ATP Release. Int J Mol Sci 2019; 20:ijms20184443. [PMID: 31505901 PMCID: PMC6770806 DOI: 10.3390/ijms20184443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Upon peripheral nerve injury, vesicular ATP is released from damaged primary afferent neurons. This extracellular ATP subsequently activates purinergic receptors of the spinal cord, which play a critical role in neuropathic pain. As an inhibitor of the vesicular nucleotide transporter (VNUT), Evans blue (EB) inhibits the vesicular storage and release of ATP in neurons. Thus, we tested whether EB could attenuate neuropathic pain behavior induced by spinal nerve ligation (SNL) in rats by targeting VNUT. An intrathecal injection of EB efficiently attenuated mechanical allodynia for five days in a dose-dependent manner and enhanced locomotive activity in an SNL rat model. Immunohistochemical analysis showed that EB was found in VNUT immunoreactivity on neurons in the dorsal root ganglion and the spinal dorsal horn. The level of ATP in cerebrospinal fluid in rats with SNL-induced neuropathic pain decreased upon administration of EB. Interestingly, EB blocked ATP release from neurons, but not glial cells in vitro. Eventually, the loss of ATP decreased microglial activity in the ipsilateral dorsal horn of the spinal cord, followed by a reduction in reactive oxygen species and proinflammatory mediators, such as interleukin (IL)-1β and IL-6. Finally, a similar analgesic effect of EB was demonstrated in rats with monoiodoacetate-induced osteoarthritis (OA) pain. Taken together, these data demonstrate that EB prevents ATP release in the spinal dorsal horn and reduces the ATP/purinergic receptor-induced activation of spinal microglia followed by a decline in algogenic substances, thereby relieving neuropathic pain in rats with SNL.
Collapse
Affiliation(s)
- Yuhua Yin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Jinpyo Hong
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Do Hyeong Gwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Sun Yeul Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Won-Hyung Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
13
|
Mikolajewicz N, Mohammed A, Morris M, Komarova SV. Mechanically stimulated ATP release from mammalian cells: systematic review and meta-analysis. J Cell Sci 2018; 131:jcs.223354. [PMID: 30333142 DOI: 10.1242/jcs.223354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Body tissues are exposed to a complex mechanical environment, which is perceived by cells and converted to biochemical signals such as ATP release. We performed a meta-analysis of 278 systematically identified studies that investigated mechanically stimulated ATP release (MSAR) to quantify the amounts, kinetics and mechanisms of ATP release under normal and pathological conditions. Mechanically stimulated mammalian cells were shown to release 38.6 [95% confidence interval (CI): 18.2-81.8] amol ATP/cell on average with a characteristic time constant of 32 s (95% CI: 16-66). Analysis of ATP release mechanisms revealed the existence of conserved and tissue-specific release routes. We assessed ATP release in pathophysiological states, and found that ATP release was elevated in inflammation and injury, and attenuated in hereditary (such as cystic fibrosis) and metabolic (such as type II diabetes) conditions. Our study links cell-specific ATP release mechanisms to pathophysiological changes in ATP release and allows ATP release-targeting interventions to be mapped to site-specific effects. This work demonstrates that quantitative synthesis of basic research can generate non-trivial hypotheses and inform evidence-driven translational studies.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada, H3A 1G1.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada, H4A 0A9
| | - Ali Mohammed
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada, H4A 0A9
| | - Martin Morris
- Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montreal, Canada, H3A 0C1
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada, H3A 1G1 .,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada, H4A 0A9
| |
Collapse
|
14
|
Li Q, Dutta A, Kresge C, Bugde A, Feranchak AP. Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl - channels. Hepatology 2018; 68:187-199. [PMID: 29360145 PMCID: PMC6055743 DOI: 10.1002/hep.29804] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/28/2022]
Abstract
UNLABELLED Bile acids stimulate a bicarbonate-rich choleresis, in part, through effects on cholangiocytes. Because Cl- channels in the apical membrane of cholangiocytes provide the driving force for secretion and transmembrane member 16A (TMEM16A) has been identified as the Ca2+ -activated Cl- channel in the apical membrane of cholangiocytes, the aim of the present study was to determine whether TMEM16A is the target of bile-acid-stimulated Cl- secretion and to identify the regulatory pathway involved. In these studies of mouse, rat, and human biliary epithelium exposure to ursodeoxycholic acid (UDCA) or tauroursodeoxycholic acid (TUDCA) rapidly increased the rate of exocytosis, ATP release, [Ca2+ ]i , membrane Cl- permeability, and transepithelial secretion. Bile-acid-stimulated Cl- currents demonstrated biophysical properties consistent with TMEM16A and were inhibited by pharmacological or molecular (small-interfering RNA; siRNA) inhibition of TMEM16A. Bile acid-stimulated Cl- currents were not observed in the presence of apyrase, suramin, or 2-aminoethoxydiphenyl borate (2-APB), demonstrating that current activation requires extracellular ATP, P2Y, and inositol 1,4,5-trisphosphate (IP3) receptors. TUDCA did not activate Cl- currents during pharmacologic inhibition of the apical Na+ -dependent bile acid transporter (ASBT), but direct intracellular delivery of TUDCA rapidly activated Cl- currents. CONCLUSION Bile acids stimulate Cl- secretion in mouse and human biliary cells through activation of membrane TMEM16A channels in a process regulated by extracellular ATP and [Ca2+ ]i . These studies suggest that TMEM16A channels may be targets to increase bile flow during cholestasis. (Hepatology 2018;68:187-199).
Collapse
Affiliation(s)
- Qin Li
- Department of PhysiologyJianghan University School of MedicineWuhanChina,Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTX
| | - Amal Dutta
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTX
| | - Charles Kresge
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTX
| | - Abhijit Bugde
- Departments of Cell BiologyUniversity of Texas Southwestern Medical CenterDallasTX
| | - Andrew P. Feranchak
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTX
| |
Collapse
|
15
|
Feranchak AP. Cystic fibrosis transmembrane conductance regulator: Actin(g) as a master regulator of cholangiocyte function. Hepatology 2018; 67:833-836. [PMID: 29023826 DOI: 10.1002/hep.29583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Andrew P Feranchak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal 2017; 13:387-404. [PMID: 28616712 DOI: 10.1007/s11302-017-9568-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022] Open
Abstract
Vesicular storage of ATP is one of the processes initiating purinergic chemical transmission. Although an active transport mechanism was postulated to be involved in the processes, a transporter(s) responsible for the vesicular storage of ATP remained unidentified for some time. In 2008, SLC17A9, the last identified member of the solute carrier 17 type I inorganic phosphate transporter family, was found to encode the vesicular nucleotide transporter (VNUT) that is responsible for the vesicular storage of ATP. VNUT transports various nucleotides in a membrane potential-dependent fashion and is expressed in the various ATP-secreting cells. Mice with knockout of the VNUT gene lose vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the initiation of purinergic chemical transmission. Thus, VNUT plays an essential role in the vesicular storage and release of ATP. The VNUT knockout mice exhibit resistance for neuropathic pain and a therapeutic effect against diabetes by way of increased insulin sensitivity. Thus, VNUT inhibitors and suppression of VNUT gene expression may be used for therapeutic purposes through suppression of purinergic chemical transmission. This review summarizes the studies to date on VNUT and discusses what we have learned about the relevance of vesicular ATP release as a potential drug target.
Collapse
|
17
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
18
|
Guzman-Aranguez A, Pérez de Lara MJ, Pintor J. Hyperosmotic stress induces ATP release and changes in P2X7 receptor levels in human corneal and conjunctival epithelial cells. Purinergic Signal 2017; 13:249-258. [PMID: 28176024 DOI: 10.1007/s11302-017-9556-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Tear hyperosmolarity is a key event in dry eye. In this work, we analyzed whether hyperosmolar challenge induces ATP release on the ocular surface. Moreover, as extracellular ATP can activate P2X7 receptor, the changes in P2X7 protein levels and its involvement in pathological process triggered by hypertonic treatment were also examined. High-performance liquid chromatography analysis revealed that ATP levels significantly increased in human corneal and conjunctival epithelial cells exposed to hyperosmotic challenge as well as in dry eye patients as compared to control subjects. A significant reduction in cell viability was detected after hyperosmolar treatment, indicating that the rise in ATP release was mainly due to cell lysis/death. Additionally, vesicular nucleotide transporter was identified in both cell lines and their protein expression was upregulated in hypertonic media. P2X7 receptor truncated form together with the full-length form was identified in both cell lines, and experiments using specific antagonist and agonist for P2X7 indicated that this receptor did not mediate cell death induced by hyperosmolar stress. In conclusion, hyperosmotic stress induces ATP release. Extracellular ATP can activate P2X7 receptor leading to cytotoxicity in many cells/tissues; however, this does not occur in human corneal and conjunctival epithelial cells. In these cells, the presence of P2X7 receptor truncated form together with the full-length form hinders a P2X7 apoptotic behavior on the ocular surface.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalón 118, 28037, Madrid, Spain.
| | - María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalón 118, 28037, Madrid, Spain
| |
Collapse
|
19
|
Duvoor C, Dendi VS, Marco A, Shekhawat NS, Chada A, Ravilla R, Musham CK, Mirza W, Chaudhury A. Commentary: ATP: The crucial component of secretory vesicles: Accelerated ATP/insulin exocytosis and prediabetes. Front Physiol 2017; 8:53. [PMID: 28210227 PMCID: PMC5288386 DOI: 10.3389/fphys.2017.00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/19/2017] [Indexed: 02/03/2023] Open
Affiliation(s)
- Chitharanjan Duvoor
- Department of Endocrinology and Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, AR, USA; GIM FoundationLittle Rock, AR, USA
| | - Vijaya S Dendi
- GIM FoundationLittle Rock, AR, USA; Department of Internal Medicine and Hospital Medicine, Christus Trinity Mother Frances HospitalTyler, TX, USA
| | - Asween Marco
- GIM FoundationLittle Rock, AR, USA; Department of Policy, University of Arkansas for Little RockLittle Rock, AR, USA
| | - Nawal S Shekhawat
- GIM FoundationLittle Rock, AR, USA; Tutwiler ClinicTutwiler, MS, USA
| | - Aditya Chada
- GIM FoundationLittle Rock, AR, USA; Department of Pulmonary and Critical Care Medicine, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Rahul Ravilla
- GIM FoundationLittle Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Chaitanya K Musham
- GIM FoundationLittle Rock, AR, USA; St. Vincent Infirmary (Catholic Health Initiative)Little Rock, AR, USA
| | | | | |
Collapse
|
20
|
Ho T, Aplin FP, Jobling AI, Phipps JA, de Iongh RU, Greferath U, Vessey KA, Fletcher EL. Localization and Possible Function of P2X Receptors in Normal and Diseased Retinae. J Ocul Pharmacol Ther 2016; 32:509-517. [DOI: 10.1089/jop.2015.0158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tracy Ho
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Felix P. Aplin
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Andrew I. Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Joanna A. Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Robb U. de Iongh
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Dutta AK, Khimji AK, Liu S, Karamysheva Z, Fujita A, Kresge C, Rockey DC, Feranchak AP. PKCα regulates TMEM16A-mediated Cl⁻ secretion in human biliary cells. Am J Physiol Gastrointest Liver Physiol 2016; 310:G34-42. [PMID: 26542395 PMCID: PMC4698437 DOI: 10.1152/ajpgi.00146.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/31/2015] [Indexed: 02/07/2023]
Abstract
TMEM16A is a newly identified Ca(2+)-activated Cl(-) channel in biliary epithelial cells (BECs) that is important in biliary secretion. While extracellular ATP stimulates TMEM16A via binding P2 receptors and increasing intracellular Ca(2+) concentration ([Ca(2+)]i), the regulatory pathways have not been elucidated. Protein kinase C (PKC) contributes to ATP-mediated secretion in BECs, although its potential role in TMEM16A regulation is unknown. To determine whether PKCα regulates the TMEM16A-dependent membrane Cl(-) transport in BECs, studies were performed in human biliary Mz-cha-1 cells. Addition of extracellular ATP induced a rapid translocation of PKCα from the cytosol to the plasma membrane and activation of whole cell Ca(2+)-activated Cl(-) currents. Currents demonstrated outward rectification and reversal at 0 mV (properties consistent with TMEM16A) and were inhibited by either molecular (siRNA) or pharmacologic (PMA or Gö6976) inhibition of PKCα. Intracellular dialysis with recombinant PKCα activated Cl(-) currents with biophysical properties identical to TMEM16A in control cells but not in cells after transfection with TMEM16A siRNA. In conclusion, our studies demonstrate that PKCα is coupled to ATP-stimulated TMEM16A activation in BECs. Targeting this ATP-Ca(2+)-PKCα signaling pathway may represent a therapeutic strategy to increase biliary secretion and promote bile formation.
Collapse
Affiliation(s)
- Amal K. Dutta
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | | | - Songling Liu
- 4Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zemfira Karamysheva
- 3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Akiko Fujita
- 2Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Charles Kresge
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Don C. Rockey
- 4Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew P. Feranchak
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
22
|
Omote H, Miyaji T, Hiasa M, Juge N, Moriyama Y. Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu Rev Pharmacol Toxicol 2015; 56:385-402. [PMID: 26514205 DOI: 10.1146/annurev-pharmtox-010814-124816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; ,
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; ,
| | - Narinobu Juge
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; , .,Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Ho T, Jobling AI, Greferath U, Chuang T, Ramesh A, Fletcher EL, Vessey KA. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Front Cell Neurosci 2015; 9:389. [PMID: 26500494 PMCID: PMC4593860 DOI: 10.3389/fncel.2015.00389] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022] Open
Abstract
Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons.
Collapse
Affiliation(s)
- Tracy Ho
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Andrew I Jobling
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Ursula Greferath
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Trinette Chuang
- Polyclonal Antibody Development, R&D Antibody Development, EMD Millipore Temecula, CA, USA
| | - Archana Ramesh
- Polyclonal Antibody Development, R&D Antibody Development, EMD Millipore Temecula, CA, USA
| | - Erica L Fletcher
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Kirstan A Vessey
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
24
|
ATP release, generation and hydrolysis in exocrine pancreatic duct cells. Purinergic Signal 2015; 11:533-50. [PMID: 26431833 DOI: 10.1007/s11302-015-9472-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide-inactivating and nucleotide-phosphorylating ecto-enzymes. We suggest that extracellular ATP homeostasis in pancreatic ducts may be important in pancreas physiology and potentially in pancreas pathophysiology.
Collapse
|
25
|
Ma L, Xu Y, Su J, Yu H, Kang J, Li H, Li X, Xie Q, Yu C, Sun L, Li Y. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function. Int J Oncol 2015; 47:1890-900. [PMID: 26397057 DOI: 10.3892/ijo.2015.3176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/18/2015] [Indexed: 11/05/2022] Open
Abstract
Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Xu
- Medical Research Lab, Jilin Medical University, Changchun, Jilin 132013, P.R. China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huimei Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinsong Kang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoning Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qi Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunyan Yu
- Department of Pathology, Basic Medical College, BeiHua University, Changchun, Jilin 132013, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
26
|
Guerra MT, Nathanson MH. Calcium signaling and secretion in cholangiocytes. Pancreatology 2015; 15:S44-8. [PMID: 26100660 PMCID: PMC4603373 DOI: 10.1016/j.pan.2015.05.477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Alcoholic hepatitis affects up to one-third of individuals who abuse alcohol and can be associated with high mortality. Although this disorder is characterized by hepatocellular damage, steatosis and neutrophil infiltration, recent evidence suggests that cholestasis or impaired bile secretion may be a frequent occurrence as well. Bile secretion results from the concerted activity of hepatocytes and cholangiocytes, the epithelial cells that line the bile ducts. Hepatocytes secrete bile acids and conjugated products into the bile canaliculi, which then are modified by cholangiocytes through secretion of bicarbonate and water to give rise to the final secreted bile. Here the molecular mechanisms regulating bile secretion in cholangiocytes are reviewed. Moreover, we discuss how the expression of intracellular Ca(2+) channels might be regulated in cholangiocytes, plus evidence that components of the Ca(2+) signaling machinery are altered in a range of cholestatic diseases of the bile ducts.
Collapse
Affiliation(s)
- Mateus T. Guerra
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine
| | - Michael H. Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine,Correspondence to: Michael H. Nathanson, 300 Cedar Street, TAC S241D, New Haven, CT. USA. 06520-8019, Phone: +1 203 785 7312, Fax: +1 203 785 7273,
| |
Collapse
|
27
|
Godoy V, Banales JM, Medina JF, Pastor-Anglada M. Functional crosstalk between the adenosine transporter CNT3 and purinergic receptors in the biliary epithelia. J Hepatol 2014; 61:1337-43. [PMID: 25034758 DOI: 10.1016/j.jhep.2014.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Both hepatocytes and cholangiocytes release ATP into the bile, where it acts as a potent autocrine/paracrine stimulus that activates biliary secretory mechanisms. ATP is known to be metabolized into multiple breakdown products, ultimately yielding adenosine. However, the elements implicated in the adenosine-dependent purinergic regulation of cholangiocytes are not known. METHODS Normal rat cholangiocytes (NRCs) were used to study the expression of adenosine receptors and transporters and their functional interactions at the apical and basolateral membrane domains of polarized cholangiocytes. RESULTS We found that: (1) cholangiocytes exclusively express two concentrative nucleoside transporters (CNT) known to be efficient adenosine carriers: CNT3, located at the apical membrane, and CNT2, located at apical and basolateral membrane domains; (2) in both domains, NRCs also express the high affinity adenosine receptor A2A, which modulated the activity of apical CNT3 in a domain-specific manner; (3) the regulation exerted by A2A on CNT3 was dependent upon the cAMP/PKA/ERK/CREB axis, intracellular trafficking mechanisms and AMPK phosphorylation; (4) secretin increased the activity of the apically-located CNT3, and promoted additional basolateral CNT3-related activity; and (5) extracellular ATP (a precursor of adenosine) was able to exert an inhibitory effect on the apical activity of both CNT3 and CNT2. CONCLUSIONS This study uncovered the functional expression of nucleoside transporters in cholangiocytes and provides evidence for direct crosstalks between adenosine transporters and receptors for adenosine and its natural extracellular precursor, ATP. Our data anticipate the possibility of adenosine playing a major role in the physiopathology of the biliary epithelia.
Collapse
Affiliation(s)
- Valeria Godoy
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Jesús M Banales
- Department of Liver Diseases, Biodonostia Research Institute (Donostia University Hospital), IKERBASQUE (Basque Foundation for Science), University of Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Juan F Medina
- Molecular Genetics, Division of Gene Therapy and Hepatology, School of Medicine and CIMA of the University of Navarra, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain.
| |
Collapse
|
28
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
29
|
Cui H, Li L, Wang W, Shen J, Yue Z, Zheng X, Zuo X, Liang B, Gao M, Fan X, Yin X, Shen C, Yang C, Zhang C, Zhang X, Sheng Y, Gao J, Zhu Z, Lin D, Zhang A, Wang Z, Liu S, Sun L, Yang S, Cui Y, Zhang X. Exome sequencing identifies SLC17A9 pathogenic gene in two Chinese pedigrees with disseminated superficial actinic porokeratosis. J Med Genet 2014; 51:699-704. [PMID: 25180256 DOI: 10.1136/jmedgenet-2014-102486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disseminated superficial actinic porokeratosis (DSAP) is a rare autosomal dominant genodermatosis characterised by annular lesions that has an atrophic centre and a prominent peripheral ridge distributed on sun exposed area. It exhibits high heterogeneity, and five linkage loci have been reported. The mevalonate kinase (MVK) gene located on 12q24 has been confirmed as one of the disease-causing genes. But, the pathogenesis of a large part of DSAP remains unclear so far. METHODS The recruited with DSAP carried no MVK coding mutations. Exome sequencing was performed in two affected and one unaffected individual in Family 1. Cosegregation of the candidate variants was tested in other family members. Sanger sequencing in 33 individuals with familial DSAP and 19 sporadic DSAP individuals was performed for validating the causative gene. RESULTS An average of 1.35×10(5) variants were generated from exome data and 133 novel NS/SS/indels were identified as being shared by two affected individuals but absent in the unaffected individual. After functional prediction, 25 possible deleterious variants were identified. In Family 1, a missense variant c.932G>A (p.Arg311Gln) in exon 10 of SLC17A9 was observed in cosegregation with the phenotype; this amino acid substitution was located in a highly conserved major facilitator superfamily (MFS) domain in multiple mammalian. One additional missense variant c.25C>T (p.Arg9Cys) in exon 2 of SLC17A9 was found in Family 2. CONCLUSIONS The result identified SLC17A9 as another pathogenic gene for DSAP, which suggests a correlation between the aberrant vesicular nucleotide transporter and the pathogenesis of DSAP.
Collapse
Affiliation(s)
- Hongzhou Cui
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China Department of Dermatology at No.2 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Longnian Li
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Wenjun Wang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Jie Shen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Zhen Yue
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xianbo Zuo
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Min Gao
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xing Fan
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xianyong Yin
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Changbing Shen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Chao Yang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Change Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xiaoguang Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Jinping Gao
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Zhengwei Zhu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Da Lin
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Anping Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Zaixing Wang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Shengxiu Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Yong Cui
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China Department of Dermatology at No.2 Hospital, Anhui Medical University, Hefei, Anhui, China Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui, China State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology & Key Laboratory of Dermatology, Ministry of Education & Key Laboratory of Dermatology, Hefei, Anhui, China
| |
Collapse
|
30
|
Cao Q, Zhao K, Zhong XZ, Zou Y, Yu H, Huang P, Xu TL, Dong XP. SLC17A9 protein functions as a lysosomal ATP transporter and regulates cell viability. J Biol Chem 2014; 289:23189-23199. [PMID: 24962569 DOI: 10.1074/jbc.m114.567107] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomes contain abundant ATP, which is released through lysosomal exocytosis following exposure to various stimuli. However, the molecular mechanisms underlying lysosomal ATP accumulation remain unknown. The vesicular nucleotide transporter, also known as solute carrier family 17 member 9 (SLC17A9), has been shown to function in ATP transport across secretory vesicles/granules membrane in adrenal chromaffin cells, T cells, and pancreatic cells. Here, using mammalian cell lines, we report that SLC17A9 is highly enriched in lysosomes and functions as an ATP transporter in those organelles. SLC17A9 deficiency reduced lysosome ATP accumulation and compromised lysosome function, resulting in cell death. Our data suggest that SLC17A9 activity mediates lysosomal ATP accumulation and plays an important role in lysosomal physiology and cell viability.
Collapse
Affiliation(s)
- Qi Cao
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and
| | - Kexin Zhao
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and
| | - Xi Zoë Zhong
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and
| | - Yuanjie Zou
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and
| | - Haichuan Yu
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and
| | - Peng Huang
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and
| | - Tian-Le Xu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada and.
| |
Collapse
|
31
|
Hiasa M, Togawa N, Miyaji T, Omote H, Yamamoto A, Moriyama Y. Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets. Physiol Rep 2014; 2:2/6/e12034. [PMID: 24907298 PMCID: PMC4208647 DOI: 10.14814/phy2.12034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nucleotides are stored in the dense granules of platelets. The release of nucleotides triggers one of the first steps in a series of cascades responsible for blood coagulation. However, the mechanism of how the nucleotides are accumulated in the granules is still far less understood. The transporter protein responsible for storage of nucleotides in the neuroendocrine cells has been identified and characterized. We hypothesized that the vesicular nucleotide transporter (VNUT) is also involved in the vesicular storage of nucleotides in platelets. In this article, we present three lines of evidence that VNUT is responsible for the vesicular storage of nucleotides in platelets and that vesicular ATP transport is crucial for platelet function, detection and characterization of VNUT activity in platelets isolated from healthy humans and MEG‐01 cells, RNA interference experiments on MEG‐01 cells, and studies on nucleotide transport and release with a selective inhibitor. VNUT is highly expressed and associated with dense granules in platelets. VNUT plays an essential role in vesicular storage of nucleotide in platelets.
Collapse
Affiliation(s)
- Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Natsuko Togawa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akitsugu Yamamoto
- Department of Cell Biology, Nagahama Institute of Technology, Nagahama, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan Advanced Science Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Lazarenko R, Geisler J, Bayliss D, Larner J, Li C. D-chiro-inositol glycan stimulates insulin secretion in pancreatic β cells. Mol Cell Endocrinol 2014; 387:1-7. [PMID: 24530497 PMCID: PMC4366192 DOI: 10.1016/j.mce.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 12/25/2022]
Abstract
Insulin has been shown to act on pancreatic β cells to regulate its own secretion. Currently the mechanism underlying this effect is unclear. INS-2, a novel inositol glycan pseudo-disaccharide containing D-chiro-inositol and galactosamine, has been shown to function as an insulin mimetic and a putative insulin mediator. In the present study we found that INS-2 stimulates insulin secretion in MIN6 β cells and potentiates glucose stimulated insulin secretion in isolated mouse islets. Importantly, INS-2 failed to potentiate insulin secretion induced by tolbutamide, which stimulates insulin release by closing ATP sensitive potassium channels (KATP). Electrophysiological studies showed that INS-2 inhibited sulfonylurea-sensitive KATP conductance. The effect of INS-2 on inhibiting KATP channel is mediated by protein phosphatase 2C (PP2C), as knocking down PP2C expression in MIN6 cells by PP2C small hairpin RNA completely abolished the effect of INS-2 on KATP and consequently attenuated INS-2 induced insulin secretion. In conclusion, the present study identifies a novel mechanism involving PP2C in regulating KATP channel activity and consequently insulin secretion.
Collapse
Affiliation(s)
- Roman Lazarenko
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jessica Geisler
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Douglas Bayliss
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Joseph Larner
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States
| | - Chien Li
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA, United States.
| |
Collapse
|
33
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
34
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
35
|
Haanes KA, Kowal JM, Arpino G, Lange SC, Moriyama Y, Pedersen PA, Novak I. Role of vesicular nucleotide transporter VNUT (SLC17A9) in release of ATP from AR42J cells and mouse pancreatic acinar cells. Purinergic Signal 2014; 10:431-40. [PMID: 24488439 DOI: 10.1007/s11302-014-9406-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022] Open
Abstract
ATP is released from cells in response to various stimuli. Our previous studies on pancreas indicated that pancreatic acini could be major stores of secreted ATP. In the present study, our aim was to establish the role of the vesicular nucleotide transporter (VNUT), SLC17A9, in storage and release of ATP. Freshly prepared acini from mice and AR42J rat acinar cells were used in this study. We illustrate that in AR42J cells, quinacrine (an ATP store marker) and Bodipy ATP (a fluorescent ATP analog) co-localized with VNUT-mCherry to vesicles/granules. Furthermore, in acini and AR42J cells, a marker of the zymogen granule membranes, Rab3D, and VNUT co-localized. Dexamethasone treatment of AR42J cells promoted formation of acinar structures, paralleled by increased amylase and VNUT expression, and increased ATP release in response to cholinergic stimulation. Mechanical stimulus (pressure) and cell swelling also induced ATP release, but this was not influenced by dexamethasone, most likely indicating different non-zymogen-related release mechanism. In conclusion, we propose that VNUT-dependent ATP release pathway is associated with agonist-induced secretion process and downstream purinergic signalling in pancreatic ducts.
Collapse
Affiliation(s)
- K A Haanes
- Department of Biology, Section Molecular Integrative Physiology, University of Copenhagen, August Krogh Building, Universitetsparken 13, Copenhagen, 2100, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Concepcion AR, Lopez M, Ardura-Fabregat A, Medina JF. Role of AE2 for pHi regulation in biliary epithelial cells. Front Physiol 2014; 4:413. [PMID: 24478713 PMCID: PMC3894451 DOI: 10.3389/fphys.2013.00413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
The Cl−/HCO−3anion exchanger 2 (AE2) is known to be involved in intracellular pH (pHi) regulation and transepithelial acid-base transport. Early studies showed that AE2 gene expression is reduced in liver biopsies and blood mononuclear cells from patients with primary biliary cirrhosis (PBC), a disease characterized by chronic non-suppurative cholangitis associated with antimitochondrial antibodies (AMA) and other autoimmune phenomena. Microfluorimetric analysis of the Cl−/HCO−3 anion exchange (AE) in isolated cholangiocytes showed that the cAMP-stimulated AE activity is diminished in PBC compared to both healthy and diseased controls. More recently, it was found that miR-506 is upregulated in cholangiocytes of PBC patients and that AE2 may be a target of miR-506. Additional evidence for a pathogenic role of AE2 dysregulation in PBC was obtained with Ae2−/−a,b mice, which develop biochemical, histological, and immunologic alterations that resemble PBC (including development of serum AMA). Analysis of HCO−3 transport systems and pHi regulation in cholangiocytes from normal and Ae2−/−a,b mice confirmed that AE2 is the transporter responsible for the Cl−/HCO−3exchange in these cells. On the other hand, both Ae2+/+a,b and Ae2−/−a,b mouse cholangiocytes exhibited a Cl−-independent bicarbonate transport system, essentially a Na+-bicarbonate cotransport (NBC) system, which could contribute to pHi regulation in the absence of AE2.
Collapse
Affiliation(s)
- Axel R Concepcion
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| | - María Lopez
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| | - Alberto Ardura-Fabregat
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| | - Juan F Medina
- Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), School of Medicine, University of Navarra, and Ciberehd Pamplona, Spain
| |
Collapse
|
37
|
Okada SF, Ribeiro CMP, Sesma JI, Seminario-Vidal L, Abdullah LH, van Heusden C, Lazarowski ER, Boucher RC. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways. Am J Respir Cell Mol Biol 2013; 49:814-20. [PMID: 23763446 DOI: 10.1165/rcmb.2012-0493oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)-associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling-promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion.
Collapse
Affiliation(s)
- Seiko F Okada
- 1 Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, and
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med 2013; 34:350-9. [PMID: 23506876 DOI: 10.1016/j.mam.2012.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/28/2022]
Abstract
Molecular studies have determined that the SLC17 transporters, a family of nine proteins initially implicated in phosphate transport, mediate the transport of organic anions. While their role in phosphate transport remains uncertain, it is now clear that the transport of organic anions facilitated by this family of proteins is involved in diverse processes ranging from the vesicular storage of the neurotransmitters, to urate metabolism, to the degradation and metabolism of glycoproteins.
Collapse
Affiliation(s)
- Richard J Reimer
- Neurogenetics Division Department of Neurology and Neurological Sciences, Stanford University School of Medicine, P211 MSLS, 1201 Welch Road, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2013; 21:79-91. [PMID: 23852373 DOI: 10.1038/cdd.2013.75] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022] Open
Abstract
The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy.
Collapse
|
40
|
Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S. Microglia release ATP by exocytosis. Glia 2013; 61:1320-30. [PMID: 23832620 DOI: 10.1002/glia.22517] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/07/2022]
Abstract
Microglia survey the brain environment by sensing several types of diffusible molecules, among which extracellular nucleotides released/leaked from damaged cells have central roles. Microglia sense ATP or other nucleotides by multiple P2 receptors, after which they change into several different phenotypes. However, so far, it is largely unknown whether microglia themselves release ATP and, if so, by what mechanism. Here we show that exocytosis is the mechanism by which microglia release ATP. When we stimulated microglia with ionomycin, they released ATP and the release was dependent on Ca²⁺, vesicular H⁺-ATPase, or SNAREs but independent of connexin/pannexin hemichannels. VNUT was found to be expressed in microglia and exhibited no colocalization with lysosome. We also visualized the exocytosis of ATP by a quinacrine-based fluorescent time-lapse imaging. Moreover, we found that lipopolysaccharide increased the ionomycin-induced release of ATP, which was dependent on the increase in VNUT. Taken together, our data suggested that exocytosis is the mechanism of ATP release from microglia. When activated, they would release ATP by increasing VNUT-dependent exocytotic mechanisms.
Collapse
Affiliation(s)
- Yoshio Imura
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S. Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 2013; 8:e59778. [PMID: 23577075 PMCID: PMC3618444 DOI: 10.1371/journal.pone.0059778] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
It is important to understand the mechanisms that regulate macrophage activation to establish novel therapies for inflammatory diseases, such as sepsis; a systemic inflammatory response syndrome generally caused by bacterial lipopolysaccharide (LPS). In this study, we investigated the involvement of extracellular ATP-mediated autocrine signaling in LPS-induced macrophage activation. We show here that ATP release via exocytosis, followed by activation of P2Y11 receptor, is a major pathway of the macrophage activation, leading to release of cytokines. Treatment of human monocyte THP-1 cells with LPS induced rapid ATP release from cells, and this release was blocked by knockdown of SLC17A9 (vesicular nucleotide transporter, VNUT), which is responsible for exocytosis of ATP. ATP-enriched vesicles were found in cytosol of THP-1 cells. These data suggest the involvement of vesicular exocytosis in the release of ATP. Knockdown of SLC17A9, the P2Y11 antagonist NF157 or knockdown of P2Y11 receptor significantly suppressed both M1-type polarization and IL-6 production in THP-1 cells, indicating an important role of activation of P2Y11 receptor by released ATP in macrophage activation. Next, the effect of NF157 on LPS-induced immune activation was examined in vivo. Administration of LPS to mice caused increase of serum IL-1ß, IL-6, IL-12 and TNF-alpha levels at 3–24 h after the administration. Pre-treatment of LPS-treated mice with NF157 suppressed both elevation of proinflammatory cytokines in serum and M1 polarization of peritoneal/spleen macrophages. Moreover, post-treatment with NF157 at 30 min after administration of LPS also suppressed the elevation of serum cytokines levels. We conclude that vesicular exocytosis of ATP and autocrine, positive feedback through P2Y11 receptors is required for the effective activation of macrophages. Consequently, P2Y11 receptor antagonists may be drug candidates for treatment of inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
- Hayato Sakaki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi Chiba, Japan
- * E-mail:
| | - Hitoshi Harada
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka-shi, Mie, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi Chiba, Japan
| |
Collapse
|
42
|
Sesma JI, Kreda SM, Okada SF, van Heusden C, Moussa L, Jones LC, O'Neal WK, Togawa N, Hiasa M, Moriyama Y, Lazarowski ER. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules. Am J Physiol Cell Physiol 2013; 304:C976-84. [PMID: 23467297 DOI: 10.1152/ajpcell.00371.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.
Collapse
Affiliation(s)
- Juliana I Sesma
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oliveira AG, Marques PE, Amaral SS, Quintão JLD, Cogliati B, Dagli MLZ, Rogiers V, Vanhaecke T, Vinken M, Menezes GB. Purinergic signalling during sterile liver injury. Liver Int 2013; 33:353-61. [PMID: 23402607 DOI: 10.1111/liv.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/28/2012] [Indexed: 12/23/2022]
Abstract
The liver plays a vital role in the organism, and thousands of patients suffer and even die from hepatic complications every year. Viral hepatitis is one of the most important causes of liver-related pathological processes. However, sterile liver diseases, such as drug-induced liver injury, cirrhosis and fibrosis, are still a worldwide concern and contribute significantly to liver transplantation statistics. During hepatocyte death, several genuine intracellular contents are released to the interstitium, where they will trigger inflammatory responses that may boost organ injury. Intracellular purines are key molecules to several metabolic pathways and regulate cell bioenergetics. However, seminal studies in early 70s revealed that purines may also participate in cell-to-cell communication, and more recent data have unequivocally demonstrated that the purinergic signalling plays a key role in the recognition of cell functionality by neighbouring cells and also by the immune system. This new body of knowledge has pointed out that several promising therapeutic opportunities may rely on the modulation of purine release and sensing during diseases. Here, we review the most recent data on the physiological roles of purinergic signalling and how its imbalance may contribute to injury progression during sterile liver injury.
Collapse
Affiliation(s)
- André G Oliveira
- Immunobiophotonics Lab, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C. Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 2013; 154:675-84. [PMID: 23254199 PMCID: PMC3548185 DOI: 10.1210/en.2012-1818] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Extracellular ATP plays a critical role in regulating insulin secretion in pancreatic β cells. The ATP released from insulin secretory vesicles has been proposed to be a major source of extracellular ATP. Currently, the mechanism by which ATP accumulates into insulin secretory granules remains elusive. In this study, the authors identified the expression of a vesicular nucleotide transporter (VNUT) in mouse pancreas, isolated mouse islets, and MIN6 cells, a mouse β cell line. Immunohistochemistry and immunofluorescence revealed that VNUT colocalized extensively with insulin secretory granules. Functional studies showed that suppressing endogenous VNUT expression in β cells by small hairpin RNA knockdown greatly reduced basal- and glucose-induced ATP release. Importantly, knocking down VNUT expression by VNUT small hairpin RNA in MIN6 cells and isolated mouse islets dramatically suppressed basal insulin release and glucose-stimulated insulin secretion (GSIS). Moreover, acute pharmacologic blockade of VNUT with Evans blue, a VNUT antagonist, greatly attenuated GSIS in a dose-dependent manner. Exogenous ATP treatment effectively reversed the insulin secretion defect induced by both VNUT knockdown and functional inhibition, indicating that VNUT-mediated ATP release is essential for maintaining normal insulin secretion. In contrast to VNUT knockdown, overexpression of VNUT in β cells resulted in excessive ATP release and enhanced basal insulin secretion and GSIS. Elevated insulin secretion induced by VNUT overexpression was reversed by pharmacologic inhibition of P2X but not P2Y purinergic receptors. This study reveals VNUT is expressed in pancreatic β cells and plays an essential and novel role in regulating insulin secretion through vesicular ATP release and extracellular purinergic signaling.
Collapse
Affiliation(s)
- Jessica C Geisler
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
45
|
Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S. Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 2012; 125:5051-60. [PMID: 22946048 DOI: 10.1242/jcs.104976] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TGF-β1 plays a key role in cancer progression through induction of various biological effects, including cell migration. Extracellular nucleotides, such as ATP, released from cells play a role in signaling through activation of P2 receptors. We show here that exocytosis of ATP followed by activation of P2 receptors play a key role in TGF-β1-induced actin remodeling associated with cell migration. Treatment with TGF-β1 facilitated migration of human lung cancer A549 cells, which was blocked by pretreatment with ecto-nucleotidase and P2 receptor antagonists. ATP and P2 agonists facilitated cell migration. TGF-β1-induced actin remodeling, which contributes to cell migration, was also suppressed by pretreatment with ecto-nucleotidase and P2 receptor antagonists. Knockdown of P2X7 receptor suppressed TGF-β1-induced migration and actin remodeling. These results indicate the involvement of TGF-β1-induced ATP release in cell migration, at least in part, through activation of P2X7 receptors. TGF-β1 caused release of ATP from A549 cells within 10 minutes. Both ATP-enriched vesicles and expression of a vesicular nucleotide transporter (VNUT) SLC17A9, which is responsible for exocytosis of ATP, were found in cytosol of A549 cells. TGF-β1 failed to induce release of ATP from SLC17A9-knockdown cells. TGF-β1-induced cell migration and actin remodeling were also decreased in SLC17A9-knockdown cells. These results suggest the importance of exocytosis of ATP in cell migration. We conclude that autocrine signaling through exocytosis of ATP and activation of P2 receptors is required for the amplification of TGF-β1-induced migration of lung cancer cells.
Collapse
Affiliation(s)
- Erina Takai
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Lazarowski ER. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 2012; 8:359-73. [PMID: 22528679 DOI: 10.1007/s11302-012-9304-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/21/2012] [Indexed: 12/22/2022] Open
Abstract
Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| |
Collapse
|
47
|
Chaudhury A, He XD, Goyal RK. Role of myosin Va in purinergic vesicular neurotransmission in the gut. Am J Physiol Gastrointest Liver Physiol 2012; 302:G598-607. [PMID: 22207579 PMCID: PMC3311306 DOI: 10.1152/ajpgi.00330.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the hypothesis that myosin Va, by transporting purinergic vesicles to the varicosity membrane for exocytosis, plays a key role in purinergic vesicular neurotransmission. Studies were performed in wild-type (WT) and myosin Va-deficient dilute, brown, nonagouti (DBA) mice. Intracellular microelectrode recordings were made in mouse antral muscle strips. Purinergic inhibitory junction potential (pIJP) was recorded under nonadrenergic noncholinergic conditions after masking the nitrergic junction potentials. DBA mice showed reduced pIJP but normal hyperpolarizing response to P2Y1 receptor agonist MRS-2365. To investigate the mechanism of reduced purinergic transmission in DBA mice, studies were performed in isolated varicosities obtained from homogenates of whole gut tissues by ultracentrifugation and sucrose cushion purification. Purinergic varicosities were identified in tissue sections and in isolated varicosities by immunostaining for the vesicular ATP transporter, the solute carrier protein SLC17A9. The varicosities were similar in WT and DBA mice. Myosin Va was markedly reduced in DBA varicosities compared with the WT varicosities. Proximity ligation assay showed that myosin Va was closely associated with SLC17A9. Vesicular exoendocytosis was examined by FM1-43 staining of varicosities, which showed that exoendocytosis after KCl stimulation was impaired in DBA varicosities compared with WT varicosities. These studies show that SLC17A9 identifies ATP-containing purinergic varicosities. Myosin Va associates with SLC17A9-stained vesicles and possibly transports them to varicosity membrane for exocytosis. In myosin Va-deficient mice, purinergic inhibitory neurotransmission is impaired.
Collapse
Affiliation(s)
- Arun Chaudhury
- Center for Swallowing & Motility Disorders, Veterans Affairs Boston HealthCare System and Harvard Medical School, Boston, Massachusetts
| | - Xue-Dao He
- Center for Swallowing & Motility Disorders, Veterans Affairs Boston HealthCare System and Harvard Medical School, Boston, Massachusetts
| | - Raj K. Goyal
- Center for Swallowing & Motility Disorders, Veterans Affairs Boston HealthCare System and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|