1
|
Wang L, Chen J, Li Q, Liu A, Lei Z, Li M, Yasin P, Yang S, Ren J, Hu Y, Ren Y, Cheng S, Liu Z. Cigarette smoke extract induces malignant transformation and DNA damage via c-MET phosphorylation in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116985. [PMID: 39217894 DOI: 10.1016/j.ecoenv.2024.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cigarette smoke, a complex mixture produced by tobacco combustion, contains a variety of carcinogens and can trigger DNA damage. Overactivation of c-MET, a receptor tyrosine kinase, may cause cancer and cellular DNA damage, but the underlying mechanisms are unknown. In this work, we investigated the mechanisms of cigarette smoke extract (CSE) induced malignant transformation and DNA damage in human bronchial epithelial cells (BEAS-2B). The results demonstrated that CSE treatment led to up-regulated mRNA expression of genes associated with the c-MET signaling pathway, increased expression of the DNA damage sensor protein γ-H2AX, and uncontrolled proliferation in BEAS-2B cells. ATR, ATR, and CHK2, which are involved in DNA damage repair, as well as the phosphorylation of c-MET and a group of kinases (ATM, ATR, CHK1, CHK2) involved in the DNA damage response were all activated by CSE. In addition, CSE activation promotes the phosphorylation modification of ATR, CHK1 proteins associated with DNA damage repair. The addition of PHA665752, a specific inhibitor of c-MET, or knock-down with c-MET both attenuated DNA damage, while overexpression of c-MET exacerbated DNA damage. Thus, c-MET phosphorylation may be involved in CSE-induced DNA damage, providing a potential target for intervention in the prevention and treatment of smoking-induced lung diseases.
Collapse
Affiliation(s)
- Li Wang
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China; School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jin Chen
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Qianhui Li
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China; School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Anfei Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Zhenhan Lei
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Meixin Li
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Pazilat Yasin
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Shuo Yang
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Jing Ren
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Yijie Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Yihui Ren
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Suizhi Cheng
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China; School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
2
|
Alghoul E, Basbous J, Constantinou A. Compartmentalization of the DNA damage response: Mechanisms and functions. DNA Repair (Amst) 2023; 128:103524. [PMID: 37320957 DOI: 10.1016/j.dnarep.2023.103524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Cells have evolved an arsenal of molecular mechanisms to respond to continuous alterations in the primary structure of DNA. At the cellular level, DNA damage response proteins accumulate at sites of DNA damage and organize into nuclear foci. As recounted by Errol Friedberg, pioneering work on DNA repair in the 1930 s was stimulated by collaborations between physicists and geneticists. In recent years, the introduction of ideas from physics on self-organizing compartments has taken the field of cell biology by storm. Percolation and phase separation theories are increasingly used to model the self-assembly of compartments, called biomolecular condensates, that selectively concentrate molecules without a surrounding membrane. In this review, we discuss these concepts in the context of the DNA damage response. We discuss how studies of DNA repair foci as condensates can link molecular mechanisms with cell physiological functions, provide new insights into regulatory mechanisms, and open new perspectives for targeting DNA damage responses for therapeutic purposes.
Collapse
Affiliation(s)
- Emile Alghoul
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
3
|
Prabhakar AT, James CD, Das D, Otoa R, Day M, Burgner J, Fontan CT, Wang X, Glass SH, Wieland A, Donaldson MM, Bristol ML, Li R, Oliver AW, Pearl LH, Smith BO, Morgan IM. CK2 Phosphorylation of Human Papillomavirus 16 E2 on Serine 23 Promotes Interaction with TopBP1 and Is Critical for E2 Interaction with Mitotic Chromatin and the Viral Life Cycle. mBio 2021; 12:e0116321. [PMID: 34544280 PMCID: PMC8546539 DOI: 10.1128/mbio.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Dipon Das
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Burgner
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Christian T. Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Sarah H. Glass
- VCU School of Dentistry, Department of Oral Diagnostic Sciences, Richmond, Virginia, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary M. Donaldson
- School of Veterinary Medicine, University of Glasgow, Bearsden, United Kingdom
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Renfeng Li
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Anthony W. Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Laurence H. Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brian O. Smith
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
4
|
Frattini C, Promonet A, Alghoul E, Vidal-Eychenie S, Lamarque M, Blanchard MP, Urbach S, Basbous J, Constantinou A. TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell 2021; 81:1231-1245.e8. [PMID: 33503405 DOI: 10.1016/j.molcel.2020.12.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
ATR checkpoint signaling is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator of ATR, self-assembles extensively to yield micrometer-sized condensates. These opto-TopBP1 condensates are functional entities organized in tightly packed clusters of spherical nano-particles. TopBP1 condensates are reversible, occasionally fuse, and co-localize with TopBP1 partner proteins. We provide evidence that TopBP1 condensation is a molecular switch that amplifies ATR activity to phosphorylate checkpoint kinase 1 (Chk1) and slow down replication forks. Single amino acid substitutions of key residues in the intrinsically disordered ATR activation domain disrupt TopBP1 condensation and consequently ATR/Chk1 signaling. In physiologic salt concentration and pH, purified TopBP1 undergoes liquid-liquid phase separation in vitro. We propose that the actuation mechanism of ATR signaling is the assembly of TopBP1 condensates driven by highly regulated multivalent and cooperative interactions.
Collapse
Affiliation(s)
- Camilla Frattini
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Alexy Promonet
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Emile Alghoul
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | | | - Marie Lamarque
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | | | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS INSERM, Université de Montpellier, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France.
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Li K, Peng S, Li Z, Lai Y, Wang Q, Tao Y, Wu W, Zhou Q, Gao Z, Chen J, Li H, Cai W, Guo Z, Huang H. Topoisomerase II-binding protein 1 promotes the progression of prostate cancer via ATR-CHK1 signaling pathway. Aging (Albany NY) 2020; 12:9948-9958. [PMID: 32459662 PMCID: PMC7288942 DOI: 10.18632/aging.103260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
DNA damage response (DDR) plays an important role in the progression of cancers, including prostate cancer (PCa). Topoisomerase II-binding protein 1 (TopBP1) is an essential promotor of ATR-mediated DDR. Herein, we investigated the association between TopBP1 and PCa and determined its effect on the progression of PCa. The expression and clinical features of TopBP1 were analyzed using large-scale cohort of tissue microarray analyses and The Cancer Genome Atlas database, which indicated that TopBP1 was positively correlated with high Gleason Score, advanced clinical and pathological stages, the metastasis status. Multivariate analysis revealed that the upregulation of TopBP1 was an independent predictor for a worse biochemical recurrence-free survival (BCR-free survival). Furthermore, we discovered that downregulation of TopBP1 significantly suppressed the growth and migration ability of PCa lines by loss-of-function assays in vitro. Further mechanistic investigations clarified that TopBP1 promoted proliferation and migration by activating ATR-Chk1 signaling pathway.
Collapse
Affiliation(s)
- Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zean Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiran Tao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanhua Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ze Gao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junxiu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhenghui Guo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH. Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. eLife 2019; 8:e44353. [PMID: 31135337 PMCID: PMC6561707 DOI: 10.7554/elife.44353] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ubiquitylation on other proteins, and are themselves carriers of such regulatory signals. Here we show that the DNA damage checkpoint regulating S-phase entry is controlled by a phosphorylation-dependent interaction of 53BP1 and TOPBP1. BRCT domains of TOPBP1 selectively bind conserved phosphorylation sites in the N-terminus of 53BP1. Mutation of these sites does not affect formation of 53BP1 or ATM foci following DNA damage, but abolishes recruitment of TOPBP1, ATR and CHK1 to 53BP1 damage foci, abrogating cell cycle arrest and permitting progression into S-phase. TOPBP1 interaction with 53BP1 is structurally complimentary to its interaction with RAD9-RAD1-HUS1, allowing these damage recognition factors to bind simultaneously to the same TOPBP1 molecule and cooperate in ATR activation in the G1 DNA damage checkpoint.
Collapse
Affiliation(s)
- Nicolas Bigot
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Robert A Baldock
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUnited Kingdom
| |
Collapse
|
7
|
Bruck I, Dhingra N, Martinez MP, Kaplan DL. Dpb11 may function with RPA and DNA to initiate DNA replication. PLoS One 2017; 12:e0177147. [PMID: 28467467 PMCID: PMC5415106 DOI: 10.1371/journal.pone.0177147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Collapse
Affiliation(s)
- Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Nalini Dhingra
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Matthew P. Martinez
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Daniel L. Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Borg NA, Dixit VM. Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-040716-075607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of opening up another dimension in the therapeutic armamentarium for the treatment of cancer.
Collapse
Affiliation(s)
- Natalie A. Borg
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
9
|
Bruck I, Dhingra N, Kaplan DL. A Positive Amplification Mechanism Involving a Kinase and Replication Initiation Factor Helps Assemble the Replication Fork Helicase. J Biol Chem 2017; 292:3062-3073. [PMID: 28082681 DOI: 10.1074/jbc.m116.772368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
The assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (GG-Ichi-Nii-San) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and Dpb11, Sld2, Sld3, Pol ϵ, and Mcm10 are factors that are also required for replication initiation. However, the exact roles of these initiation factors in assembly of the replication fork helicase remain unclear. We show here that Dpb11 stimulates DDK phosphorylation of the minichromosome maintenance complex protein Mcm4 alone and also of the Mcm2-7 complex and the dsDNA-loaded Mcm2-7 complex. We further demonstrate that Dpb11 can directly recruit DDK to Mcm4. A DDK phosphomimetic mutant of Mcm4 bound Dpb11 with substantially higher affinity than wild-type Mcm4, suggesting a mechanism to recruit Dpb11 to DDK-phosphorylated Mcm2-7. Furthermore, dsDNA-loaded Mcm2-7 harboring the DDK phosphomimetic Mcm4 mutant bound GINS in the presence of Dpb11, suggesting a mechanism for how GINS is recruited to Mcm2-7. We isolated a mutant of Dpb11 that is specifically defective for binding to Mcm4. This mutant, when expressed in budding yeast, diminished cell growth and DNA replication, substantially decreased Mcm4 phosphorylation, and decreased association of GINS with replication origins. We conclude that Dpb11 functions with DDK and Mcm4 in a positive amplification mechanism to trigger the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Nalini Dhingra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
10
|
Lim YC. Image-Based High Content Screening: Automating the Quantification Process for DNA Damage-Induced Foci. Methods Mol Biol 2017; 1599:71-84. [PMID: 28477112 DOI: 10.1007/978-1-4939-6955-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Visual inspection of cellular activities based on conventional fluorescence microscope is a fundamental tool to study the role of DNA damage response (DDR). In the context of drug discovery where the capture of thousands of images is required across parallel experiments, this presents a challenge to data collection and analysis. Manual scoring is laborious and often reliant on trained personnel to intuit biological meaning through visual reasoning. On the other hand, high content screening combines the automation of microscopy image acquisition and analysis in a single platform to quantify cellular events of interests. The data generated is rapid and accurate, lessening the bias of human interpretation. Herein, this chapter will describe an image-based high content screen approach and the data analysis of Ataxia-Telangiectasia Mutated (ATM) DNA damage-induced foci.
Collapse
Affiliation(s)
- Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
11
|
Lindsey-Boltz LA. Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint. Photochem Photobiol 2016; 93:238-244. [PMID: 27861980 DOI: 10.1111/php.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair and the ATR-mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair-checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair-checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF-ERCC1, XPG, TFIIH, RPA), the 5'-3' exonuclease EXO1, and the damage checkpoint proteins ATR-ATRIP and TopBP1. This coupled repair-checkpoint system was used to demonstrate that the ~30 nucleotide single-stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
12
|
McGarry E, Gaboriau D, Rainey MD, Restuccia U, Bachi A, Santocanale C. The Deubiquitinase USP9X Maintains DNA Replication Fork Stability and DNA Damage Checkpoint Responses by Regulating CLASPIN during S-Phase. Cancer Res 2016; 76:2384-93. [PMID: 26921344 DOI: 10.1158/0008-5472.can-15-2890] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
Abstract
Coordination of the multiple processes underlying DNA replication is key for maintaining genome stability and preventing tumorigenesis. CLASPIN, a critical player in replication fork stabilization and checkpoint responses, must be tightly regulated during the cell cycle to prevent the accumulation of DNA damage. In this study, we used a quantitative proteomics approach and identified USP9X as a novel CLASPIN-interacting protein. USP9X is a deubiquitinase involved in multiple signaling and survival pathways whose tumor suppressor or oncogenic activity is highly context dependent. We found that USP9X regulated the expression and stability of CLASPIN in an S-phase-specific manner. USP9X depletion profoundly impairs the progression of DNA replication forks, causing unscheduled termination events with a frequency similar to CLASPIN depletion, resulting in excessive endogenous DNA damage. Importantly, restoration of CLASPIN expression in USP9X-depleted cells partially suppressed the accumulation of DNA damage. Furthermore, USP9X depletion compromised CHK1 activation in response to hydroxyurea and UV, thus promoting hypersensitivity to drug-induced replication stress. Taken together, our results reveal a novel role for USP9X in the maintenance of genomic stability during DNA replication and provide potential mechanistic insights into its tumor suppressor role in certain malignancies. Cancer Res; 76(8); 2384-93. ©2016 AACR.
Collapse
Affiliation(s)
- Edel McGarry
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
13
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
14
|
Lindsey-Boltz LA, Kemp MG, Capp C, Sancar A. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Cell Cycle 2015; 14:99-108. [PMID: 25602520 DOI: 10.4161/15384101.2014.967076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ATR-Chk1 signaling pathway mediates cellular responses to DNA damage and replication stress and is composed of a number of core factors that are conserved throughout eukaryotic organisms. However, humans and other higher eukaryotic species possess additional factors that are implicated in the regulation of this signaling network but that have not been extensively studied. Here we show that RHINO (for Rad9, Rad1, Hus1 interacting nuclear orphan) forms complexes with both the 9-1-1 checkpoint clamp and TopBP1 in human cells even in the absence of treatments with DNA damaging agents via direct interactions with the Rad9 and Rad1 subunits of the 9-1-1 checkpoint clamp and with the ATR kinase activator TopBP1. The interaction of RHINO with 9-1-1 was of sufficient affinity to allow for the purification of a stable heterotetrameric RHINO-Rad9-Hus1-Rad1 complex in vitro. In human cells, a portion of RHINO localizes to chromatin in the absence of DNA damage, and this association is enriched following UV irradiation. Furthermore, we find that the tethering of a Lac Repressor (LacR)-RHINO fusion protein to LacO repeats in chromatin of mammalian cells induces Chk1 phosphorylation in a Rad9- and Claspin-dependent manner. Lastly, the loss of RHINO partially abrogates ATR-Chk1 signaling following UV irradiation without impacting the interaction of the 9-1-1 clamp with TopBP1 or the loading of 9-1-1 onto chromatin. We conclude that RHINO is a bona fide regulator of ATR-Chk1 signaling in mammalian cells.
Collapse
Key Words
- 9-1-1, Rad9-Hus1-Rad1
- ATR, Ataxia telangiectasia-mutated and Rad3-related
- DNA damage checkpoint
- DNA damage response
- IP, immunoprecipitation
- RHINO, Rad9, Hus1, Rad1 interacting nuclear orphan
- RPA, Replication Protein A
- TopBP1, Topoisomerase binding protein 1
- UV, ultraviolet
- checkpoint clamp
- checkpoint kinase
- chromatin
- protein-protein interaction
- ssDNA, single-stranded DNA
- ultraviolet light
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- a From the Department of Biochemistry and Biophysics ; University of North Carolina School of Medicine ; Chapel Hill , NC USA
| | | | | | | |
Collapse
|
15
|
Han SH, Hahm SH, Tran AHV, Chung JH, Hong MK, Paik HD, Kim KS, Han YS. A physical association between the human mutY homolog (hMYH) and DNA topoisomerase II-binding protein 1 (hTopBP1) regulates Chk1-induced cell cycle arrest in HEK293 cells. Cell Biosci 2015; 5:50. [PMID: 26312135 PMCID: PMC4550056 DOI: 10.1186/s13578-015-0042-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/12/2015] [Indexed: 12/02/2022] Open
Abstract
Background Human DNA topoisomerase II-binding protein 1 (hTopBP1) plays an important role in DNA replication and the DNA damage checkpoint pathway. The human mutY homolog (hMYH) is a base excision repair DNA glycosylase that excises adenines or 2-hydroxyadenines that are mispaired with guanine or 7,8-dihydro-8-oxoguanine (8-oxoG). hTopBP1 and hMYH were involved in ATR-mediated Chk1 activation, moreover, both of them were associated with ATR and hRad9 which known as checkpoint-involved proteins. Therefore, we investigated whether hTopBP1 interacted with hMYH, and what the function of their interaction is. Results We documented the interaction between hTopBP1 and hMYH and showed that this interaction increased in a hydroxyurea-dependent manner. We also mapped the hMYH-interacting region of hTopBP1 (residues 444–991). In addition, we investigated several cell cycle-related proteins and found that co-knockdown of hTopBP1 and hMYH significantly diminished cell cycle arrest due to compromised checkpoint kinase 1 (Chk1) activation. Moreover, we observed that hMYH was essential for the accumulation of hTopBP1 on damaged DNA, where hTopBP1 interacts with hRad9, a component of the Rad9-Hus1-Rad1 complex. The accumulation of hTopBP1 on chromatin and its subsequent interaction with hRad9 lead to cell cycle arrest, a process mediated by Chk1 phosphorylation and ataxia telangiectasia and Rad3-related protein (ATR) activation. Conclusions Our results suggested that hMYH is necessary for the accumulation of hTopBP1 to DNA damage lesion to induce the association of hTopBP1 with 9-1-1 and that the interaction between hMYH and hTopBP1 is essential for Chk1 activation. Therefore, we suggest that the interaction between hMYH and hTopBP1 is crucial for activation of the ATR-mediated cell cycle checkpoint. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0042-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do 463-836 Republic of Korea
| | - Myoung-Ki Hong
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea ; College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| |
Collapse
|
16
|
Sokka M, Rilla K, Miinalainen I, Pospiech H, Syväoja JE. High levels of TopBP1 induce ATR-dependent shut-down of rRNA transcription and nucleolar segregation. Nucleic Acids Res 2015; 43:4975-89. [PMID: 25916852 PMCID: PMC4446431 DOI: 10.1093/nar/gkv371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
Nucleoli are not only organelles that produce ribosomal subunits. They are also overarching sensors of different stress conditions and they control specific nucleolar stress pathways leading to stabilization of p53. During DNA replication, ATR and its activator TopBP1 initiate DNA damage response upon DNA damage and replication stress. We found that a basal level of TopBP1 protein associates with ribosomal DNA repeat. When upregulated, TopBP1 concentrates at the ribosomal chromatin and initiates segregation of nucleolar components—the hallmark of nucleolar stress response. TopBP1-induced nucleolar segregation is coupled to shut-down of ribosomal RNA transcription in an ATR-dependent manner. Nucleolar segregation induced by TopBP1 leads to a moderate elevation of p53 protein levels and to localization of activated p53 to nucleolar caps containing TopBP1, UBF and RNA polymerase I. Our findings demonstrate that TopBP1 and ATR are able to inhibit the synthesis of rRNA and to activate nucleolar stress pathway; yet the p53-mediated cell cycle arrest is thwarted in cells expressing high levels of TopBP1. We suggest that inhibition of rRNA transcription by different stress regulators is a general mechanism for cells to initiate nucleolar stress pathway.
Collapse
Affiliation(s)
- Miiko Sokka
- Department of Biology, University of Eastern Finland, FI-80101 Joensuu, Finland Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | - Helmut Pospiech
- Leibniz Institute for Age Research-Fritz Lipmann Institute, D-07745 Jena, Germany Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Juhani E Syväoja
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
17
|
Zhao P, Chen L, Li LH, Wei ZF, Tong B, Jia YG, Kong LY, Xia YF, Dai Y. SC-III3, a novel scopoletin derivative, induces cytotoxicity in hepatocellular cancer cells through oxidative DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. BMC Cancer 2014; 14:987. [PMID: 25527123 PMCID: PMC4320555 DOI: 10.1186/1471-2407-14-987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Background Natural products from plants have been proven to be important resources of antitumor agents. In this study, we exploited the antitumor activity of (E)-3-(4-chlorophenyl)-N-(7-hydroxy-6-methoxy-2-oxo-2H-chromen-3-yl) acrylamide (SC-III3), a newly synthesized derivative of scopoletin, by in vitro and in vivo experiments. Methods Human hepatocellular carcinoma cell line HepG2 cells and xenograft of HepG2 cells in BALB/c nude mice were used to investigate the effects of SC-III3 on hepatocellular cancers. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Cell cycle arrest, apoptosis and ATM-Chk pathway-related proteins were characterized by western blot. Results SC-III3 selectively inhibited the viability of HepG2 cells without significant cytotoxicity against human normal liver cells LO2. In mouse xenograft model of HepG2 cells, SC-III3 showed a marked inhibition of tumor growth in a dose-dependent manner. Cell cycle analysis revealed that SC-III3 induced cells to accumulate in S phase, which was accompanied by a marked decrease of the expressions of cyclin A, cyclin B, cyclin E and Cdk2 proteins, the crucial regulators of S phase cell cycle. SC-III3 treatment resulted in DNA breaks in HepG2 cells, which might contribute to its S phase arrest. The S arrest and the activation of ATM-Chk1/Chk2-Cdc25A-Cdk2 pathways induced by SC-III3 in HepG2 cells could be efficiently abrogated by pretreatments of either Ku55933 (an inhibitor of ATM) or UCN-01 (an inhibitor of Chk1/Chk2). The activation of p53-p21 pathway by SC-III3 was also reversed by Ku55933 treatment. SC-III3 led to significant accumulation of intracellular reactive oxygen species (ROS), a breaker of DNA strand, in HepG2 cells but not LO2 cells. Pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, could reverse SC-III3-caused ROS accumulation, DNA damage, activation of signal pathways relevant to DNA damage, S phase arrest and cell viability decrease in HepG2 cells. Conclusion SC-III3 is able to efficiently inhibit the growth of hepatocellular carcinoma through inducing the generation of intracellular ROS, DNA damage and consequent S phase arrest, but lack of significant cytotoxicity against normal liver cells. This compound deserves further studies as a candidate of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Feng Xia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | | |
Collapse
|
18
|
Wardlaw CP, Carr AM, Oliver AW. TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 2014; 22:165-74. [PMID: 25087188 DOI: 10.1016/j.dnarep.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Human TopBP1 contains nine BRCT domains and functions in DNA replication initiation, checkpoint signalling, DNA repair and influences transcriptional control. TopBP1 and its homologues have been the subject of numerous scientific publications since the last comprehensive review in 2005, emerging as a key scaffold protein that links crucial components within these distinct cellular processes. This review focuses on recently published work, with particular emphasis on structural insights into TopBP1 function and the binding partners identified for DNA replication initiation, DNA-dependent checkpoints, DNA repair and transcription. We further summarise what is known about TopBP1 and links to human disease.
Collapse
Affiliation(s)
- Christopher P Wardlaw
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK.
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| |
Collapse
|
19
|
Germann SM, Schramke V, Pedersen RT, Gallina I, Eckert-Boulet N, Oestergaard VH, Lisby M. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. ACTA ACUST UNITED AC 2013; 204:45-59. [PMID: 24379413 PMCID: PMC3882784 DOI: 10.1083/jcb.201305157] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
TopBP1/Dpb11 prevents accumulation of anaphase chromatin bridges by stimulating the Mec1/ATR kinase and suppressing homologous recombination. DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.
Collapse
Affiliation(s)
- Susanne M Germann
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia 2013; 15:263-80. [PMID: 23479505 DOI: 10.1593/neo.121988] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 02/08/2023] Open
Abstract
The non-histone chromatin binding protein high mobility group AT-hook 2 (HMGA2) is expressed in stem cells and many cancer cells, including tumor initiating cells, but not translated in normal human somatic cells. The presence of HMGA2 is correlated with advanced neoplastic disease and poor prognosis for patients. We had previously demonstrated a role of HMGA2 in DNA repair pathways. In the present study, we employed different human tumor cell models with endogenous and exogenous expression of HMGA2 and show that upon DNA damage, the presence of HMGA2 caused an increased and sustained phosphorylation of the ataxia telangiectasia and Rad3-related kinase (ATR) and its downstream target checkpoint kinase 1 (CHK1). The presence of activated pCHK1(Ser296) coincided with prolonged G2/M block and increased tumor cell survival, which was enhanced further in the presence of HMGA2. Our study, thus, identifies a novel relationship between the ATR-CHK1 DNA damage response pathway and HMGA2, which may support the DNA repair function of HMGA2 in cancer cells. Furthermore, our data provide a rationale for the use of inhibitors to ATR or CHK1 and HMGA2 in the treatment of HMGA2-positive human cancer cells.
Collapse
|
21
|
Zhou ZW, Liu C, Li TL, Bruhn C, Krueger A, Min W, Wang ZQ, Carr AM. An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence. PLoS Genet 2013; 9:e1003702. [PMID: 23950734 PMCID: PMC3738440 DOI: 10.1371/journal.pgen.1003702] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/20/2013] [Indexed: 12/03/2022] Open
Abstract
ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins – Dpb11TopBP1, Ddc1Rad9 and Dna2 - all interact with and activate Mec1ATR. Each contains an ATR activation domain (ADD) that interacts directly with the Mec1ATR:Ddc2ATRIP complex. Any of the Dpb11TopBP1, Ddc1Rad9 or Dna2 ADDs is sufficient to activate Mec1ATRin vitro. All three can also independently activate Mec1ATRin vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development. DNA damage checkpoint signalling is an essential component of the DNA damage response. Many of the key proteins initiating the checkpoint signal have been identified and characterised in yeast. Here we explore the role of the ATR activating domain (AAD) of TopBP1 in embryonic development, cell growth and checkpoint activation using a mouse model. In contrast to yeasts, where the TopBP1 AAD plays a redundant, and thus phenotypically minor, role in ATR activation, our data demonstrate that the mouse TopBP1 AAD is essential for cellular proliferation. Interestingly, this suggests evolution has provided a simpler ATR activation mechanism in metazoans than it has in yeasts.
Collapse
Affiliation(s)
- Zhong-Wei Zhou
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Cong Liu
- Sussex for Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, Sussex, United Kingdom
| | - Tang-Liang Li
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christopher Bruhn
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anja Krueger
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - WooKee Min
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biology and Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
- * E-mail: (ZQW); (AMC)
| | - Antony M. Carr
- Sussex for Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, Sussex, United Kingdom
- * E-mail: (ZQW); (AMC)
| |
Collapse
|
22
|
Ozkan-Dagliyan I, Chiou YY, Ye R, Hassan BH, Ozturk N, Sancar A. Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J Biol Chem 2013; 288:23244-51. [PMID: 23833191 DOI: 10.1074/jbc.m113.493361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.
Collapse
Affiliation(s)
- Irem Ozkan-Dagliyan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hassan BH, Lindsey-Boltz LA, Kemp MG, Sancar A. Direct role for the replication protein treslin (Ticrr) in the ATR kinase-mediated checkpoint response. J Biol Chem 2013; 288:18903-10. [PMID: 23696651 DOI: 10.1074/jbc.m113.475517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TopBP1 (topoisomerase IIβ-binding protein 1) is a dual replication/checkpoint protein. Treslin/Ticrr, an essential replication protein, was discovered as a binding partner for TopBP1 and also in a genetic screen for checkpoint regulators in zebrafish. Treslin is phosphorylated by CDK2/cyclin E in a cell cycle-dependent manner, and its phosphorylation state dictates its interaction with TopBP1. The role of Treslin in the initiation of DNA replication has been partially elucidated; however, its role in the checkpoint response remained elusive. In this study, we show that Treslin stimulates ATR phosphorylation of Chk1 both in vitro and in vivo in a TopBP1-dependent manner. Moreover, we show that the phosphorylation state of Treslin at Ser-1000 is important for its checkpoint activity. Overall, our results indicate that, like TopBP1, Treslin is a dual replication/checkpoint protein that directly participates in ATR-mediated checkpoint signaling.
Collapse
Affiliation(s)
- Bachar H Hassan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
24
|
Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance. PLoS Genet 2013; 9:e1003320. [PMID: 23468651 PMCID: PMC3585019 DOI: 10.1371/journal.pgen.1003320] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/29/2012] [Indexed: 12/16/2022] Open
Abstract
The RAD9-RAD1-HUS1 (9-1-1) complex is a heterotrimeric PCNA-like clamp that responds to DNA damage in somatic cells by promoting DNA repair as well as ATR-dependent DNA damage checkpoint signaling. In yeast, worms, and flies, the 9-1-1 complex is also required for meiotic checkpoint function and efficient completion of meiotic recombination; however, since Rad9, Rad1, and Hus1 are essential genes in mammals, little is known about their functions in mammalian germ cells. In this study, we assessed the meiotic functions of 9-1-1 by analyzing mice with germ cell-specific deletion of Hus1 as well as by examining the localization of RAD9 and RAD1 on meiotic chromosomes during prophase I. Hus1 loss in testicular germ cells resulted in meiotic defects, germ cell depletion, and severely compromised fertility. Hus1-deficient primary spermatocytes exhibited persistent autosomal γH2AX and RAD51 staining indicative of unrepaired meiotic DSBs, synapsis defects, an extended XY body domain often encompassing partial or whole autosomes, and an increase in structural chromosome abnormalities such as end-to-end X chromosome-autosome fusions and ruptures in the synaptonemal complex. Most of these aberrations persisted in diplotene-stage spermatocytes. Consistent with a role for the 9-1-1 complex in meiotic DSB repair, RAD9 localized to punctate, RAD51-containing foci on meiotic chromosomes in a Hus1-dependent manner. Interestingly, RAD1 had a broader distribution that only partially overlapped with RAD9, and localization of both RAD1 and the ATR activator TOPBP1 to the XY body and to unsynapsed autosomes was intact in Hus1 conditional knockouts. We conclude that mammalian HUS1 acts as a component of the canonical 9-1-1 complex during meiotic prophase I to promote DSB repair and further propose that RAD1 and TOPBP1 respond to unsynapsed chromatin through an alternative mechanism that does not require RAD9 or HUS1.
Collapse
|
25
|
Xie L, Gazin C, Park SM, Zhu LJ, Debily MA, Kittler ELW, Zapp ML, Lapointe D, Gobeil S, Virbasius CM, Green MR. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells. PLoS Genet 2012; 8:e1003151. [PMID: 23284306 PMCID: PMC3527276 DOI: 10.1371/journal.pgen.1003151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/23/2012] [Indexed: 01/01/2023] Open
Abstract
Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi)–based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53−) human cancer cells. We find that compared to p53-competent (p53+) human cancer cell lines, diverse p53− human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53− cells, RNAi–mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53− but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53− cancer cells. The conversion of a normal cell into a cancer cell involves activating genes that promote cancer growth (oncogenes) and/or inactivating genes that normally act to inhibit cancer growth (tumor suppressor genes). The tumor suppressor gene p53 is the most frequently mutated gene in human cancers, being inactivated in approximately half of all tumors. In addition, loss of p53 function is often associated with increased resistance to chemotherapy and/or poor survival. For these reasons, the selective destruction of p53-deficient (p53−) tumors has remained one of the most important goals and challenges of cancer therapy. One strategy for destroying p53− tumors is to inactivate genes that are preferentially required for the growth or survival of p53− cells. Here we carry out a large-scale genetic screen to identify a cellular pathway that is preferentially required for growth of p53− cancer cells.
Collapse
Affiliation(s)
- Li Xie
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Claude Gazin
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- CEA/DSV/iRCM/LEFG, Genopole G2, Evry, France
- INSERM U967 and Université Paris Diderot, Evry, France
- * E-mail: (CG); (MRG)
| | - Sung Mi Park
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lihua J. Zhu
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Marie-anne Debily
- CEA/DSV/iRCM/LEFG, Genopole G2, Evry, France
- Université d'Evry Val d'Essonne, Evry, France
| | - Ellen L. W. Kittler
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Maria L. Zapp
- Program in Molecular Medicine and Center for AIDS Research, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David Lapointe
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephane Gobeil
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ching-Man Virbasius
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (CG); (MRG)
| |
Collapse
|
26
|
Abstract
Checkpoint kinase 1 (Chk1), a serine/threonine protein kinase, is centrally involved in cell-cycle checkpoints and cellular response to DNA damage. Phosphorylation of Chk1 at 2 Ser/Gln (SQ) sites, Ser-317 and Ser-345, by the upstream kinase ATR is critical for checkpoint activation. However, the precise molecular mechanisms controlling Chk1 phosphorylation and subsequent checkpoint activation are not well understood. Here, we report unique autoregulatory mechanisms that control protein phosphorylation of human Chk1, as well as checkpoint activation and cell viability. Phosphorylation of Ser-317 is required, but not sufficient, for maximal phosphorylation at Ser-345. The N-terminal kinase domain of Chk1 prevents Chk1 phosphorylation at the C-terminus by ATR in the absence of DNA damage. Loss of the inhibitory effect imposed by the N-terminus causes constitutive phosphorylation of Chk1 by ATR under normal growth conditions, which in turn triggers artificial checkpoints that suppress the S-phase progression. Furthermore, two point mutations were identified that rendered Chk1 constitutively active, and expression of the constitutively active mutant form of Chk1 inhibited cancer cell proliferation. Our findings therefore reveal unique regulatory mechanisms of Chk1 phosphorylation and suggest that expression of constitutively active Chk1 may represent a novel strategy to suppress tumor growth. Cancer Res; 72(15); 3786-94. ©2012 AACR.
Collapse
Affiliation(s)
- Jingna Wang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
27
|
Lindsey-Boltz LA, Reardon JT, Wold MS, Sancar A. In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling. J Biol Chem 2012; 287:36123-31. [PMID: 22948311 DOI: 10.1074/jbc.m112.407825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
28
|
The Rad4(TopBP1) ATR-activation domain functions in G1/S phase in a chromatin-dependent manner. PLoS Genet 2012; 8:e1002801. [PMID: 22761595 PMCID: PMC3386226 DOI: 10.1371/journal.pgen.1002801] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/17/2012] [Indexed: 12/18/2022] Open
Abstract
DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4TopBP1 AAD–defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage–independent assay for checkpoint activation that is Rad4TopBP1 AAD–dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb253BP1. Consistent with a model where Rad4TopBP1 AAD–dependent checkpoint activation is ssDNA/RPA–independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4TopBP1 AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4TopBP1 AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD–dependent Rad3ATR checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein–chromatin interactions. DNA structure–dependent checkpoint activation and the amplification of checkpoint signals are carefully modulated to allow the checkpoint kinases to delay mitosis and regulate DNA metabolism. While much work has gone into understanding how this checkpoint functions, the mechanism by which the checkpoint signal is amplified is less clear. We have characterised a conserved domain in the Schizosaccharomyces pombe TopBP1 homolog, Rad4TopBP1 (also known as Cut5) that is capable of activating the ATR homolog Rad3ATR. We demonstrate that this domain is not required for initial checkpoint activation, but functions to amplify the checkpoint signal, likely when the presence of single-stranded DNA is limiting. Our data suggest that the function of the Rad4TopBP1 ATR-Activation Domain (AAD) is mediated by interactions between checkpoint proteins and phosphorylated histone H2A, which is itself promoted by Rad3ATR. We propose that the resulting amplification of the checkpoint signal is particularly important in G1-S phase, when resection is limited.
Collapse
|
29
|
Recolin B, Van der Laan S, Maiorano D. Role of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts. Nucleic Acids Res 2011; 40:3431-42. [PMID: 22187152 PMCID: PMC3333866 DOI: 10.1093/nar/gkr1241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation.
Collapse
Affiliation(s)
- Bénédicte Recolin
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 rue de la Cardonille, Montpellier 34396 Cedex 5, France
| | | | | |
Collapse
|
30
|
Chen JH, He HC, Jiang FN, Militar J, Ran PY, Qin GQ, Cai C, Chen XB, Zhao J, Mo ZY, Chen YR, Zhu JG, Liu X, Zhong WD. Analysis of the specific pathways and networks of prostate cancer for gene expression profiles in the Chinese population. Med Oncol 2011; 29:1972-84. [PMID: 22038724 DOI: 10.1007/s12032-011-0088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/07/2011] [Indexed: 01/04/2023]
Abstract
The global physiological function of specifically expressed genes of prostate cancer in Chinese patients is unclear. This study aims to determine the genome-wide expression of genes related to prostate cancer in the Chinese population. Genes that were differentially expressed in prostate cancer were identified using DNA microarray technology. Expressions were validated by using real-time PCR. The identified genes were analyzed using the ingenuity pathway analysis (IPA) to investigate the gene ontology, functional pathway and network. A total of 1,444 genes (Fold time ≥ 1.5; P ≤ 0.05) were differentially expressed in prostate primary tumor tissue compared with benign tissue. IPA revealed a unique landscape where inductions of certain pathways were involved in Cell Cycle Regulation and proliferation. Network analysis not only confirmed that protein interactions lead to the deregulation of DNA Replication, Recombination and Repair, Cellular Compromise and Cell Cycle, Genetic Disorders and Connective Tissue Disorders, but it was also observed that many of the genes regulated by Myc contributed to the modulation of lipid Metabolism and Nucleic Acid Metabolism. Both pathway and network analysis exhibited some remarkable characteristics of prostate cancer for Chinese patients, which showed profound differences from that of other non-Chinese populations. These differences may provide new insights into the molecular cascade of prostate cancer that occurs in Chinese patients.
Collapse
Affiliation(s)
- Jia-hong Chen
- Department of Urology, Guangzhou First Municipal People's Hospital, Affiliated Guangzhou Medical College, 510180 Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yilmaz S, Sancar A, Kemp MG. Multiple ATR-Chk1 pathway proteins preferentially associate with checkpoint-inducing DNA substrates. PLoS One 2011; 6:e22986. [PMID: 21829571 PMCID: PMC3146532 DOI: 10.1371/journal.pone.0022986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/08/2011] [Indexed: 12/02/2022] Open
Abstract
The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses.
Collapse
Affiliation(s)
- Seçil Yilmaz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Michael G. Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|