1
|
Pescador-Dionisio S, Cendrero-Mateo MP, Moncholí-Estornell A, Robles-Fort A, Arzac MI, Renau-Morata B, Fernández-Marín B, García-Plazaola JI, Molina RV, Rausell C, Moreno J, Nebauer SG, García-Robles I, Van Wittenberghe S. In vivo detection of spectral reflectance changes associated with regulated heat dissipation mechanisms complements fluorescence quantum efficiency in early stress diagnosis. THE NEW PHYTOLOGIST 2025; 245:559-576. [PMID: 39530143 DOI: 10.1111/nph.20253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Early stress detection of crops requires a thorough understanding of the signals showing the very first symptoms of the alterations in the photosynthetic light reactions. Detection of the activation of the regulated heat dissipation mechanism is crucial to complement passively induced fluorescence to resolve ambuiguities in energy partitioning. Using leaf spectroscopy, we evaluated the capability of pigment spectral unmixing to calculate the fluorescence quantum efficiency (FQE) and simultaneously retrieve fast absorption changes in a drought and nitrogen deficiency experiment with tomato. In addition, active fluorescence measurements and pigment analyses of xanthophylls, carotenes and chlorophylls were conducted. We observed notable responses in noninvasive proximal sensing-retrieved FQE values under stress, but as expected, these alone were not enough to identify the constraints in photosynthetic efficiency. Reflectance-based detection of the 535-nm peak absorption change was able to complement FQE and indicate the activation of regulated heat dissipation for both stress treatments under growing light conditions. However, further complexity in the light harvesting energy regulation needs to be accounted for when considering additional light stress. Our results underscore the potential of complementary in vivo quantitative spectroscopy-based products in the early and nondestructive stress diagnosis of plants, marking the path for further applications.
Collapse
Affiliation(s)
- Sara Pescador-Dionisio
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedràtic Agustín Escardino Benlloch, 46980, Paterna, Valencia, Spain
- Department of Genetics, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Maria Pilar Cendrero-Mateo
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedràtic Agustín Escardino Benlloch, 46980, Paterna, Valencia, Spain
| | - Adrián Moncholí-Estornell
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedràtic Agustín Escardino Benlloch, 46980, Paterna, Valencia, Spain
| | - Aida Robles-Fort
- Department of Genetics, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Miren I Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain
| | - Begoña Renau-Morata
- Instituto Universitario de Biotecnología y Biomedicina, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain
| | - Rosa V Molina
- Plant Physiology Group, Plant Production Department, Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - José Moreno
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedràtic Agustín Escardino Benlloch, 46980, Paterna, Valencia, Spain
| | - Sergio G Nebauer
- Plant Physiology Group, Plant Production Department, Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Shari Van Wittenberghe
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedràtic Agustín Escardino Benlloch, 46980, Paterna, Valencia, Spain
| |
Collapse
|
2
|
Li J, Zeng T, Qu Z, Zhai Y, Li H. Energy transfer from two luteins to chlorophylls in light-harvesting complex II study by using exciton models with phase correction. Phys Chem Chem Phys 2024; 26:1023-1029. [PMID: 38093671 DOI: 10.1039/d3cp05278h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In light-harvesting complex II of plants, the two lutein pigments (LUT1 and LUT2) are always paired and an energy transfer pathway between them is believed to exist. However, it remains unclear whether this pathway is essential for the energy transfer between carotenoids and chlorophylls. In this work, we performed hybrid quantum mechanics/molecular mechanics simulations with Frenkel exciton models to investigate this energy transfer. The results show that the energy transfer pathways between the S2 state of LUT1 and CLAs are not affected by LUT2 S2. The energy transfer between LUT and chlorophyll-a (CLA) also follows a resonance mechanism. The two LUTs have different energy transfer pathways according to their energy gaps and coupling strengths with each CLA. The present work sheds light on the energy transfer pathways involved in the two LUTs.
Collapse
Affiliation(s)
- Jiarui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Tao Zeng
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Yu Zhai
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| |
Collapse
|
3
|
Li J, Zeng T, Zhai Y, Qu Z, Li H. Intermolecular resonance energy transfer between two lutein pigments in light-harvesting complex II studied by frenkel exciton models. Phys Chem Chem Phys 2023; 25:24636-24642. [PMID: 37665609 DOI: 10.1039/d3cp03092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The energy transfer pathways in light-harvesting complex II are complicated and the discovery of the energy transfer between the two luteins revealed an unelucidated important role of carotenoids in the energy flow. This energy transfer between the two S2 states of luteins was for the first time investigated using Frenkel exciton models, using a hybrid scheme of molecular mechanics and quantum mechanics. The results show the energy flow between the two luteins under the Förster resonance energy transfer mechanism. The energy transfer caused by energy level resonance occurs in configurations with small energy gaps. This energy transfer pathway is particularly sensitive to conformation. Moreover, according to the statistical characteristics of the data of the energy gaps and coupling values between LUTs, we proposed stochastic exciton Hamiltonian models to facilitate clarification of the energy transfer among pigments in antenna complexes.
Collapse
Affiliation(s)
- Jiarui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Tao Zeng
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China.
| |
Collapse
|
4
|
Navakoudis E, Stergiannakos T, Daskalakis V. A perspective on the major light-harvesting complex dynamics under the effect of pH, salts, and the photoprotective PsbS protein. PHOTOSYNTHESIS RESEARCH 2023; 156:163-177. [PMID: 35816266 PMCID: PMC10070230 DOI: 10.1007/s11120-022-00935-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The photosynthetic apparatus is a highly modular assembly of large pigment-binding proteins. Complexes called antennae can capture the sunlight and direct it from the periphery of two Photosystems (I, II) to the core reaction centers, where it is converted into chemical energy. The apparatus must cope with the natural light fluctuations that can become detrimental to the viability of the photosynthetic organism. Here we present an atomic scale view of the photoprotective mechanism that is activated on this line of defense by several photosynthetic organisms to avoid overexcitation upon excess illumination. We provide a complete macroscopic to microscopic picture with specific details on the conformations of the major antenna of Photosystem II that could be associated with the switch from the light-harvesting to the photoprotective state. This is achieved by combining insight from both experiments and all-atom simulations from our group and the literature in a perspective article.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Street, 3603, Limassol, Cyprus
| | - Taxiarchis Stergiannakos
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Street, 3603, Limassol, Cyprus
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Street, 3603, Limassol, Cyprus.
| |
Collapse
|
5
|
Liu WJ, Liu H, Chen YE, Yin Y, Zhang ZW, Song J, Chang LJ, Zhang FL, Wang D, Dai XH, Wei C, Xiong M, Yuan S, Zhao J. Chloroplastic photoprotective strategies differ between bundle sheath and mesophyll cells in maize ( Zea mays L.) Under drought. FRONTIERS IN PLANT SCIENCE 2022; 13:885781. [PMID: 35909748 PMCID: PMC9330506 DOI: 10.3389/fpls.2022.885781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2022] [Indexed: 05/24/2023]
Abstract
Bundle sheath cells play a crucial role in photosynthesis in C4 plants, but the structure and function of photosystem II (PSII) in these cells is still controversial. Photoprotective roles of bundle sheath chloroplasts at the occurrence of environmental stresses have not been investigated so far. Non-photochemical quenching (NPQ) of chlorophyll a fluorescence is the photoprotective mechanism that responds to a changing energy balance in chloroplasts. In the present study, we found a much higher NPQ in bundle sheath chloroplasts than in mesophyll chloroplasts under a drought stress. This change was accompanied by a more rapid dephosphorylation of light-harvesting complex II (LHCII) subunits and a greater increase in PSII subunit S (PsbS) protein abundance than in mesophyll cell chloroplasts. Histochemical staining of reactive oxygen species (ROS) suggested that the high NPQ may be one of the main reasons for the lower accumulation of ROS in bundle sheath chloroplasts. This may maintain the stable functioning of bundle sheath cells under drought condition. These results indicate that the superior capacity for dissipation of excitation energy in bundle sheath chloroplasts may be an environmental adaptation unique to C4 plants.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Yin
- Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Zhang
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Li-Juan Chang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Fu-Li Zhang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Dong Wang
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiao-Hang Dai
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chao Wei
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mei Xiong
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Photoprotective conformational dynamics of photosynthetic light-harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148543. [PMID: 35202576 DOI: 10.1016/j.bbabio.2022.148543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Under high light conditions, excess energy can damage the machinery of oxygenic photosynthesis. Plants have evolved a series of photoprotective processes, including conformational changes of the light-harvesting complexes that activate dissipation of energy as heat. In this mini-review, we will summarize our recent work developing and applying single-molecule methods to investigate the conformational states of the light-harvesting complexes. Through these measurements, we identified dissipative conformations and how they depend on conditions that mimic high light. Our studies revealed an equilibrium between the light-harvesting and dissipative conformations, and that the nature of the equilibrium varies with cellular environment, between proteins, and between species. Finally, we conclude with an outlook on open questions and implications for photosynthetic yields.
Collapse
|
7
|
Manna P, Davies T, Hoffmann M, Johnson MP, Schlau-Cohen GS. Membrane-dependent heterogeneity of LHCII characterized using single-molecule spectroscopy. Biophys J 2021; 120:3091-3102. [PMID: 34214527 DOI: 10.1016/j.bpj.2021.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
In green plants, light harvesting complex of Photosystem II (LHCII) absorbs and transports excitation energy toward the photosynthetic reaction centers and serves as a site for energy-dependent nonphotochemical quenching (qE), the photoprotective dissipation of energy as heat. LHCII is thought to activate dissipation through conformational changes that change the photophysical behaviors. Understanding this balance requires a characterization of how the conformations of LHCII, and thus its photophysics, are influenced by individual factors within the membrane environment. Here, we used ensemble and single-molecule fluorescence to characterize the excited-state lifetimes and switching kinetics of LHCII embedded in nanodisc- and liposome-based model membranes of various sizes and lipid compositions. As the membrane area decreased, the quenched population and the rate of conformational dynamics both increased because of interactions with other proteins, the aqueous solution, and/or disordered lipids. Although the conformational states and dynamics were similar in both thylakoid and asolectin lipids, photodegradation increased with thylakoid lipids, likely because of their charge and pressure properties. Collectively, these findings demonstrate the ability of membrane environments to tune the conformations and photophysics of LHCII.
Collapse
Affiliation(s)
- Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Thomas Davies
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Madeline Hoffmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
8
|
Ara AM, Ahmed MK, D'Haene S, van Roon H, Ilioaia C, van Grondelle R, Wahadoszamen M. Absence of far-red emission band in aggregated core antenna complexes. Biophys J 2021; 120:1680-1691. [PMID: 33675767 DOI: 10.1016/j.bpj.2021.02.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022] Open
Abstract
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.
Collapse
Affiliation(s)
- Anjue Mane Ara
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, Jagannath University, Dhaka, Bangladesh
| | | | - Sandrine D'Haene
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Henny van Roon
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Cristian Ilioaia
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Md Wahadoszamen
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands; Department of Physics, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
9
|
Li F, Liu C, Streckaite S, Yang C, Xu P, Llansola-Portoles MJ, Ilioaia C, Pascal AA, Croce R, Robert B. A new, unquenched intermediate of LHCII. J Biol Chem 2021; 296:100322. [PMID: 33493515 PMCID: PMC7949128 DOI: 10.1016/j.jbc.2021.100322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
When plants are exposed to high-light conditions, the potentially harmful excess energy is dissipated as heat, a process called non-photochemical quenching. Efficient energy dissipation can also be induced in the major light-harvesting complex of photosystem II (LHCII) in vitro, by altering the structure and interactions of several bound cofactors. In both cases, the extent of quenching has been correlated with conformational changes (twisting) affecting two bound carotenoids, neoxanthin, and one of the two luteins (in site L1). This lutein is directly involved in the quenching process, whereas neoxanthin senses the overall change in state without playing a direct role in energy dissipation. Here we describe the isolation of an intermediate state of LHCII, using the detergent n-dodecyl-α-D-maltoside, which exhibits the twisting of neoxanthin (along with changes in chlorophyll–protein interactions), in the absence of the L1 change or corresponding quenching. We demonstrate that neoxanthin is actually a reporter of the LHCII environment—probably reflecting a large-scale conformational change in the protein—whereas the appearance of excitation energy quenching is concomitant with the configuration change of the L1 carotenoid only, reflecting changes on a smaller scale. This unquenched LHCII intermediate, described here for the first time, provides for a deeper understanding of the molecular mechanism of quenching.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Cheng Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Chunhong Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pengqi Xu
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cristian Ilioaia
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Gray C, Wei T, Polívka T, Daskalakis V, Duffy CDP. Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII. FRONTIERS IN PLANT SCIENCE 2021; 12:797373. [PMID: 35095968 PMCID: PMC8792765 DOI: 10.3389/fpls.2021.797373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 05/04/2023]
Abstract
Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S 1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S 1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S 1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S 1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S 1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.
Collapse
Affiliation(s)
- Callum Gray
- Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom
| | - Tiejun Wei
- Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Christopher D. P. Duffy
- Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom
- *Correspondence: Christopher D. P. Duffy
| |
Collapse
|
11
|
Combined dynamics of the 500-600 nm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching role of xanthophylls. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148351. [PMID: 33285101 DOI: 10.1016/j.bbabio.2020.148351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
Carotenoids (Cars) regulate the energy flow towards the reaction centres in a versatile way whereby the switch between energy harvesting and dissipation is strongly modulated by the operation of the xanthophyll cycles. However, the cascade of molecular mechanisms during the change from light harvesting to energy dissipation remains spectrally poorly understood. By characterizing the in vivo absorbance changes (ΔA) of leaves from four species in the 500-600 nm range through a Gaussian decomposition, while measuring passively simultaneous Chla fluorescence (F) changes, we present a direct observation of the quick antenna adjustments during a 3-min dark-to-high-light induction. Underlying spectral behaviours of the 500-600 nm ΔA feature can be characterized by a minimum set of three Gaussians distinguishing very quick dynamics during the first minute. Our results show the parallel trend of two Gaussian components and the prompt Chla F quenching. Further, we observe similar quick kinetics between the relative behaviour of these components and the in vivo formations of antheraxanthin (Ant) and zeaxanthin (Zea), in parallel with the dynamic quenching of singlet excited chlorophyll a (1Chla*) states. After these simultaneous quick kinetical behaviours of ΔA and F during the first minute, the 500-600 nm feature continues to increase, indicating a further enhanced absorption driven by the centrally located Gaussian until 3 min after sudden light exposure. Observing these precise underlying kinetic trends of the spectral behaviour in the 500-600 nm region shows the large potential of in vivo leaf spectroscopy to bring new insights on the quick redistribution and relaxation of excitation energy, indicating a key role for both Ant and Zea.
Collapse
|
12
|
Saccon F, Durchan M, Polívka T, Ruban AV. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochem Photobiol Sci 2020; 19:1308-1318. [PMID: 32815966 DOI: 10.1039/d0pp00174k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Xanthophylls in light harvesting complexes perform a number of functions ranging from structural support to light-harvesting and photoprotection. In the major light harvesting complex of photosystem II in plants (LHCII), the innermost xanthophyll binding pockets are occupied by lutein molecules. The conservation of these sites within the LHC protein family suggests their importance in LHCII functionality. In the present work, we induced the photoprotective switch in LHCII isolated from the Arabidopsis mutant npq1lut2, where the lutein molecules are exchanged with violaxanthin. Despite the differences in the energetics of the pigments and the impairment of chlorophyll fluorescence quenching in vivo, we show that isolated complexes containing violaxanthin are still able to induce the quenching switch to a similar extent to wild type LHCII monomers. Moreover, the same spectroscopic changes take place, which suggest the involvement of the terminal emitter site (L1) in energy dissipation in both complexes. These results indicate the robust nature of the L1 xanthophyll binding domain in LHCII, where protein structural cues are the major determinant of the function of the bound carotenoid.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road E1 4NS, London, UK.
| | - Milan Durchan
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| | - Tomáš Polívka
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| | - Alexander V Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road E1 4NS, London, UK.
| |
Collapse
|
13
|
Saccon F, Durchan M, Bína D, Duffy CD, Ruban AV, Polívka T. A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex. iScience 2020; 23:101430. [PMID: 32818906 PMCID: PMC7452274 DOI: 10.1016/j.isci.2020.101430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The major light-harvesting complex of photosystem II (LHCII) is the main contributor to sunlight energy harvesting in plants. The flexible design of LHCII underlies a photoprotective mechanism whereby this complex switches to a dissipative state in response to high light stress, allowing the rapid dissipation of excess excitation energy (non-photochemical quenching, NPQ). In this work, we locked single LHCII trimers in a quenched conformation after immobilization of the complexes in polyacrylamide gels to impede protein interactions. A comparison of their pigment excited-state dynamics with quenched LHCII aggregates in buffer revealed the presence of a new spectral band at 515 nm arising after chlorophyll excitation. This is suggested to be the signature of a carotenoid excited state, linked to the quenching of chlorophyll singlet excited states. Our data highlight the marked sensitivity of pigment excited-state dynamics in LHCII to structural changes induced by the environment.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Milan Durchan
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - David Bína
- University of South Bohemia, Institute of Chemistry, Faculty of Science, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Christopher D.P. Duffy
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Alexander V. Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Tomáš Polívka
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Artes Vivancos JM, van Stokkum IHM, Saccon F, Hontani Y, Kloz M, Ruban A, van Grondelle R, Kennis JTM. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:17346-17355. [PMID: 32878439 PMCID: PMC7564077 DOI: 10.1021/jacs.0c04619] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Photosynthesis
in plants starts with the capture of photons by
light-harvesting complexes (LHCs). Structural biology and spectroscopy
approaches have led to a map of the architecture and energy transfer
pathways between LHC pigments. Still, controversies remain regarding
the role of specific carotenoids in light-harvesting and photoprotection,
obligating the need for high-resolution techniques capable of identifying
excited-state signatures and molecular identities of the various pigments
in photosynthetic systems. Here we demonstrate the successful application
of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric
biological complex, trimers of LHCII. We demonstrate the application
of global and target analysis (GTA) to FSRS data and utilize it to
quantify excitation migration in LHCII trimers. This powerful combination
of techniques allows us to obtain valuable insights into structural,
electronic, and dynamic information from the carotenoids of LHCII
trimers. We report spectral and dynamical information on ground- and
excited-state vibrational modes of the different pigments, resolving
the vibrational relaxation of the carotenoids and the pathways of
energy transfer to chlorophylls. The lifetimes and spectral characteristics
obtained for the S1 state confirm that lutein 2 has a distorted conformation
in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls,
while lutein 1 is the only carotenoid whose S1 state plays a significant
energy-harvesting role. No appreciable energy transfer takes place
from lutein 1 to lutein 2, contradicting recent proposals regarding
the functions of the various carotenoids (Son et al. Chem.2019, 5 (3), 575–584). Also, our results demonstrate that FSRS can be used in combination
with GTA to simultaneously study the electronic and vibrational landscapes
in LHCs and pave the way for in-depth studies of photoprotective conformations
in photosynthetic systems.
Collapse
Affiliation(s)
- Juan M Artes Vivancos
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.,Department of Chemistry, Kennedy College of Science, University of Massachusetts-Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Yusaku Hontani
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Alexander Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Ostroumov EE, Götze JP, Reus M, Lambrev PH, Holzwarth AR. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. PHOTOSYNTHESIS RESEARCH 2020; 144:171-193. [PMID: 32307623 DOI: 10.1007/s11120-020-00745-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form. In both sample types the chlorophyll (Chl) excited states of LHCII are strongly quenched in a similar fashion. Quenching is accompanied by the appearance of new far-red (FR) fluorescence bands from energetically low-lying Chl excited states. The kinetics of quenching, its temperature dependence down to 4 K, and the properties of the FR-emitting states are very similar both in LHCII aggregates and in the crystal. No such FR-emitting states are found in unquenched trimeric LHCII. We conclude that these states represent weakly emitting Chl-Chl charge-transfer (CT) states, whose formation is part of the quenching process. Quantum chemical calculations of the lowest energy exciton and CT states, explicitly including the coupling to the specific protein environment, provide detailed insight into the chemical nature of the CT states and the mechanism of CT quenching. The experimental data combined with the results of the calculations strongly suggest that the quenching mechanism consists of a sequence of two proton-coupled electron transfer steps involving the three quenching center Chls 610/611/612. The FR-emitting CT states are reaction intermediates in this sequence. The polarity-controlled internal reprotonation of the E175/K179 aa pair is suggested as the switch controlling quenching. A unified model is proposed that is able to explain all known conditions of quenching or non-quenching of LHCII, depending on the environment without invoking any major conformational changes of the protein.
Collapse
Affiliation(s)
- Evgeny E Ostroumov
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, V6T 1Z1, Canada
| | - Jan P Götze
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Michael Reus
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Petar H Lambrev
- Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany.
| |
Collapse
|
16
|
Cupellini L, Calvani D, Jacquemin D, Mennucci B. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nat Commun 2020; 11:662. [PMID: 32005811 PMCID: PMC6994720 DOI: 10.1038/s41467-020-14488-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
The photosynthetic apparatus of higher plants can dissipate excess excitation energy during high light exposure, by deactivating excited chlorophylls through a mechanism called nonphotochemical quenching (NPQ). However, the precise molecular details of quenching and the mechanism regulating the quenching level are still not completely understood. Focusing on the major light-harvesting complex LHCII of Photosystem II, we show that a charge transfer state involving Lutein can efficiently quench chlorophyll excitation, and reduce the excitation lifetime of LHCII to the levels measured in the deeply quenched LHCII aggregates. Through a combination of molecular dynamics simulations, multiscale quantum chemical calculations, and kinetic modeling, we demonstrate that the quenching level can be finely tuned by the protein, by regulating the energy of the charge transfer state. Our results suggest that a limited conformational rearrangement of the protein scaffold could act as a molecular switch to activate or deactivate the quenching mechanism.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124, Pisa, (PI), Italy.
| | - Dario Calvani
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124, Pisa, (PI), Italy
| | - Denis Jacquemin
- Laboratoire CEISAM-UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssiniere, BP-92208, F-44322 Cedex 3, Nantes, France
| | - Benedetta Mennucci
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124, Pisa, (PI), Italy.
| |
Collapse
|
17
|
Gacek DA, Holleboom CP, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2020; 143:19-30. [PMID: 31659623 DOI: 10.1007/s11120-019-00676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
Collapse
Affiliation(s)
- Daniel A Gacek
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Pen-Nan Liao
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Marco Negretti
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Peter Jomo Walla
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany.
| |
Collapse
|
18
|
Van Wittenberghe S, Alonso L, Malenovský Z, Moreno J. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS-NIR slow-induced conformational pigment bed changes. PHOTOSYNTHESIS RESEARCH 2019; 142:283-305. [PMID: 31541418 PMCID: PMC6874624 DOI: 10.1007/s11120-019-00664-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/13/2019] [Indexed: 05/29/2023]
Abstract
Regulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment-protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS-NIR, 400-800 nm) after sudden strong natural-like illumination exposure. Besides light avoidance mechanism, we observed on absorbance signatures, calculated from simultaneous reflectance R(λ,t) and transmittance T(λ,t) measurements as A(λ,t) = 1 - R(λ,t) - T(λ,t), major dynamic events with specific onsets and kinetical behaviour. A consistent well-known fast carotenoid absorbance feature (500-570 nm) appears within the first seconds to minutes, seen from both the reflected (backscattered) and transmitted (forward scattered) radiance differences. Simultaneous fast Chl features are observed, either as an increased or decreased scattering behaviour during quick light adjustment consistent with re-organizations of the membrane. The carotenoid absorbance feature shows up simultaneously with a major F decrease and corresponds to the xanthophyll conversion, as quick response to the proton gradient build-up. After xanthophyll conversion (t = 3 min), a kinetically slower but major and smooth absorbance increase was occasionally observed from the transmitted radiance measurements as wide peaks in the green (~ 550 nm) and the near-infrared (~ 750 nm) wavelengths, involving no further F quenching. Surprisingly, in relation to the response to high light, this broad and consistent VIS-NIR feature indicates a slowly induced absorbance increase with a sigmoid kinetical behaviour. In analogy to sub-leaf-level observations, we suggest that this mechanism can be explained by a structure-induced low-energy-shifted energy redistribution involving both Car and Chl. These findings might pave the way towards a further non-invasive spectral investigation of antenna conformations and their relations with energy quenching at the intact leaf level, which is, in combination with F measurements, of a high importance for assessing plant photosynthesis in vivo and in addition from remote observations.
Collapse
Affiliation(s)
- Shari Van Wittenberghe
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia Spain
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
| | - Luis Alonso
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia Spain
| | - Zbyněk Malenovský
- Geography and Spatial Sciences, School of Technology, Environments and Design, University of Tasmania, Private Bag 76, Hobart, TAS 7001 Australia
| | - José Moreno
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia Spain
| |
Collapse
|
19
|
Wei T, Balevičius V, Polívka T, Ruban AV, Duffy CDP. How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein. Phys Chem Chem Phys 2019; 21:23187-23197. [PMID: 31612872 DOI: 10.1039/c9cp03574e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids in photosynthetic proteins carry out the dual function of harvesting light and defending against photo-damage by quenching excess energy. The latter involves the low-lying, dark, excited state labelled S1. Here "dark" means optically-forbidden, a property that is often attributed to molecular symmetry, which leads to speculation that its optical properties may be strongly-perturbed by structural distortions. This has been both explicitly and implicitly proposed as an important feature of photo-protective energy quenching. Here we present a theoretical analysis of the relationship between structural distortions and S1 optical properties. We outline how S1 is dark not because of overall geometric symmetry but because of a topological symmetry related to bond length alternation in the conjugated backbone. Taking the carotenoid echinenone as an example and using a combination of molecular dynamics, quantum chemistry, and the theory of spectral lineshapes, we show that distortions that break this symmetry are extremely stiff. They are therefore absent in solution and only marginally present in even a very highly-distorted protein binding pocket such as in the Orange Carotenoid Protein (OCP). S1 remains resolutely optically-forbidden despite any breaking of bulk molecular symmetry by the protein environment. However, rotations of partially conjugated end-rings can result in fine tuning of the S1 transition density which may exert some influence on interactions with neighbouring chromophores.
Collapse
Affiliation(s)
- Tiejun Wei
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | | | | | | | | |
Collapse
|
20
|
Macroorganisation and flexibility of thylakoid membranes. Biochem J 2019; 476:2981-3018. [DOI: 10.1042/bcj20190080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.
Collapse
|
21
|
Daskalakis V, Maity S, Hart CL, Stergiannakos T, Duffy CDP, Kleinekathöfer U. Structural Basis for Allosteric Regulation in the Major Antenna Trimer of Photosystem II. J Phys Chem B 2019; 123:9609-9615. [DOI: 10.1021/acs.jpcb.9b09767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vangelis Daskalakis
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3603, Limassol, Cyprus
| | - Sayan Maity
- Department of Physics & Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Cameron Lewis Hart
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Taxiarchis Stergiannakos
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3603, Limassol, Cyprus
| | - Christopher D. P. Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Ulrich Kleinekathöfer
- Department of Physics & Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
22
|
|
23
|
Gacek DA, Holleboom C, Tietz S, Kirchhoff H, Walla PJ. PsbS‐dependent and ‐independent mechanisms regulate carotenoid‐chlorophyll energy coupling in grana thylakoids. FEBS Lett 2019; 593:3190-3197. [DOI: 10.1002/1873-3468.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Daniel A. Gacek
- Department of Biophysical Chemistry Institute for Physical and Theoretical Chemistry Technische Universität Braunschweig Germany
| | - Christoph‐Peter Holleboom
- Department of Biophysical Chemistry Institute for Physical and Theoretical Chemistry Technische Universität Braunschweig Germany
| | - Stefanie Tietz
- Institute of Biological Chemistry Washington State University Pullman WA USA
- DOE Plant Research Laboratory Michigan State University East Lansing MI USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry Washington State University Pullman WA USA
| | - Peter Jomo Walla
- Department of Biophysical Chemistry Institute for Physical and Theoretical Chemistry Technische Universität Braunschweig Germany
| |
Collapse
|
24
|
Popova AV, Dobrev K, Velitchkova M, Ivanov AG. Differential temperature effects on dissipation of excess light energy and energy partitioning in lut2 mutant of Arabidopsis thaliana under photoinhibitory conditions. PHOTOSYNTHESIS RESEARCH 2019; 139:367-385. [PMID: 29725995 DOI: 10.1007/s11120-018-0511-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The high-light-induced alterations in photosynthetic performance of photosystem II (PSII) and photosystem I (PSI) as well as effectiveness of dissipation of excessive absorbed light during illumination for different periods of time at room (22 °C) and low (8-10 °C) temperature of leaves of Arabidopsis thaliana, wt and lut2, were followed with the aim of unraveling the role of lutein in the process of photoinhibition. Photosynthetic parameters of PSII and PSI were determined on whole leaves by PAM fluorometer and oxygen evolving activity-by a Clark-type electrode. In thylakoid membranes, isolated from non-illuminated and illuminated for 4.5 h leaves of wt and lut2 the photochemical activity of PSII and PSI and energy interaction between the main pigment-protein complexes was determined. Results indicate that in non-illuminated leaves of lut2 the maximum rate of oxygen evolution and energy utilization in PSII is lower, excitation pressure of PSII is higher and cyclic electron transport around PSI is faster than in wt leaves. Under high-light illumination, lut2 leaves are more sensitive in respect to PSII performance and the extent of increase of excitation pressure of PSII, ΦNO, and cyclic electron transport around PSI are higher than in wt leaves, especially when illumination is performed at low temperature. Significant part of the excessive light energy is dissipated via mechanism, not dependent on ∆pH and to functioning of xanthophyll cycle in LHCII, operating more intensively in lut2 leaves.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria.
| | - Konstantin Dobrev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Alexander G Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N., London, ON, N6A 5B7, Canada
| |
Collapse
|
25
|
Díaz-Barradas MC, Zunzunegui M, Alvarez-Cansino L, Esquivias MP, Valera J, Rodríguez H. How do Mediterranean shrub species cope with shade? Ecophysiological response to different light intensities. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:296-306. [PMID: 29125662 DOI: 10.1111/plb.12661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/06/2017] [Indexed: 05/27/2023]
Abstract
Under natural conditions, light exposure for Mediterranean shrubs can be highly variable, especially during cloudy days or under a canopy, and can interfere with other environmental factors such as temperature and water availability. With the aim of decoupling the effect of radiation and temperature from water availability, we conducted an experiment where two perennial and three summer semi-deciduous shrub species were subjected to different levels of irradiation. In order to follow plant responses to light exposure, we measured gas exchange, photosystem II photochemical efficiency, photosynthetic pigments and leaf mass area in spring and summer. Results showed that all study species presented a plastic response to different light conditions, and that light-related traits varied in a coordinated manner. Summer semi-deciduous species exhibited a more opportunistic response, with higher photosynthesis rates in full sun, but under shade conditions, the two strategies presented similar assimilation rates. Stomatal conductance did not show such a drastic response as photosynthetsis, being related to changes in WUE. Daily cycles of Fv /Fm revealed a slight photoinhibitory response during summer, mainly in perennial species. In all cases photosynthetic pigments adjusted to the radiation level; leaves had lower chlorophyll content, higher pool of xanthophylls and higher proportion of the de-epoxydaded state of xanthophylls under sun conditions. Lutein content increased in relation to the xanthophyll pool under shade conditions. Our results evidenced that radiation is an important driving factor controlling morphological and physiological status of Mediterranean shrub species, independently of water availability. Summer semi-deciduous species exhibit a set of traits with higher response variability, maximising their photosynthetic assimilation under different sun conditions.
Collapse
Affiliation(s)
- M C Díaz-Barradas
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - M Zunzunegui
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - L Alvarez-Cansino
- Department of Plant Ecology, University of Bayreuth, Bayreuth, Germany
| | - M P Esquivias
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - J Valera
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - H Rodríguez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones, Científicas Isla de la Cartuja, Universidad Sevilla y CSIC, Sevilla, Spain
| |
Collapse
|
26
|
Liguori N, Xu P, van Stokkum IHM, van Oort B, Lu Y, Karcher D, Bock R, Croce R. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat Commun 2017; 8:1994. [PMID: 29222488 PMCID: PMC5722816 DOI: 10.1038/s41467-017-02239-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
To avoid photodamage plants regulate the amount of excitation energy in the membrane at the level of the light-harvesting complexes (LHCs). It has been proposed that the energy absorbed in excess is dissipated via protein conformational changes of individual LHCs. However, the exact quenching mechanism remains unclear. Here we study the mechanism of quenching in LHCs that bind a single carotenoid species and are constitutively in a dissipative conformation. Via femtosecond spectroscopy we resolve a number of carotenoid dark states, demonstrating that the carotenoid is bound to the complex in different conformations. Some of those states act as excitation energy donors for the chlorophylls, whereas others act as quenchers. Via in silico analysis we show that structural changes of carotenoids are expected in the LHC protein domains exposed to the chloroplast lumen, where acidification triggers photoprotection in vivo. We propose that structural changes of LHCs control the conformation of the carotenoids, thus permitting access to different dark states responsible for either light harvesting or photoprotection.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Pengqi Xu
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Bart van Oort
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Yinghong Lu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Gacek DA, Moore AL, Moore TA, Walla PJ. Two-Photon Spectra of Chlorophylls and Carotenoid–Tetrapyrrole Dyads. J Phys Chem B 2017; 121:10055-10063. [DOI: 10.1021/acs.jpcb.7b08502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Gacek
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| | - Ana L. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Peter Jomo Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:40-47. [DOI: 10.1016/j.bbamem.2016.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022]
|
29
|
Wahadoszamen M, Belgio E, Rahman MA, Ara AM, Ruban AV, van Grondelle R. Identification and characterization of multiple emissive species in aggregated minor antenna complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1917-1924. [PMID: 27666345 DOI: 10.1016/j.bbabio.2016.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/10/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
Aggregation induced conformational change of light harvesting antenna complexes is believed to constitute one of the pathways through which photosynthetic organisms can safely dissipate the surplus of energy while exposed to saturating light. In this study, Stark fluorescence (SF) spectroscopy is applied to minor antenna complexes (CP24, CP26 and CP29) both in their light-harvesting and energy-dissipating states to trace and characterize different species generated upon energy dissipation through aggregation (in-vitro) induced conformational change. SF spectroscopy could identify three spectral species in the dissipative state of CP24, two in CP26 and only one in CP29. The comprehensive analysis of the SF spectra yielded different sets of molecular parameters for the multiple spectral species identified in CP24 or CP26, indicating the involvement of different pigments in their formation. Interestingly, a species giving emission around the 730nm spectral region is found to form in both CP24 and CP26 following transition to the energy dissipative state, but not in CP29. The SF analyses revealed that the far red species has exceptionally large charge transfer (CT) character in the excited state. Moreover, the far red species was found to be formed invariably in both Zeaxanthin (Z)- and Violaxathin (V)-enriched CP24 and CP26 antennas with identical CT character but with larger emission yield in Z-enriched ones. This suggests that the carotenoid Z is not directly involved but only confers an allosteric effect on the formation of the far red species. Similar far red species with remarkably large CT character were also observed in the dissipative state of the major light harvesting antenna (LHCII) of plants [Wahadoszamen et al. PCCP, 2012], the fucoxanthin-chlorophyll protein (FCP) of brown algae [Wahadoszamen et al. BBA, 2014] and cyanobacterial IsiA [Wahadoszamen et al. BBA, 2015], thus pointing to identical sites and pigments active in the formation of the far red quenching species in different organisms.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands; Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Erica Belgio
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic; School of Biological and Chemical Sciences, Department of Cell and Molecular Biology, Queen Mary University of London
| | - Md Ashiqur Rahman
- Department of Physics, Khulna University of Engineering and Technology (KUET), Khulna 9203, Bangladesh
| | - Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Department of Cell and Molecular Biology, Queen Mary University of London
| | - Rienk van Grondelle
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Liguori N, Novoderezhkin V, Roy LM, van Grondelle R, Croce R. Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1514-1523. [DOI: 10.1016/j.bbabio.2016.04.285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 01/31/2023]
|
31
|
Probing the pigment binding sites in LHCII with resonance Raman spectroscopy: The effect of mutations at S123. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1490-1496. [DOI: 10.1016/j.bbabio.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/15/2022]
|
32
|
Grudzinski W, Janik E, Bednarska J, Welc R, Zubik M, Sowinski K, Luchowski R, Gruszecki WI. Light-Driven Reconfiguration of a Xanthophyll Violaxanthin in the Photosynthetic Pigment-Protein Complex LHCII: A Resonance Raman Study. J Phys Chem B 2016; 120:4373-82. [PMID: 27133785 DOI: 10.1021/acs.jpcb.6b01641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance Raman analysis of the photosynthetic complex LHCII, immobilized in a polyacrylamide gel, reveals that one of the protein-bound xanthophylls, assigned as violaxanthin, undergoes light-induced molecular reconfiguration. The phototransformation is selectively observed in a trimeric structure of the complex and is associated with a pronounced twisting and a trans-cis molecular configuration change of the polyene chain of the carotenoid. Among several spectral effects accompanying the reconfiguration there are ones indicating a carotenoid triplet state. Possible physiological importance of the light-induced violaxanthin reconfiguration as a mechanism associated with making the pigment available for enzymatic deepoxidation in the xanthophyll cycle is discussed.
Collapse
Affiliation(s)
- Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| | - Ewa Janik
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland.,Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University , ul. Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Bednarska
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| | - Monika Zubik
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland.,Department of Metrology and Modelling of Agrophysical Processes, Institute of Agrophysics of Polish Academy of Sciences , Doswiadczalna 4, 20-290 Lublin, Poland
| | - Karol Sowinski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland.,Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University , Chodzki 4a, 20-093 Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| |
Collapse
|
33
|
Ruban AV. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. PLANT PHYSIOLOGY 2016; 170:1903-16. [PMID: 26864015 PMCID: PMC4825125 DOI: 10.1104/pp.15.01935] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective "power" of NPQ and the important findings obtained through this technology.
Collapse
Affiliation(s)
- Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
34
|
Fox KF, Bricker WP, Lo C, Duffy CDP. Distortions of the Xanthophylls Caused by Interactions with Neighboring Pigments and the LHCII Protein Are Crucial for Studying Energy Transfer Pathways within the Complex. J Phys Chem B 2015; 119:15550-60. [DOI: 10.1021/acs.jpcb.5b08941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. F. Fox
- The
School of Biological and Chemical Sciences, Queen Mary’s University of London, Mile End Road, London E1 4NS, England
| | - William P. Bricker
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, Missouri 63130-4899, United States
| | - Cynthia Lo
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, Missouri 63130-4899, United States
| | - C. D. P. Duffy
- The
School of Biological and Chemical Sciences, Queen Mary’s University of London, Mile End Road, London E1 4NS, England
| |
Collapse
|
35
|
From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII). Sci Rep 2015; 5:15661. [PMID: 26493782 PMCID: PMC4616226 DOI: 10.1038/srep15661] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
Light-Harvesting Complex II (LHCII) is largely responsible for light absorption and excitation energy transfer in plants in light-limiting conditions, while in high-light it participates in photoprotection. It is generally believed that LHCII can change its function by switching between different conformations. However, the underlying molecular picture has not been elucidated yet. The available crystal structures represent the quenched form of the complex, while solubilized LHCII has the properties of the unquenched state. To determine the structural changes involved in the switch and to identify potential quenching sites, we have explored the structural dynamics of LHCII, by performing a series of microsecond Molecular Dynamics simulations. We show that LHCII in the membrane differs substantially from the crystal and has the signatures that were experimentally associated with the light-harvesting state. Local conformational changes at the N-terminus and at the xanthophyll neoxanthin are found to strongly correlate with changes in the interactions energies of two putative quenching sites. In particular conformational disorder is observed at the terminal emitter resulting in large variations of the excitonic coupling strength of this chlorophyll pair. Our results strongly support the hypothesis that light-harvesting regulation in LHCII is coupled with structural changes.
Collapse
|
36
|
Fehr N, Dietz C, Polyhach Y, von Hagens T, Jeschke G, Paulsen H. Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR. J Biol Chem 2015; 290:26007-20. [PMID: 26316535 PMCID: PMC4646254 DOI: 10.1074/jbc.m115.669804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the "Velcro" hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919-928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound.
Collapse
Affiliation(s)
- Niklas Fehr
- From the Department of General Botany, Johannes Gutenberg-University, 55128 Mainz, Germany and
| | - Carsten Dietz
- From the Department of General Botany, Johannes Gutenberg-University, 55128 Mainz, Germany and
| | - Yevhen Polyhach
- the Department of Physical Chemistry, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Tona von Hagens
- the Department of Physical Chemistry, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- the Department of Physical Chemistry, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Harald Paulsen
- From the Department of General Botany, Johannes Gutenberg-University, 55128 Mainz, Germany and
| |
Collapse
|
37
|
Holleboom CP, Gacek DA, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid-chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2015; 124:171-180. [PMID: 25744389 DOI: 10.1007/s11120-015-0113-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/25/2015] [Indexed: 05/28/2023]
Abstract
It is known that aggregation of isolated light-harvesting complex II (LHCII) in solution results in high fluorescence quenching, reduced chlorophyll fluorescence lifetime, and increased electronic coupling of carotenoid (Car) S1 and chlorophyll (Chl) Qy states, as determined by two-photon studies. It has been suggested that this behavior of aggregated LHCII mimics aspects of non-photochemical quenching processes of higher plants and algae. However, several studies proposed that the minor photosystem II proteins CP24 and CP29 also play a significant role in regulation of photosynthesis. Therefore, we use a simple protocol that allows gradual aggregation also of CP24 and CP29. Similarly, as observed for LHCII, aggregation of CP24 and CP29 also leads to increasing fluorescence quenching and increasing electronic Car S1-Chl Qy coupling. Furthermore, a direct comparison of the three proteins revealed a significant higher electronic coupling in the two minor proteins already in the absence of any aggregation. These differences become even more prominent upon aggregation. A red-shift of the Qy absorption band known from LHCII aggregation was also observed for CP29 but not for CP24. We discuss possible implications of these results for the role of CP24 and CP29 as potential valves for excess excitation energy in the regulation of photosynthetic light harvesting.
Collapse
Affiliation(s)
- Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Hans-Sommer-Str. 10, 38106, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schlau-Cohen GS, Yang HY, Krüger TPJ, Xu P, Gwizdala M, van Grondelle R, Croce R, Moerner WE. Single-Molecule Identification of Quenched and Unquenched States of LHCII. J Phys Chem Lett 2015; 6:860-7. [PMID: 26262664 DOI: 10.1021/acs.jpclett.5b00034] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In photosynthetic light harvesting, absorbed sunlight is converted to electron flow with near-unity quantum efficiency under low light conditions. Under high light conditions, plants avoid damage to their molecular machinery by activating a set of photoprotective mechanisms to harmlessly dissipate excess energy as heat. To investigate these mechanisms, we study the primary antenna complex in green plants, light-harvesting complex II (LHCII), at the single-complex level. We use a single-molecule technique, the Anti-Brownian Electrokinetic trap, which enables simultaneous measurements of fluorescence intensity, lifetime, and spectra in solution. With this approach, including the first measurements of fluorescence lifetime on single LHCII complexes, we access the intrinsic conformational dynamics. In addition to an unquenched state, we identify two partially quenched states of LHCII. Our results suggest that there are at least two distinct quenching sites with different molecular compositions, meaning multiple dissipative pathways in LHCII. Furthermore, one of the quenched conformations significantly increases in relative population under environmental conditions mimicking high light.
Collapse
Affiliation(s)
| | - Hsiang-Yu Yang
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tjaart P J Krüger
- ‡Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028, South Africa
| | - Pengqi Xu
- §Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Michal Gwizdala
- §Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- §Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- §Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - W E Moerner
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Akhtar P, Dorogi M, Pawlak K, Kovács L, Bóta A, Kiss T, Garab G, Lambrev PH. Pigment interactions in light-harvesting complex II in different molecular environments. J Biol Chem 2015; 290:4877-4886. [PMID: 25525277 PMCID: PMC4335227 DOI: 10.1074/jbc.m114.607770] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/16/2014] [Indexed: 11/06/2022] Open
Abstract
Extraction of plant light-harvesting complex II (LHCII) from the native thylakoid membrane or from aggregates by the use of surfactants brings about significant changes in the excitonic circular dichroism (CD) spectrum and fluorescence quantum yield. To elucidate the cause of these changes, e.g. trimer-trimer contacts or surfactant-induced structural perturbations, we compared the CD spectra and fluorescence kinetics of LHCII aggregates, artificial and native LHCII-lipid membranes, and LHCII solubilized in different detergents or trapped in polymer gel. By this means we were able to identify CD spectral changes specific to LHCII-LHCII interactions, at (-)-437 and (+)-484 nm, and changes specific to the interaction with the detergent n-dodecyl-β-maltoside (β-DM) or membrane lipids, at (+)-447 and (-)-494 nm. The latter change is attributed to the conformational change of the LHCII-bound carotenoid neoxanthin, by analyzing the CD spectra of neoxanthin-deficient plant thylakoid membranes. The neoxanthin-specific band at (-)-494 nm was not pronounced in LHCII in detergent-free gels or solubilized in the α isomer of DM but was present when LHCII was reconstituted in membranes composed of phosphatidylcholine or plant thylakoid lipids, indicating that the conformation of neoxanthin is sensitive to the molecular environment. Neither the aggregation-specific CD bands, nor the surfactant-specific bands were positively associated with the onset of fluorescence quenching, which could be triggered without invoking such spectral changes. Significant quenching was not active in reconstituted LHCII proteoliposomes, whereas a high degree of energetic connectivity, depending on the lipid:protein ratio, in these membranes allows for efficient light harvesting.
Collapse
Affiliation(s)
- Parveen Akhtar
- Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, 6726 Szeged and
| | - Márta Dorogi
- Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, 6726 Szeged and
| | - Krzysztof Pawlak
- Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, 6726 Szeged and
| | - László Kovács
- Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, 6726 Szeged and
| | - Attila Bóta
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Teréz Kiss
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Győző Garab
- Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, 6726 Szeged and
| | - Petar H Lambrev
- Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, 6726 Szeged and.
| |
Collapse
|
40
|
Krüger TP, Ilioaia C, Johnson MP, Ruban AV, van Grondelle R. Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1027-38. [DOI: 10.1016/j.bbabio.2014.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
|
41
|
Duffy CDP, Pandit A, Ruban AV. Modeling the NMR signatures associated with the functional conformational switch in the major light-harvesting antenna of photosystem II in higher plants. Phys Chem Chem Phys 2014; 16:5571-80. [PMID: 24513782 DOI: 10.1039/c3cp54971b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major photosystem II antenna complex, LHCII, possesses an intrinsic conformational switch linked to the formation of a photoprotective, excitation-quenching state. Recent solid state NMR experiments revealed that aggregation-induced quenching in (13)C-enriched LHCII from C. reinhardtii is associated with changes to the chemical shifts of three specific (13)C atoms in the Chla conjugated macrocycle. We performed DFT-based NMR calculations on the strongly-quenched crystal structure of LHCII (taken from spinach). We demonstrate that specific Chla-xanthophyll interactions in the quenched structure lead to changes in the Chla(13)C chemical shifts that are qualitatively similar to those observed by solid state NMR. We propose that these NMR changes are due to modulations in Chla-xanthophyll associations that occur due to a quenching-associated functional conformation change in the lutein and neoxanthin domains of LHCII. The combination of solid-state NMR and theoretical modeling is therefore a powerful tool for assessing functional conformational switching in the photosystem II antenna.
Collapse
Affiliation(s)
- Christopher D P Duffy
- The School of Biological and Chemical Science, Queen Mary, University of London, Mile End, London E1 4NS, UK.
| | | | | |
Collapse
|
42
|
Demmig-Adams B, Koh SC, Cohu CM, Muller O, Stewart JJ, Adams WW. Non-Photochemical Fluorescence Quenching in Contrasting Plant Species and Environments. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Ostroumov EE, Khan YR, Scholes GD, Govindjee. Photophysics of Photosynthetic Pigment-Protein Complexes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
How Protein Disorder Controls Non-Photochemical Fluorescence Quenching. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Galzerano D, Feilke K, Schaub P, Beyer P, Krieger-Liszkay A. Effect of constitutive expression of bacterial phytoene desaturase CRTI on photosynthetic electron transport in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:345-53. [PMID: 24378845 DOI: 10.1016/j.bbabio.2013.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/28/2013] [Accepted: 12/19/2013] [Indexed: 11/17/2022]
Abstract
The constitutive expression of the bacterial carotene desaturase (CRTI) in Arabidopsis thaliana leads to increased susceptibility of leaves to light-induced damage. Changes in the photosynthetic electron transport chain rather than alterations of the carotenoid composition in the antenna were responsible for the increased photoinhibition. A much higher level of superoxide/hydrogen peroxide was generated in the light in thylakoid membranes from the CRTI expressing lines than in wild-type while the level of singlet oxygen generation remained unchanged. The increase in reactive oxygen species was related to the activity of plastid terminal oxidase (PTOX) since their generation was inhibited by the PTOX-inhibitor octyl gallate, and since the protein level of PTOX was increased in the CRTI-expressing lines. Furthermore, cyclic electron flow was suppressed in these lines. We propose that PTOX competes efficiently with cyclic electron flow for plastoquinol in the CRTI-expressing lines and that it plays a crucial role in the control of the reduction state of the plastoquinone pool.
Collapse
Affiliation(s)
- Denise Galzerano
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | - Kathleen Feilke
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | - Patrick Schaub
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Beyer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
46
|
Magdaong NM, Enriquez MM, LaFountain AM, Rafka L, Frank HA. Effect of protein aggregation on the spectroscopic properties and excited state kinetics of the LHCII pigment–protein complex from green plants. PHOTOSYNTHESIS RESEARCH 2013; 118:259-76. [PMID: 24077891 DOI: 10.1007/s11120-013-9924-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/09/2013] [Indexed: 05/15/2023]
Abstract
Steady-state and time-resolved absorption and fluorescence spectroscopic experiments have been carried out at room and cryogenic temperatures on aggregated and unaggregated monomeric and trimeric LHCII complexes isolated from spinach chloroplasts. Protein aggregation has been hypothesized to be one of the mechanistic factors controlling the dissipation of excess photo-excited state energy of chlorophyll during the process known as nonphotochemical quenching. The data obtained from the present experiments reveal the role of protein aggregation on the spectroscopic properties and dynamics of energy transfer and excited state deactivation of the protein-bound chlorophyll and carotenoid pigments.
Collapse
|
47
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
48
|
Mendes-Pinto MM, Galzerano D, Telfer A, Pascal AA, Robert B, Ilioaia C. Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J Biol Chem 2013; 288:18758-65. [PMID: 23720734 DOI: 10.1074/jbc.m112.423681] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets.
Collapse
Affiliation(s)
- Maria M Mendes-Pinto
- Institut de Biologie et de Technologies de Saclay, UMR 8221 CNRS, Université Paris Sud, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
49
|
Sunku K, de Groot HJM, Pandit A. Insights into the photoprotective switch of the major light-harvesting complex II (LHCII): a preserved core of arginine-glutamate interlocked helices complemented by adjustable loops. J Biol Chem 2013; 288:19796-804. [PMID: 23629658 DOI: 10.1074/jbc.m113.456111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls. The antenna proteins of photosystem II have an intriguing dual function. In excess light, they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied magic angle spinning NMR and selective Arg isotope enrichment as a noninvasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield-shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends.
Collapse
Affiliation(s)
- Kiran Sunku
- Department of Solid-State NMR, Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
50
|
Duffy CDP, Valkunas L, Ruban AV. Light-harvesting processes in the dynamic photosynthetic antenna. Phys Chem Chem Phys 2013; 15:18752-70. [DOI: 10.1039/c3cp51878g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|