1
|
Ji J, Qian Q, Cheng W, Ye X, Jing A, Ma S, Ding Y, Ma X, Wang Y, Sun Q, Wang X, Chen Y, Zhu L, Yuan Q, Xu M, Qin J, Ma L, Yang J, Zhang M, Geng T, Wang S, Wang D, Song Y, Zhang B, Xu Y, Xu L, Liu S, Liu W, Liu B. FOXP4-mediated induction of PTK7 activates the Wnt/β-catenin pathway and promotes ovarian cancer development. Cell Death Dis 2024; 15:332. [PMID: 38740744 PMCID: PMC11091054 DOI: 10.1038/s41419-024-06713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.
Collapse
Affiliation(s)
- Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Xiaoqing Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yasong Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Qian Sun
- The First People's Hospital of Lianyungang, the First Affiliated Hospital of Kangda College of Nanjing Medical University, 7 Zhenhua Road, Haizhou, 222061, Lianyungang, Jiangsu, PR China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing Yuan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Menghan Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Lin Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Ting Geng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Sen Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Boyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Yuting Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Linyu Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China.
| |
Collapse
|
2
|
Du Y, Lyu Y, Li S, Ding D, Chen J, Yang C, Sun Y, Qu F, Xiao Z, Jiang J, Tan W. Ligand Dilution Analysis Facilitates Aptamer Binding Characterization at the Single-Molecule Level. Angew Chem Int Ed Engl 2023; 62:e202215387. [PMID: 36479802 DOI: 10.1002/anie.202215387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Cell-specific aptamers offer a powerful tool to study membrane receptors at the single-molecule level. Most target receptors of aptamers are highly expressed on the cell surface, but difficult to analyze in situ because of dense distribution and fast velocity. Therefore, we herein propose a random sampling-based analysis strategy termed ligand dilution analysis (LDA) for easily implemented aptamer-based receptor study. Receptor density on the cell surface can be calculated based on a regression model. By using a synergistic ligand dilution design, colocalization and differentiation of aptamer and monoclonal antibody (mAb) binding on a single receptor can be realized. Once this is accomplished, precise binding site and detailed aptamer-receptor binding mode can be further determined using molecular docking and molecular dynamics simulation. The ligand dilution strategy also sets the stage for an aptamer-based dynamics analysis of two- and three-dimensional motion and fluctuation of highly expressed receptors on the live cell membrane.
Collapse
Affiliation(s)
- Yulin Du
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong 518000, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianghuai Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cai Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengli Qu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zeyu Xiao
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Yun J, Hansen S, Morris O, Madden DT, Libeu CP, Kumar AJ, Wehrfritz C, Nile AH, Zhang Y, Zhou L, Liang Y, Modrusan Z, Chen MB, Overall CC, Garfield D, Campisi J, Schilling B, Hannoush RN, Jasper H. Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling. Nat Commun 2023; 14:156. [PMID: 36631445 PMCID: PMC9834240 DOI: 10.1038/s41467-022-35487-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Cellular senescence and the senescence-associated secretory phenotype (SASP) are implicated in aging and age-related disease, and SASP-related inflammation is thought to contribute to tissue dysfunction in aging and diseased animals. However, whether and how SASP factors influence the regenerative capacity of tissues remains unclear. Here, using intestinal organoids as a model of tissue regeneration, we show that SASP factors released by senescent fibroblasts deregulate stem cell activity and differentiation and ultimately impair crypt formation. We identify the secreted N-terminal domain of Ptk7 as a key component of the SASP that activates non-canonical Wnt / Ca2+ signaling through FZD7 in intestinal stem cells (ISCs). Changes in cytosolic [Ca2+] elicited by Ptk7 promote nuclear translocation of YAP and induce expression of YAP/TEAD target genes, impairing symmetry breaking and stem cell differentiation. Our study discovers secreted Ptk7 as a factor released by senescent cells and provides insight into the mechanism by which cellular senescence contributes to tissue dysfunction in aging and disease.
Collapse
Affiliation(s)
- Jina Yun
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Simon Hansen
- NBE Therapeutics, Hochbergstrasse 60C, 4057, Basel, Switzerland
| | - Otto Morris
- Exscientia Ltd., The Schrödinger Building Oxford Science Park, Oxford, OX4 4GE, UK
| | - David T Madden
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Clare Peters Libeu
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Arjun J Kumar
- Fred Hutch/University of Washington, 1100 Fairview Ave. N., Seattle, WA, 98109, USA
| | - Cameron Wehrfritz
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Aaron H Nile
- Calico Labs LLC., 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Yingnan Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lijuan Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michelle B Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - David Garfield
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Rami N Hannoush
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Heinrich Jasper
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
4
|
Cui NP, Qiao S, Jiang S, Hu JL, Wang TT, Liu WW, Qin Y, Wang YN, Zheng LS, Zhang JC, Ma YP, Chen BP, Shi JH. Protein Tyrosine Kinase 7 Regulates EGFR/Akt Signaling Pathway and Correlates With Malignant Progression in Triple-Negative Breast Cancer. Front Oncol 2021; 11:699889. [PMID: 34367983 PMCID: PMC8339706 DOI: 10.3389/fonc.2021.699889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is associated with high invasiveness, high metastatic occurrence and poor prognosis. Protein tyrosine kinase 7 (PTK7) plays an important role in multiple cancers. However, the role of PTK7 in TNBC has not been well addressed. This study was performed to evaluate the role of PTK7 in the progression of TNBC. Methods Correlation of PTK7 expression with clinicopathological parameters was assessed using tissue microarray immunohistochemistry (IHC) staining in 280 patients with breast cancer. PTK7 expression in TNBC (MDA-MB-468, MDA-MB-436 and MDA-MB-231) and non-TNBC (MCF7 and SK-BR-3) breast cancer cell lines were examined using immunoblotting assay. PTK7 correlated genes in invasive breast carcinoma were analyzed using cBioPortal breast cancer datasets including 1,904 patients. PTK7 overexpressed or knockdown TNBC cell lines (MDA-MB-468 and MDA-MB-436) were used to analyze the potential roles of PTK7 in TNBC metastasis and tumor progression. A TNBC tumor bearing mouse model was established to further analyze the role of PTK7 in TNBC tumorigenicity in vivo. Results PTK7 is highly expressed in breast cancer and correlates with worse prognosis and associates with tumor metastasis and progression in TNBC. Co-expression analysis and gain- or loss-of-function of PTK7 in TNBC cell lines revealed that PTK7 participates in EGFR/Akt signaling regulation and associated with extracellular matrix organization and migration genes in breast cancer, including COL1A1, FN1, WNT5B, MMP11, MMP14 and SDC1. Gain- or loss-of-function experiments of PTK7 suggested that PTK7 promotes proliferation and migration in TNBC cell lines. PTK7 knockdown MDA-MB-468 cell bearing mouse model further demonstrated that PTK7-deficiency inhibits TNBC tumor progression in vivo. Conclusion This study identified PTK7 as a potential marker of worse prognosis in TNBC and revealed PTK7 promotes TNBC metastasis and progression via EGFR/Akt signaling pathway.
Collapse
Affiliation(s)
- Nai-Peng Cui
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China.,Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shu Qiao
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shan Jiang
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin-Lin Hu
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Ting-Ting Wang
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Wen-Wen Liu
- Institute of Life Science and Green Development, Hebei University, Baoding, China.,Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan Qin
- Institute of Life Science and Green Development, Hebei University, Baoding, China.,Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-Shuang Zheng
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin-Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding, China
| | - Yong-Ping Ma
- Department of Stomatology, Baoding Second Hospital, Baoding, China
| | - Bao-Ping Chen
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jian-Hong Shi
- Institute of Life Science and Green Development, Hebei University, Baoding, China.,Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
5
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Marusak C, Thakur V, Li Y, Freitas JT, Zmina PM, Thakur VS, Chang M, Gao M, Tan J, Xiao M, Lu Y, Mills GB, Flaherty K, Frederick DT, Miao B, Sullivan RJ, Moll T, Boland GM, Herlyn M, Zhang G, Bedogni B. Targeting Extracellular Matrix Remodeling Restores BRAF Inhibitor Sensitivity in BRAFi-resistant Melanoma. Clin Cancer Res 2020; 26:6039-6050. [PMID: 32820016 PMCID: PMC7669662 DOI: 10.1158/1078-0432.ccr-19-2773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The extracellular matrix (ECM) is an intriguing, yet understudied component of therapy resistance. Here, we investigated the role of ECM remodeling by the collagenase, MT1-MMP, in conferring resistance of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant melanoma to BRAF inhibitor (BRAFi) therapy. EXPERIMENTAL DESIGN Publicly available RNA-sequencing data and reverse phase protein array were used to determine the relevance of MT1-MMP upregulation in BRAFi-resistant melanoma in patients, patient-derived xenografts, and cell line-derived tumors. Short hairpin RNA (shRNA)-mediated knockdown of MT1-MMP, inhibition via the selective MT1-MMP/MMP2 inhibitor, ND322, or overexpression of MT1-MMP was used to assess the role of MT1-MMP in mediating resistance to BRAFi. RESULTS MT1-MMP was consistently upregulated in posttreatment tumor samples derived from patients upon disease progression and in melanoma xenografts and cell lines that acquired resistance to BRAFi. shRNA- or ND322-mediated inhibition of MT1-MMP synergized with BRAFi leading to resensitization of resistant cells and tumors to BRAFi. The resistant phenotype depends on the ability of cells to cleave the ECM. Resistant cells seeded in MT1-MMP uncleavable matrixes were resensitized to BRAFi similarly to MT1-MMP inhibition. This is due to the inability of cells to activate integrinβ1 (ITGB1)/FAK signaling, as restoration of ITGB1 activity is sufficient to maintain resistance to BRAFi in the context of MT1-MMP inhibition. Finally, the increase in MT1-MMP in BRAFi-resistant cells is TGFβ dependent, as inhibition of TGFβ receptors I/II dampens MT1-MMP overexpression and restores sensitivity to BRAF inhibition. CONCLUSIONS BRAF inhibition results in a selective pressure toward higher expression of MT1-MMP. MT1-MMP is pivotal to an ECM-based signaling pathway that confers resistance to BRAFi therapy.
Collapse
Affiliation(s)
- Charles Marusak
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Varsha Thakur
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuan Li
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Juliano T Freitas
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrick M Zmina
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vijay S Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Jiufeng Tan
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- The Knight Cancer Institute, Oregon Health Sciences University, Portland, Oregon
| | - Keith Flaherty
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Tabea Moll
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Gao Zhang
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Barbara Bedogni
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
7
|
Lichtig H, Cohen Y, Bin-Nun N, Golubkov V, Frank D. PTK7 proteolytic fragment proteins function during early Xenopus development. Dev Biol 2019; 453:48-55. [PMID: 31125531 DOI: 10.1016/j.ydbio.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Protein Tyrosine Kinase 7 (PTK7) is as a critical regulator of canonical and non-canonical Wnt-signaling during embryonic development and cancer cell formation. Disrupting PTK7 activity perturbs vertebrate nervous system development, and also promotes human cancer formation. Observations in different model systems suggest a complex cross-talk between PTK7 protein and Wnt signaling. During Xenopus laevis nervous system development, we previously showed that PTK7 protein positively regulates canonical Wnt signaling by maintaining optimal LRP6 protein levels, but PTK7 also acts in concert with LRP6 protein to repress non-canonical Wnt activity. PTK7 is a transmembrane protein, but studies in cancer cells showed that PTK7 undergoes "shedding" by metalloproteases to different proteolytic fragments. Some PTK7 proteolytic fragments are oncogenic, being localized to alternative cytoplasmic and nuclear cell compartments. In this study we examined the biological activity of two proteolytic carboxyl-terminal PTK7 proteolytic fragments, cPTK7 622-1070 and cPTK7 726-1070 during early Xenopus nervous system development. We found that these smaller PTK7 proteolytic fragments have similar activity to full-length PTK7 protein to promote canonical Wnt-signaling via regulation of LRP6 protein levels. In addition to cancer systems, this study shows in vivo proof that these smaller PTK7 proteolytic fragments can recapitulate full-length PTK7 protein activity in diverse systems, such as vertebrate nervous system development.
Collapse
Affiliation(s)
- Hava Lichtig
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Yasmin Cohen
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Naama Bin-Nun
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | | | - Dale Frank
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
8
|
Thakur V, Zhang K, Savadelis A, Zmina P, Aguila B, Welford SM, Abdul-Karim F, Bonk KW, Keri RA, Bedogni B. The membrane tethered matrix metalloproteinase MT1-MMP triggers an outside-in DNA damage response that impacts chemo- and radiotherapy responses of breast cancer. Cancer Lett 2018; 443:115-124. [PMID: 30502358 DOI: 10.1016/j.canlet.2018.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
Abstract
Breast cancer is the second leading cause of death among women in the US. Targeted therapies exist, however resistance is common and patients resort to chemotherapy. Chemotherapy is also a main treatment for triple negative breast cancer (TNBC) patients; while radiation is delivered to patients with advanced disease to counteract metastasis. Yet, resistance to both chemo- and radiotherapy is still frequent, highlighting a need to provide novel sensitizers. We discovered that MT1-MMP modulates DNA damage responses (DDR) in breast cancer. MT1-MMP expression inversely correlates to chemotherapy response of breast cancer patients. Inhibition of MT1-MMP sensitizes TNBC cells to IR and doxorubicin in vitro, and in vivo in an orthotopic breast cancer model. Specifically, depletion of MT1-MMP causes stalling of replication forks and Double Strand Breaks (DBSs), leading to increased sensitivity to additional genotoxic stresses. These effects are mediated by integrinβ1, as a constitutive active integrinβ1 reverts replication defects and protects cells depleted of MT1-MMP from IR and chemotherapy. These data highlight a novel DNA damage response triggered by MT1-MMP-integrinβ1 and provide a new point of therapeutic targeting that may improve breast cancer patient outcomes.
Collapse
Affiliation(s)
- Varsha Thakur
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alyssa Savadelis
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Patrick Zmina
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Brittany Aguila
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Fadi Abdul-Karim
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, 44119, USA
| | - Kristen W Bonk
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Fontanals-Cirera B, Hasson D, Vardabasso C, Di Micco R, Agrawal P, Chowdhury A, Gantz M, de Pablos-Aragoneses A, Morgenstern A, Wu P, Filipescu D, Valle-Garcia D, Darvishian F, Roe JS, Davies MA, Vakoc CR, Hernando E, Bernstein E. Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene. Mol Cell 2017; 68:731-744.e9. [PMID: 29149598 PMCID: PMC5993436 DOI: 10.1016/j.molcel.2017.11.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/18/2017] [Accepted: 11/01/2017] [Indexed: 01/13/2023]
Abstract
Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma.
Collapse
Affiliation(s)
- Barbara Fontanals-Cirera
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Dan Hasson
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Vardabasso
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raffaella Di Micco
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Praveen Agrawal
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Asif Chowdhury
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madeleine Gantz
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana de Pablos-Aragoneses
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Ari Morgenstern
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Pamela Wu
- Institute of Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Dan Filipescu
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Valle-Garcia
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farbod Darvishian
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eva Hernando
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA.
| | - Emily Bernstein
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Matrix Metalloproteinases and Synovial Joint Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:305-325. [PMID: 28662824 DOI: 10.1016/bs.pmbts.2017.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent enzymes. These enzymes play a critical role in the destruction of articular cartilage in rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), and the spondyloarthropathies. MMP gene expression is upregulated in these synovial joint pathologies in response to elevated levels of proinflammatory cytokines and soluble mediators such as tumor necrosis factor-α, interleukin-1 (IL-1), IL-6, IL-17, and interferon-γ. These molecules are capable of activating the mitogen-activated protein kinase and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways by binding the cytokine to their respective receptors on immune cells, macrophages, chondrocytes, synoviocytes, and osteocytes leading to increased synthesis of MMPs. Biologic drugs and/or small-molecule inhibitors designed to block cytokine to cytokine receptor interactions or to selectively inhibit JAKs have clinical efficacy in RA, PsA, and ankylosing spondylitis which correlated with a reduction in MMPs. Although there are currently no OA-selective drugs, it is likely that such a drug would have to reduce MMP gene expression to have clinical efficacy.
Collapse
|
11
|
Cieplak P, Strongin AY. Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1952-1963. [PMID: 28347746 DOI: 10.1016/j.bbamcr.2017.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Understanding the physiological role of any protease requires identification of both its cleavage substrates and their relative cleavage efficacy as compared with other substrates and other proteinases. Our review manuscript is focused on the cleavage preferences of the individual matrix metalloproteinases (MMPs) and the cleavage similarity and distinction that exist in the human MMP family. The recent in-depth analysis of MMPs by us and many others greatly increased knowledge of the MMP biology and structural-functional relationships among this protease family members. A better knowledge of cleavage preferences of MMPs has led us to the development of the prediction tools that are now capable of the high throughput reliable prediction and ranking the MMP cleavage sites in the peptide sequences in silico. Our software unifies and consolidates volumes of the pre-existing data. Now this prediction-ranking in silico tool is ready to be used by others. The software we developed may facilitate both the identification of the novel proteolytic regulatory pathways and the discovery of the previously uncharacterized substrates of the individual MMPs. Because now the MMP research may be based on the mathematical probability parameters rather than on either random luck or common sense alone, the researchers armed with this novel in silico tool will be better equipped to fine-tune or, at least, to sharply focus their wet chemistry experiments. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Piotr Cieplak
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Dunn NR, Tolwinski NS. Ptk7 and Mcc, Unfancied Components in Non-Canonical Wnt Signaling and Cancer. Cancers (Basel) 2016; 8:cancers8070068. [PMID: 27438854 PMCID: PMC4963810 DOI: 10.3390/cancers8070068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Human development uses a remarkably small number of signal transduction pathways to organize vastly complicated tissues. These pathways are commonly associated with disease in adults if activated inappropriately. One such signaling pathway, Wnt, solves the too few pathways conundrum by having many alternate pathways within the Wnt network. The main or "canonical" Wnt pathway has been studied in great detail, and among its numerous downstream components, several have been identified as drug targets that have led to cancer treatments currently in clinical trials. In contrast, the non-canonical Wnt pathways are less well characterized, and few if any possible drug targets exist to tackle cancers caused by dysregulation of these Wnt offshoots. In this review, we focus on two molecules-Protein Tyrosine Kinase 7 (Ptk7) and Mutated in Colorectal Cancer (Mcc)-that do not fit perfectly into the non-canonical pathways described to date and whose roles in cancer are ill defined. We will summarize work from our laboratories as well as many others revealing unexpected links between these two proteins and Wnt signaling both in cancer progression and during vertebrate and invertebrate embryonic development. We propose that future studies focused on delineating the signaling machinery downstream of Ptk7 and Mcc will provide new, hitherto unanticipated drug targets to combat cancer metastasis.
Collapse
Affiliation(s)
- Norris Ray Dunn
- Agency for Science Technology and Research (A*STAR) Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | - Nicholas S Tolwinski
- Division of Science, Yale-NUS College, Singapore 138610, Singapore.
- Department of Biological Sciences, Centre for Translational Medicine, NUS Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Level 10 South, 10-02M, Singapore 117599, Singapore.
| |
Collapse
|
13
|
Martinez S, Scerbo P, Giordano M, Daulat AM, Lhoumeau AC, Thomé V, Kodjabachian L, Borg JP. The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway. J Biol Chem 2015; 290:30562-72. [PMID: 26499793 PMCID: PMC4683276 DOI: 10.1074/jbc.m115.697615] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
The non-canonical WNT/planar cell polarity (WNT/PCP) pathway plays important roles in morphogenetic processes in vertebrates. Among WNT/PCP components, protein tyrosine kinase 7 (PTK7) is a tyrosine kinase receptor with poorly defined functions lacking catalytic activity. Here we show that PTK7 associates with receptor tyrosine kinase-like orphan receptor 2 (ROR2) to form a heterodimeric complex in mammalian cells. We demonstrate that PTK7 and ROR2 physically and functionally interact with the non-canonical WNT5A ligand, leading to JNK activation and cell movements. In the Xenopus embryo, Ptk7 functionally interacts with Ror2 to regulate protocadherin papc expression and morphogenesis. Furthermore, we show that Ptk7 is required for papc activation induced by Wnt5a. Interestingly, we find that Wnt5a stimulates the release of the tagged Ptk7 intracellular domain, which can translocate into the nucleus and activate papc expression. This study reveals novel molecular mechanisms of action of PTK7 in non-canonical WNT/PCP signaling that may promote cell and tissue movements.
Collapse
Affiliation(s)
- Sébastien Martinez
- From the CRCM, Cell Polarity, Cell Signaling, and Cancer "Equipe Labellisée Ligue Contre le Cancer", INSERM, U1068, 13009 Marseille, France, the Institut Paoli-Calmettes, 13009 Marseille, France, the Aix-Marseille Université, 13284 Marseille, France, the CNRS, UMR7258, 13009 Marseille, France, and
| | - Pierluigi Scerbo
- the Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS, 13288 Marseille, France
| | - Marilyn Giordano
- From the CRCM, Cell Polarity, Cell Signaling, and Cancer "Equipe Labellisée Ligue Contre le Cancer", INSERM, U1068, 13009 Marseille, France, the Institut Paoli-Calmettes, 13009 Marseille, France, the Aix-Marseille Université, 13284 Marseille, France, the CNRS, UMR7258, 13009 Marseille, France, and
| | - Avais M Daulat
- From the CRCM, Cell Polarity, Cell Signaling, and Cancer "Equipe Labellisée Ligue Contre le Cancer", INSERM, U1068, 13009 Marseille, France, the Institut Paoli-Calmettes, 13009 Marseille, France, the Aix-Marseille Université, 13284 Marseille, France, the CNRS, UMR7258, 13009 Marseille, France, and
| | - Anne-Catherine Lhoumeau
- From the CRCM, Cell Polarity, Cell Signaling, and Cancer "Equipe Labellisée Ligue Contre le Cancer", INSERM, U1068, 13009 Marseille, France, the Institut Paoli-Calmettes, 13009 Marseille, France, the Aix-Marseille Université, 13284 Marseille, France, the CNRS, UMR7258, 13009 Marseille, France, and
| | - Virginie Thomé
- the Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS, 13288 Marseille, France
| | - Laurent Kodjabachian
- the Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS, 13288 Marseille, France
| | - Jean-Paul Borg
- From the CRCM, Cell Polarity, Cell Signaling, and Cancer "Equipe Labellisée Ligue Contre le Cancer", INSERM, U1068, 13009 Marseille, France, the Institut Paoli-Calmettes, 13009 Marseille, France, the Aix-Marseille Université, 13284 Marseille, France, the CNRS, UMR7258, 13009 Marseille, France, and
| |
Collapse
|
14
|
Knapinska AM, Dreymuller D, Ludwig A, Smith L, Golubkov V, Sohail A, Fridman R, Giulianotti M, LaVoi TM, Houghten RA, Fields GB, Minond D. SAR Studies of Exosite-Binding Substrate-Selective Inhibitors of A Disintegrin And Metalloprotease 17 (ADAM17) and Application as Selective in Vitro Probes. J Med Chem 2015; 58:5808-24. [PMID: 26192023 DOI: 10.1021/acs.jmedchem.5b00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J. Biol. Chem. 2013, 288, 22871). As a result of SAR studies presented herein, we obtained several highly selective ADAM17 inhibitors, six of which were further characterized in biochemical and cell-based assays. Lead compounds exhibited low cellular toxicity and high potency and selectivity for ADAM17. In addition, several of the leads inhibited ADAM17 in a substrate-selective manner, which has not been previously documented for inhibitors of the ADAM family. These findings suggest that targeting exosites of ADAM17 can be used to obtain highly desirable substrate-selective inhibitors. Additionally, current inhibitors can be used as probes of biological activity of ADAM17 in various in vitro and, potentially, in vivo systems.
Collapse
Affiliation(s)
- Anna M Knapinska
- ∥Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Daniela Dreymuller
- ⊥Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Andreas Ludwig
- ⊥Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Lyndsay Smith
- ∥Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Vladislav Golubkov
- ‡Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anjum Sohail
- §Wayne State University, 8200 Scott Hall, 540 East Canfield Avenue, Detroit, Michigan 48201, United States
| | - Rafael Fridman
- §Wayne State University, 8200 Scott Hall, 540 East Canfield Avenue, Detroit, Michigan 48201, United States
| | - Marc Giulianotti
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,∇Department of Chemistry, Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida 33612, United States
| | - Travis M LaVoi
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregg B Fields
- ∥Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,#The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Dmitriy Minond
- †Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
15
|
Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny JL, Leung CH, Ma DL. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci 2015; 6:4284-4290. [PMID: 29218197 PMCID: PMC5707507 DOI: 10.1039/c5sc01320h] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/17/2015] [Indexed: 12/22/2022] Open
Abstract
A series of luminescent iridium(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The iridium(iii) complex 9 [Ir(pbi)2(5,5-dmbpy)]PF6 (where pbi = 2-phenyl-1H-benzo[d]imidazole; 5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) exhibited high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a G-quadruplex-based assay for protein tyrosine kinase-7 (PTK7) in aqueous solution. PTK7 is an important biomarker for a range of leukemias and solid tumors. In the presence of PTK7, the specific binding of the sgc8 aptamer sequence triggers a structural transition and releases the G-quadruplex-forming sequence. The formation of the nascent G-quadruplex structure is then detected by the G-quadruplex-selective iridium(iii) complex with an enhanced luminescent response. Moreover, the application of the assay for detecting PTK7 in cellular debris and membrane protein extract was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for PTK7.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Wei Gao
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Zeru Tian
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Lihua Lu
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Jean-Louis Mergny
- University of Bordeaux , ARNA Laboratory , Bordeaux , France .
- INSERM , U869 , IECB , Pessac , France
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
- Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| |
Collapse
|
16
|
Murdoch JN, Damrau C, Paudyal A, Bogani D, Wells S, Greene NDE, Stanier P, Copp AJ. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice. Dis Model Mech 2014; 7:1153-63. [PMID: 25128525 PMCID: PMC4174526 DOI: 10.1242/dmm.016758] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2(Lp), Scrib(Crc) and Celsr1(Crsh) mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1(Crsh);Vangl2(Lp);Scrib(Crc) triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas Scrib(Crc) is a null mutant and produces no Scrib protein, Celsr1(Crsh) and Vangl2(Lp) homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are of direct relevance to human patients and emphasize the importance of performing comprehensive genetic screens in humans.
Collapse
Affiliation(s)
- Jennifer N Murdoch
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0RD, UK. MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK.
| | - Christine Damrau
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - Anju Paudyal
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - Debora Bogani
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - Sara Wells
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
17
|
Golubkov VS, Prigozhina NL, Zhang Y, Stoletov K, Lewis JD, Schwartz PE, Hoffman RM, Strongin AY. Protein-tyrosine pseudokinase 7 (PTK7) directs cancer cell motility and metastasis. J Biol Chem 2014; 289:24238-49. [PMID: 25006253 DOI: 10.1074/jbc.m114.574459] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that widely expressed PTK7 is essential for vertebrate tissue morphogenesis. In cancer, the functionality of PTK7 is selectively regulated by membrane type-1 matrix metalloproteinase (MT1-MMP), ADAMs (a disintegrin domain and metalloproteinases), and γ-secretase proteolysis. Here, we established that the full-length membrane PTK7, its Chuzhoi mutant with the two functional MT1-MMP cleavage sites, and its L622D mutant with the single inactivated MT1-MMP cleavage site differentially regulate cell motility in a two-dimensional versus three-dimensional environment. We also demonstrated that in polarized cancer cells, the levels of PTK7 expression and proteolysis were directly linked to the structure and kinetics of cell protrusions, including lamellipodia and invadopodia. In the functionally relevant and widely accepted animal models of metastasis, mouse and chick embryo models, both the overexpression and knock-out of PTK7 in HT1080 cells abrogated metastatic dissemination. Our analysis of human tissue specimens confirmed intensive proteolysis of PTK7 in colorectal cancer tumors, but not in matching normal tissue. Our results provide convincing evidence that both PTK7 expression and proteolysis, rather than the level of the cellular full-length PTK7 alone, contribute to efficient directional cell motility and metastasis in cancer.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| | | | - Yong Zhang
- AntiCancer, Inc., San Diego, California 92111
| | | | - John D Lewis
- the Department of Oncology, University of Alberta, Edmonton T6G 2E1, Canada
| | | | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California 92111, the Department of Surgery, University of California, San Diego, California 92103
| | - Alex Y Strongin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| |
Collapse
|
18
|
Golubkov VS, Strongin AY. Downstream signaling and genome-wide regulatory effects of PTK7 pseudokinase and its proteolytic fragments in cancer cells. Cell Commun Signal 2014; 12:15. [PMID: 24618420 PMCID: PMC4007575 DOI: 10.1186/1478-811x-12-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/25/2014] [Indexed: 01/08/2023] Open
Abstract
Background The full-length membrane protein tyrosine kinase 7 (PTK7) pseudokinase, an important component of the planar cell polarity and the Wnt canonical and non-canonical pathways, is a subject of step-wise proteolysis in cells and tissues. The proteolysis of PTK7 involves membrane type-matrix metalloproteinase (MT1-MMP), members of the Disintegrin Domain and Metalloproteinase (ADAM) family, and γ-secretase. This multi-step proteolysis results in the generation of the digest fragments of PTK7. These fragments may be either liberated into the extracellular milieu or retained on the plasma membrane or released into the cytoplasm and then transported into the nucleus. Results We employed the genome-wide transcriptional and kinome array analyses to determine the role of the full-length membrane PTK7 and its proteolytic fragments in the downstream regulatory mechanisms, with an emphasis on the cell migration-related genes and proteins. Using fibrosarcoma HT1080 cells stably expressing PTK7 and its mutant and truncated species, the structure of which corresponded to the major PTK7 digest fragments, we demonstrated that the full-length membrane 1–1070 PTK7, the N-terminal 1–694 soluble ectodomain fragment, and the C-terminal 622–1070 and 726–1070 fragments differentially regulate multiple genes and signaling pathways in our highly invasive cancer cell model. Immunoblotting of the selected proteins were used to validate the results of our high throughput assays. Conclusions Our results suggest that PTK7 levels need to be tightly controlled to enable migration and that the anti-migratory effect of the full-length membrane PTK7 is linked to the down-regulation of multiple migration-related genes and to the activation of the Akt and c-Jun pathway. In turn, the C-terminal fragments of PTK7 act predominantly via the RAS-ERK and CREB/ATF1 pathway and through the up-regulation of cadherin-11. In general, our data correlate well with the distinct functionality of the full-length receptor tyrosine kinases and their respective intracellular domain (ICD) proteolytic fragments.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
| | | |
Collapse
|
19
|
Ma J, Tang X, Wong P, Jacobs B, Borden EC, Bedogni B. Noncanonical activation of Notch1 protein by membrane type 1 matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J Biol Chem 2014; 289:8442-9. [PMID: 24492617 DOI: 10.1074/jbc.m113.516039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Notch1 is an evolutionarily conserved signaling molecule required for stem cell maintenance that is inappropriately reactivated in several cancers. We have previously shown that melanomas reactivate Notch1 and require its function for growth and survival. However, no Notch1-activating mutations have been observed in melanoma, suggesting the involvement of other activating mechanisms. Notch1 activation requires two cleavage steps: first by a protease and then by γ-secretase, which releases the active intracellular domain (Notch1(NIC)). Interestingly, although ADAM10 and -17 are generally accepted as the proteases responsible of Notch1 cleavage, here we show that MT1-MMP, a membrane-tethered matrix metalloproteinase involved in the pathogenesis of a number of tumors, is a novel protease required for the cleavage of Notch1 in melanoma cells. We find that active Notch1 and MT1-MMP expression correlate significantly in over 70% of melanoma tumors and 80% of melanoma cell lines, whereas such correlation does not exist between Notch1(NIC) and ADAM10 or -17. Modulation of MT1-MMP expression in melanoma cells affects Notch1 cleavage, whereas MT1-MMP expression in ADAM10/17 double knock-out fibroblasts restores the processing of Notch1, indicating that MT1-MMP is sufficient to promote Notch1 activation independently of the canonical proteases. Importantly, we find that MT1-MMP interacts with Notch1 at the cell membrane, supporting a potential direct cleavage mechanism of MT1-MMP on Notch1, and that MT1-MMP-dependent activation of Notch1 sustains melanoma cell growth. Together, the data highlight a novel mechanism of activation of Notch1 in melanoma cells and identify Notch1 as a new MT1-MMP substrate that plays important biological roles in melanoma.
Collapse
Affiliation(s)
- Jun Ma
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | | | | | | | | | | |
Collapse
|
20
|
Shiryaev SA, Remacle AG, Golubkov VS, Ingvarsen S, Porse A, Behrendt N, Cieplak P, Strongin AY. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis 2013; 2:e80. [PMID: 24296749 PMCID: PMC3940861 DOI: 10.1038/oncsis.2013.44] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1–MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function of cellular MT1–MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1–MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT–MMPs and that is distant from the MT1–MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents tissue inhibitor of metalloproteinases-2 (TIMP-2) association with MT1–MMP. As a result, the 9E8 antibody incapacitates the TIMP-2-dependent MMP-2-activating function alone rather than the general enzymatic activity of human MT1–MMP. The specific function of the 9E8 antibody we determined directly supports an essential, albeit paradoxical, role of the protein inhibitor (TIMP-2) in MMP-2 activation via a unique membrane-tethered mechanism. In this mechanism, the formation of a tri-molecular MT1–MMPTIMP-2MMP-2 complex is required for both the capture of the soluble MMP-2 proenzyme by cells and then its well-controlled conversion into the mature MMP-2 enzyme. In sum, understanding of the structural requirements for the 9E8 antibody specificity may pave the way for the focused design of the inhibitory antibodies against other individual MMPs.
Collapse
Affiliation(s)
- S A Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Golubkov VS, Strongin AY. Insights into ectodomain shedding and processing of protein-tyrosine pseudokinase 7 (PTK7). J Biol Chem 2012; 287:42009-18. [PMID: 23095747 DOI: 10.1074/jbc.m112.371153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The membrane PTK7 pseudokinase, a component of both the canonical and noncanonical/planar cell polarity Wnt pathways, modulates cell polarity and motility in biological processes as diverse as embryo development and cancer cell invasion. To determine the individual proteolytic events and biological significance of the ectodomain shedding in the PTK7 function, we used highly invasive fibrosarcoma HT1080 cells as a model system. Current evidence suggested a likely link between PTK7 shedding and cell invasion in our HT1080 cell model system. We also demonstrated that in HT1080 cells the cleavage of the PTK7 ectodomain by an ADAM proteinase was coupled with the membrane type-1 matrix metalloproteinase (MT1-MMP) cleavage of the PKP(621)↓LI site in the seventh Ig-like domain of PTK7. Proteolytic cleavages led to the generation of two soluble, N-terminal and two matching C-terminal, cell-associated fragments of PTK7. This proteolysis was a prerequisite for the intramembrane cleavage of the C-terminal fragments of PTK7 by γ-secretase. γ-Secretase cleavage was predominantly followed by the efficient decay of the resulting C-terminal PTK7 fragment via the proteasome. In contrast, in HT1080 cells, which overexpressed the C-terminal PTK7 fragment, the latter readily entered the nucleus. Our data imply that therapeutic inhibition of PTK7 shedding may be used to slow cancer progression.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | |
Collapse
|
22
|
Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, Li B, Li Y. PTK7: a new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res 2012; 36:1347-53. [PMID: 22898210 DOI: 10.1016/j.leukres.2012.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Protein tyrosine kinase-7 (PTK7) was recently identified as a surface protein expressed on hematopoietic cells. To determine if PTK7 is a useful biomarker in clinical practice for acute leukemia immunophenotyping and detection, we examined the PTK7 expression in human bone marrow and thymic specimens. Our results show that PTK7 expression in normal thymic T cells is tightly regulated during the maturational process, but in T cell acute lymphoblastic leukemia (T-ALL) the expected temporal relationship of expression between PTK7 and other maturational T cell markers is lost or disrupted. In addition, nearly all T-ALL cases expressed higher PTK7 levels than mature T cells in the human bone marrow specimens. Therefore, in conjunction with other T cell markers, PTK7 has utility as a biomarker for detecting minimal residual disease of T-ALL in the bone marrow.
Collapse
Affiliation(s)
- Guohua Jiang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, United States
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Peradziryi H, Tolwinski NS, Borchers A. The many roles of PTK7: a versatile regulator of cell-cell communication. Arch Biochem Biophys 2012; 524:71-6. [PMID: 22230326 DOI: 10.1016/j.abb.2011.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022]
Abstract
PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with functions in various processes ranging from embryonic morphogenesis to epidermal wound repair. Here, we review recent findings indicating that PTK7 is a versatile co-receptor that functions as a molecular switch in Wnt, Semaphorin/Plexin and VEGF signaling pathways. We focus in particular on the role of PTK7 in Wnt signaling, as recent data indicate that PTK7 acts as a Wnt co-receptor, which activates the planar cell polarity pathway, but inhibits canonical Wnt signaling.
Collapse
Affiliation(s)
- Hanna Peradziryi
- Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB), GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|