1
|
Lee SM, Lee JW, Cho J, Choi S, Kim I, Pack CG, Ha CH. Yeast-derived particulate beta-glucan induced angiogenesis via regulating PI3K/Src and ERK1/2 signaling pathway. Int J Biol Macromol 2024; 269:131884. [PMID: 38685541 DOI: 10.1016/j.ijbiomac.2024.131884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The importance of β-glucan from S. cerevisiae in angiogenesis has not been well studied. We investigated whether β-glucan induces angiogenesis through PI3K/Src and ERK1/2 signaling pathway in HUVECs. We identified that β-glucan induced phosphorylation of PI3K, Src, Akt, eNOS, and ERK1/2. Subsequently, we found that this phosphorylation increased the viability of HUVECs. We also observed that stimulation of β-glucan promoted the activity of MEF2 and MEF2-dependent pro-angiogenic genes, including EGR2, EGR3, KLF2, and KLF4. Additionally, the role of β-glucan in angiogenesis was confirmed using in vitro and ex vivo experiments including cell migration, capillary-like tube formation and mouse aorta ring assays. To determine the effect of β-glucan on the PI3K/Akt/eNOS and ERK1/2 signaling pathway, PI3K inhibitor wortmannin and ERK1/2 inhibitor SCH772984 were used. Through the Matrigel plug assay, we confirmed that β-glucan significantly increased angiogenesis in vivo. Taken together, our study demonstrates that β-glucan promotes angiogenesis via through PI3K and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeongin Cho
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sujin Choi
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Pharmacology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Ha
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kobayashi N, Wada N, Yokoyama H, Tanaka Y, Suzuki T, Habu N, Konno N. Extracellular enzymes secreted in the mycelial block of Lentinula edodes during hyphal growth. AMB Express 2023; 13:36. [PMID: 37185915 PMCID: PMC10130320 DOI: 10.1186/s13568-023-01547-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Lentinula edodes (shiitake mushroom) is one of the most widely cultivated edible mushrooms and is primarily cultivated using sawdust medium. While there have been improvements in the cultivation technology, the mechanism of mycelial block cultivation, such as mycelial growth and enzymatic sawdust degradation, has not been clarified. In this study, the mycelium was elongated longitudinally in the bottle sawdust culture for 27 days, and the cultivated sawdust medium was divided into three sections (top, middle, and bottom parts). To determine spatial heterogeneity in the enzyme secretion, the enzymatic activities of each part were analyzed. Lignocellulose degradation enzymes, such as endoglucanase, xylanase, and manganese peroxidase were highly secreted in the top part of the medium. On the other hand, amylase, pectinase, fungal cell wall degradation enzyme (β-1,3-glucanase, β-1,6-glucanase, and chitinase), and laccase activities were higher in the bottom part. The results indicate that the principal sawdust degradation occurs after mycelial colonization. Proteins with the laccase activity were purified from the bottom part of the medium, and three laccases, Lcc5, Lcc6 and Lcc13, were identified. In particular, the expression of Lcc13 gene was higher in the bottom part compared with the level in the top part, suggesting Lcc13 is mainly produced from the tip region and have important roles for mycelial spread and nutrient uptake during early stage of cultivation.
Collapse
Affiliation(s)
- Nanae Kobayashi
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Nagisa Wada
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Haruna Yokoyama
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Yuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Tomohiro Suzuki
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
| |
Collapse
|
3
|
Zheng Y, Li S, Li C, Shao Y, Chen A. Polysaccharides from Spores of Cordyceps cicadae Protect against Cyclophosphamide-Induced Immunosuppression and Oxidative Stress in Mice. Foods 2022; 11:foods11040515. [PMID: 35205991 PMCID: PMC8871426 DOI: 10.3390/foods11040515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the purification, preliminary structure and in vivo immunomodulatory activities of polysaccharides from the spores of Cordyceps cicadae (CCSP). The crude CCSP was purified by diethylaminoethyl (DEAE)-cellulose and Sephadex G-100 chromatography, affording CCSP-1, CCSP-2 and CCSP-3 with molecular weights of 1.79 × 106, 5.74 × 104 and 7.93 × 103 Da, respectively. CCSP-2 consisted of mannose and glucose, while CCSP-1 and CCSP-3 are composed of three and four monosaccharides with different molar ratios, respectively. CCSP-2 exhibited its ameliorative effects in cyclophosphamide-induced immunosuppressed mice through significantly increasing spleen and thymus indices, enhancing macrophage phagocytic activity, stimulating splenocyte proliferation, improving natural killer (NK) cytotoxicity, improving bone marrow suppression, regulating the secretion of cytokines and immunoglobulins, and modulating antioxidant enzyme system. These results indicate that CCSP-2 might be exploited as a promising natural immunomodulator.
Collapse
|
4
|
|
5
|
Zhang Y, Liu Y, Zhou Y, Zheng Z, Tang W, Song M, Wang J, Wang K. Lentinan inhibited colon cancer growth by inducing endoplasmic reticulum stress-mediated autophagic cell death and apoptosis. Carbohydr Polym 2021; 267:118154. [PMID: 34119128 DOI: 10.1016/j.carbpol.2021.118154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Lentinan (SLNT) has been shown to be directly cytotoxic to cancer cells. However, this direct antitumour effect has not been thoroughly investigated in vivo, and the mechanism remains unclear. We aimed to examine the direct antitumour effect of SLNT on human colon cancer and the mechanism in vivo and in vitro. SLNT significantly inhibited tumour growth and induced autophagy and endoplasmic reticulum stress (ERS) in HT-29 cells and tumour-bearing nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Experiments with the autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) showed that autophagy facilitated the antitumour effect of SLNT. Moreover, ERS was identified as the common upstream regulator of SLNT-induced increases in Ca2+concentrations, autophagy and apoptosis by using ERS inhibitors. In summary, our study demonstrated that SLNT exerted direct antitumour effects on human colon cancer via ERS-mediated autophagy and apoptosis, providing a novel understanding of SLNT as an anti-colon cancer therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenqi Tang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
6
|
Duan B, Zou S, Sun Y, Xu X. Fabrication of tumor-targeting composites based on the triple helical β-glucan through conjugation of aptamer. Carbohydr Polym 2020; 254:117476. [PMID: 33357929 DOI: 10.1016/j.carbpol.2020.117476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/31/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Herein the nucleic acid aptamers were attached to the polydeoxyadenylic acid (poly(dA)) tail for improving the tumor-targetability and cellular internalization of s-LNT/poly(dA) composite composed of two single chains of triple helical β-glucan lentinan (s-LNT) and one poly(dA) chain. The in vitro results demonstrate that the cellular uptake of s-LNT/poly(dA) composites in MCF-7 cancer cells was enhanced effectively after attaching the aptamer. The as-prepared fluorescin isothiocyanate (FITC)-labelled LNT (LNT-FITC) through grafting was used for tracing the enhanced tumor-targetability of the composites. As a result, the cellular internalization of the LNT-FITC into MCF-7 and 4T1 cancer cells was further increased by the aptamer conjugated to poly(dA). Meanwhile, the in vivo experiments further demonstrate more s-LNT/poly(dA)-aptamer composites were effectively accumulated at the tumor site compared with s-LNT alone. This work provides a novel strategy for fabricating triplex β-glucan as delivery vectors with active tumor-targetability.
Collapse
Affiliation(s)
- Bingchao Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Meng Y, Lyu F, Xu X, Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules 2020; 21:1653-1677. [PMID: 31986015 DOI: 10.1021/acs.biomac.9b01644] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides derived from renewable biomass sources are regarded as environmentally friendly and sustainable polymers. As the third most abundant biomacromolecule in nature, after proteins and nucleic acids, polysaccharides are also closely related with many different life activities. In particular, β-glucans are one of the most widely reported bioactive polysaccharides and are usually considered as biological response modifiers. Among them, β-glucans with triple-helix conformation have been the hottest and most well-researched polysaccharides at present, especially lentinan and schizophyllan, which are clinically used as cancer therapies in some Asian countries. Thus, creation of these active triple-helix polysaccharides is beneficial to the research and development of sustainable "green" biopolymers in the fields of food and life sciences. Therefore, full fundamental research of triple-helix polysaccharides is essential to discover more applications for polysaccharides. In this Review, the recent research progress of chain conformations, bioactivities, and structure-function relationships of triple-helix β-glucans is summarized. The main contents include the characterization methods of the macromolecular conformation, proof of triple helices, bioactivities, and structure-function relationships. We believe that the governments, enterprises, universities, and institutes dealing with the survival and health of human beings can expect the development of natural bioproducts in the future. Hence, a deep understanding of β-glucans with triple-helix chain conformation is necessary for application of natural medicines and biologics for a sustainable world.
Collapse
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China.,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fengzhi Lyu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Liu C, Cheung PCK. Structure and Immunomodulatory Activity of Microparticulate Mushroom Sclerotial β-Glucan Prepared from Polyporus rhinocerus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9070-9078. [PMID: 31343168 DOI: 10.1021/acs.jafc.9b03206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, an immunologically active novel microparticulate mushroom β-glucan (PRA-1p) was prepared using an alkali-soluble glucan PRA-1 by an emulsification and cross-linking method. PRA-1 was a hyperbranched (1→3),(1→6)-β-d-glucan with a degree of branching of 0.89, isolated from the sclerotia of Polyporus rhinocerus. PRA-1 had a rod-like conformation, while PRA-1p exhibited a monodisperse and homogeneous spherical conformation with a diameter ranging from 0.3 to 2.0 μm in water. PRA-1p significantly induced nitric oxide and reactive oxygen species production as well as morphological changes of murine macrophages (RAW 264.7 cells) and upregulated their phagocytic activity. Furthermore, PRA-1p treatment markedly enhanced the secretion of cytokines, including cutaneous T cell-attracting chemokine 27, granulocyte-colony-stimulating factor, monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, macrophage inflammatory protein 2, regulated on activation, normal T cell expressed and secreted, soluble tumor necrosis factor receptor 1, and tissue inhibitors of metalloproteinases. Activation of RAW 264.7 cells triggered by PRA-1p was associated with activation of inducible nitric oxide synthase, nuclear factor κB, extracellular signal-regulated kinase, and protein kinase B. This work suggests that novel PRA-1p derived from the mushroom sclerotia of P. rhinocerus has potential application as an immunostimulatory agent.
Collapse
Affiliation(s)
- Chaoran Liu
- Shenzhen Institute of Standards and Technology , Shenzhen , Guangdong 518055 , People's Republic of China
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
9
|
Inhibition of tumor growth by β-glucans through promoting CD4+ T cell immunomodulation and neutrophil-killing in mice. Carbohydr Polym 2019; 213:370-381. [DOI: 10.1016/j.carbpol.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022]
|
10
|
Duan B, Zou S, Sun Y, Xu X. Nanoplatform Constructed from a β-Glucan and Polydeoxyadenylic Acid for Cancer Chemotherapy and Imaging. Biomacromolecules 2019; 20:1567-1577. [PMID: 30799607 DOI: 10.1021/acs.biomac.8b01780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A nanoplatform carrying doxorubicin (Dox) for cancer therapy and a dye for imaging was developed based on a natural triple helix β-glucan (t-LNT) and polydeoxyadenylic acid (poly(dA)). The t-LNT-Dox conjugates were prepared through Schiff-base reaction between the aldehyde group in the oxidized t-LNT and the amino group of Dox, the single chains (s-LNT-Dox) of which interacted with the poly(dA)-dye to form a composite s-LNT-Dox/poly(dA)-dye through hydrogen bonding between s-LNT and poly(dA). t-LNT-Dox was confirmed to acid-responsively release Dox in vitro, showing enhanced cytotoxicity against HeLa cancer cells with time. It was confirmed that Dox and the dye could be simultaneously delivered into HeLa cells or the tumors with a prolonged duration time. Furthermore, LNT-Dox conjugates effectively inhibited tumor growth and decreased adverse effects of the free Dox in vivo. Hence, this work develops a new strategy to fabricate the nanoplatform for therapy and imaging using a natural polysaccharide.
Collapse
Affiliation(s)
- Bingchao Duan
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Ying Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
11
|
Wang H, Xu L, Yu M, Wang Y, Jiang T, Yang S, Lv Z. Glycosaminoglycan from Apostichopus japonicus induces immunomodulatory activity in cyclophosphamide-treated mice and in macrophages. Int J Biol Macromol 2019; 130:229-237. [PMID: 30797007 DOI: 10.1016/j.ijbiomac.2019.02.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
This study was designed to systematically elucidate the immunomodulation effect of glycosaminoglycan from Apostichopus japonicus (AHG) in cyclophosphamide (CY)-induced immunosuppression model and potential mechanism responsible for the activation of macrophages. The results showed that the treatment with AHG could increase natural killer (NK) cell cytotoxicity, carbon clearance and marker enzymes activities in CY-induced immunosuppression mice, indicating that the innate immunity experienced recovery to some extent. Moreover, CY-induced reductions in thymus and spleen indices, serum levels of cytokines, immunoglobulins and hemolysin, as well as the ratio of spleen lymphocyte subsets were recovered by AHG, suggesting that AHG could improve the adaptive immunity through cellular immunity and humoral immunity. Delightedly, it was found that AHG at 10 mg/kg body weight could restore the CY-induced immunosuppression in mice to normal level on both innate and adaptive immunity. Furthermore, AHG also promoted both the expression of NO, TNF-α, IL-6, IL-1β, IL-18 and MCP-1 protein and related mRNA in macrophages. It was revealed that AHG activated macrophages through the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-B (NF-κB). In conclusion, AHG exerts remarkable immunomodulatory activities in both innate and adaptive immune system. These findings should have great value for further study on the immunopotentiating mechanisms of this biomacromolecule.
Collapse
Affiliation(s)
- Han Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Lei Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Yuanhong Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China.
| | - Tingfu Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| |
Collapse
|
12
|
Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:297-328. [DOI: 10.1016/bs.pmbts.2019.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Zhang Y, Zhang M, Jiang Y, Li X, He Y, Zeng P, Guo Z, Chang Y, Luo H, Liu Y, Hao C, Wang H, Zhang G, Zhang L. Lentinan as an immunotherapeutic for treating lung cancer: a review of 12 years clinical studies in China. J Cancer Res Clin Oncol 2018; 144:2177-2186. [PMID: 30043277 DOI: 10.1007/s00432-018-2718-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Lentinan is a polysaccharide extracted from Shiitake mushrooms that have been used to improve general health for thousands of years in Asia. Lentinan injection is a clinically approved drug in several countries in Asia. The purpose of this study is to review the structure, preclinical and clinical studies, and molecular mechanisms of lentinan. Most importantly, the clinical effectiveness of lentinan as an adjuvant therapeutic drug in treating patients with lung cancer in China during the past 12 years is analyzed statistically. METHODS We carried out literature search of randomized controlled trials (RCTs) published from 2004 to 2016 based on CNKI (China National Knowledge Infrastructure), VIP (Chongqing VIP Chinese Scientific Journals Database) and Wanfang database, and 38 eligible RCTs of lentinan-associated lung cancer treatment were identified, containing 3,117 patients. RESULTS The structure and function relationship and underlying molecular mechanism of lentinan as an immunostimulant has been summarized. The mean value of overall response rate in treating lung cancer was increased from 43.3% of chemotherapy alone to 56.9% of lentinan plus chemotherapy [p < 0.001, 95% confidence interval (CI) 0.102-0.170]. Compared with chemotherapy alone, lentinan plus chemotherapy showed more efficacy in treating lung cancer (pooled RR 0.79, 95% CI 0.74-0.85) and no statistical heterogeneity was found among studies (I2 = 11%). CONCLUSION Clinical data presented in the past 12 years shows that lentinan is effective not only in improving quality of life, but also in promoting the efficacy of chemotherapy during lung cancer treatment.
Collapse
Affiliation(s)
- Yiran Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yifei Jiang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Xiulian Li
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Yanli He
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Pengjiao Zeng
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhihua Guo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Yajing Chang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Heng Luo
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Yong Liu
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266000, China
| | - Cui Hao
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hua Wang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Guoqing Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
14
|
Wei Z, Chen G, Zhang P, Zhu L, Zhang L, Chen K. Rhizopus nigricans polysaccharide activated macrophages and suppressed tumor growth in CT26 tumor-bearing mice. Carbohydr Polym 2018; 198:302-312. [PMID: 30093003 DOI: 10.1016/j.carbpol.2018.06.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 01/03/2023]
Abstract
In this study, a homogeneous polysaccharide (RPS-1) was extracted from liquid-cultured mycelia of Rhizopus nigricans. The weight-average molecular weight of RPS-1 was 1.617 × 107 g/mol and structural characterization indicated that RPS-1 was a non-starch glucan which consisted of a backbone structure of (1→4)-linked α-d-glucopyranosyl residues substituted at the O-6 position with α-d-glucopyranosyl branches. RPS-1 stimulated the production of nitric oxide and tumor necrosis factor-α by triggering phosphorylation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B p65 in RAW 264.7 macrophage cells. Moreover, intragastric administration of RPS-1 improved the immune function of CT26 tumor-bearing mice and significantly inhibited the growth of transplanted tumor. In combination with 5-FU, RPS-1 enhanced antitumor activity of 5-FU and alleviated its toxicity on immune system. These findings suggested that RPS-1 has the potential for the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhihong Wei
- Gynecology Department, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Guochuang Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Lei Zhu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Linan Zhang
- Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu, China.
| |
Collapse
|
15
|
Elisia I, Pae HB, Lam V, Cederberg R, Hofs E, Krystal G. Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. J Immunol Methods 2018; 452:26-31. [DOI: 10.1016/j.jim.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/23/2022]
|
16
|
Crespo H, Guillén H, de Pablo-Maiso L, Gómez-Arrebola C, Rodríguez G, Glaria I, de Andrés D, Reina R. Lentinula edodes β-glucan enriched diet induces pro- and anti-inflammatory macrophages in rabbit. Food Nutr Res 2017; 61:1412791. [PMID: 29249921 PMCID: PMC5727452 DOI: 10.1080/16546628.2017.1412791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/16/2017] [Indexed: 11/03/2022] Open
Abstract
β-glucans exhibited in cell walls of several pathogens as bacteria or fungi are sensed by pathogen recognition receptors such as scavenger receptors present in antigen presenting cells, i.e., macrophages. β-glucans obtained from Shiitake mushrooms were chemically characterized. A β-glucan supplemented diet was assayed for 30 days in rabbits aiming to characterize the immune response elicited in blood-derived macrophages. M1 and M2 profiles of macrophage differentiation were confirmed in rabbits by in vitro stimulation with IFN-γ and IL-4 and marker quantification of each differentiation pathway. Blood derived macrophages from rabbits administered in vivo with the β-glucan supplemented diet showed higher IL-4, IFN-γ and RAGE together with lower IL-10 relative expression, indicative of an ongoing immune response. Differences in IL-1β, IL-13 and IL-4 expression were also found in rabbit sera by ELISA suggesting further stimulation of the adaptive response. Recent challenges in the rabbit industry include the search of diet supplements able to elicit an immune stimulation with particular interest in facing pathogens such as viruses or bacteria. β-glucans from fungi may contribute to maintain an immune steady state favouring protection and thus reducing antibiotic treatment.
Collapse
Affiliation(s)
- Helena Crespo
- Department of Animal Health, Instituto de Agrobiotecnología (UPNA-CSIC-Gob. de Navarra; IdAB), Navarra, Spain
| | | | - Lorena de Pablo-Maiso
- Department of Animal Health, Instituto de Agrobiotecnología (UPNA-CSIC-Gob. de Navarra; IdAB), Navarra, Spain
| | - Carmen Gómez-Arrebola
- Department of Animal Health, Instituto de Agrobiotecnología (UPNA-CSIC-Gob. de Navarra; IdAB), Navarra, Spain
| | | | - Idoia Glaria
- Department of Animal Health, Instituto de Agrobiotecnología (UPNA-CSIC-Gob. de Navarra; IdAB), Navarra, Spain
| | - Damián de Andrés
- Department of Animal Health, Instituto de Agrobiotecnología (UPNA-CSIC-Gob. de Navarra; IdAB), Navarra, Spain
| | - Ramsés Reina
- Department of Animal Health, Instituto de Agrobiotecnología (UPNA-CSIC-Gob. de Navarra; IdAB), Navarra, Spain
| |
Collapse
|
17
|
A novel self-assembly Lentinan-tetraphenylethylene composite with strong blue fluorescence in water and its properties. Carbohydr Polym 2017; 174:13-24. [DOI: 10.1016/j.carbpol.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022]
|
18
|
Liu F, Zhang X, Ling P, Liao J, Zhao M, Mei L, Shao H, Jiang P, Song Z, Chen Q, Wang F. Immunomodulatory effects of xanthan gum in LPS-stimulated RAW 264.7 macrophages. Carbohydr Polym 2017; 169:65-74. [DOI: 10.1016/j.carbpol.2017.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/03/2017] [Accepted: 04/01/2017] [Indexed: 01/14/2023]
|
19
|
Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production. Sci Rep 2017; 7:1314. [PMID: 28465544 PMCID: PMC5431005 DOI: 10.1038/s41598-017-01462-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Lentinan extracted from shiitake (Lentinula edodes) is a β-glucan that has been reported as an intravenous anti-tumor polysaccharide via enhancement of the host immune system. In this study, we determined the effect of lentinan on inflammasome activation, a multi-protein platform, in myeloid cells. Mouse bone marrow-derived macrophages were treated with lentinan with/without inflammasome triggers, and maturation of interleukin (IL)-1β, IL-18, or caspase-1 was measured as a readout of inflammasome activation. As a result, lentinan selectively inhibited absent in melanoma 2 (AIM2) inflammasome activation. In addition, lentinan up-regulated pro-inflammatory cytokines and induced expression of inflammasome-related genes through toll-like receptor 4 signaling. Furthermore, we assessed the effect of lentinan on mice treated with Listeria monocytogenes or lipopolysaccharide as an AIM2 or non-canonical inflammasome-mediated model. Lentinan attenuated IL-1β secretion resulting from Listeria-mediated AIM2 inflammasome activation and reduced endotoxin lethality via inhibition of non-canonical inflammasome activation. Thus, lentinan is suggested as an anti-AIM2 and anti-non-canonical inflammasome candidate despite its up-regulation of cytokine expression.
Collapse
|
20
|
Li M, Yan YX, Yu QT, Deng Y, Wu DT, Wang Y, Ge YZ, Li SP, Zhao J. Comparison of Immunomodulatory Effects of Fresh Garlic and Black Garlic Polysaccharides on RAW 264.7 Macrophages. J Food Sci 2017; 82:765-771. [DOI: 10.1111/1750-3841.13589] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/09/2016] [Accepted: 11/30/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Min Li
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| | - Yi-Xi Yan
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| | - Qing-Tao Yu
- Research & Development Centre; Infinitus (China) Company Ltd.; Guangzhou 510665 China
| | - Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| | - Ding-Tao Wu
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| | - Ya-Zhong Ge
- Research & Development Centre; Infinitus (China) Company Ltd.; Guangzhou 510665 China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Inst. of Chinese Medical Sciences; Univ. of Macau, Avenida da Universidade; Taipa Macao SAR China
| |
Collapse
|
21
|
Zheng X, Lu F, Xu X, Zhang L. Extended chain conformation of β-glucan and its effect on antitumor activity. J Mater Chem B 2017. [DOI: 10.1039/c7tb01324h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extended chain conformation of β-glucan visualized by AFM, and its molecular weight- and chain conformation-dependent antitumor activity.
Collapse
Affiliation(s)
- Xing Zheng
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Fengzhi Lu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
22
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
23
|
Shivahare R, Ali W, Singh US, Natu SM, Khattri S, Puri SK, Gupta S. Immunoprotective effect of lentinan in combination with miltefosine on Leishmania-infected J-774A.1 macrophages. Parasite Immunol 2016; 38:618-27. [PMID: 27387601 DOI: 10.1111/pim.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022]
Abstract
Rejuvenation of deteriorated host immune functions is imperative for successful annihilation of Leishmania parasites. The use of immunomodulatory agents may have several advantages as they conquer immunosuppression and, when given in combination, improve current therapeutic regimens. We herein investigated the immunostimulatory potency of a β-glucan, lentinan either alone or in combination with short dose of standard drug, miltefosine on Leishmania-infected J-774A.1 macrophages. Our study shows that infected macrophages when stimulated with 2.5 μg/mL and above concentrations of lentinan secreted significant amount of host-protective molecules. The in vitro interaction between lentinan and miltefosine showed some synergy (mean sum of fractional inhibitory concentration [mean ∑FIC] 0.87) at IC50 level. Lentinan (2.5 μg/mL) plus low-dose miltefosine (2 μM) displayed heightened level of pro-inflammatory cytokines, IL-12 (13.6-fold) and TNF-α (6.8-fold) along with nitric oxide (7.2-fold higher) when compared with infected control. In combination group, we also observed remarkably (P<.001) suppressed levels of anti-inflammatory cytokines, IL-10 and TGF-β, than that of untreated macrophages. Additionally, in comparison with infected group, we observed significant induction in phagocytic activity of macrophages in combination with treated group. Collectively, these findings emphasize the immunostimulatory effect of lentinan alone and in combination with low dose of miltefosine against Leishmania donovani.
Collapse
Affiliation(s)
- R Shivahare
- Department of Pathology, King George's Medical University, Lucknow, India.
| | - W Ali
- Department of Pathology, King George's Medical University, Lucknow, India.
| | - U S Singh
- Department of Pathology, King George's Medical University, Lucknow, India
| | - S M Natu
- Department of Pathology, King George's Medical University, Lucknow, India
| | - S Khattri
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, India
| | - S K Puri
- Division of Parasitology, CSIR- Central Drug Research Institute, Lucknow, India
| | - S Gupta
- Division of Parasitology, CSIR- Central Drug Research Institute, Lucknow, India
| |
Collapse
|
24
|
Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism. Sci Rep 2016; 6:28802. [PMID: 27353254 PMCID: PMC4926123 DOI: 10.1038/srep28802] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
β-Glucans are well known for its various bioactivities, but the underlying mechanism has not been fully understood. This study focuses on the anti-tumor effect and the potential mechanism of a branched β-(1, 3)-glucan (LNT) extracted from Lentinus edodes. The in vivo data indicated that LNT showed a profound inhibition ratio of ~75% against S-180 tumor growth, even significantly higher than the positive control of Cytoxan (~54%). Interestingly, LNT sharply promoted immune cells accumulation into tumors accompanied by cell apoptosis and inhibition of cell proliferation during tumor development. Furthermore, LNT not only up-regulated expressions of the tumor suppressor p53, cell cycle arrestin p21 and pro-apoptotic proteins of Bax and caspase 3/9, but also down-regulated PARP1 and anti-apoptotic protein Bcl-2 expressions in tumor tissues. It was first found that LNT initiated p53-dependent signaling pathway to suppress cell proliferation in vitro, and the caspase-dependent pathway to induce cell apoptosis in vivo. The underlying anti-tumor mechanism was proposed that LNT activated immune responses to induce cell apoptosis through caspase 3-dependent signaling pathway and to inhibit cell proliferation possibly via p53-dependent signaling pathway in vivo. Besides, LNT inhibited angiogenesis by suppressing VEGF expression, leading to slow progression of tumors.
Collapse
|
25
|
Bakheet SA, Attia SM, Alwetaid MY, Ansari MA, Zoheir KM, Nadeem A, Al-Shabanah OA, Al-Harbi MM, Ahmad SF. β-1,3-Glucan reverses aflatoxin B1-mediated suppression of immune responses in mice. Life Sci 2016; 152:1-13. [DOI: 10.1016/j.lfs.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
26
|
Lv X, Chen D, Yang L, Zhu N, Li J, Zhao J, Hu Z, Wang FJ, Zhang LW. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system. Int J Biol Macromol 2016; 86:28-42. [DOI: 10.1016/j.ijbiomac.2016.01.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
27
|
Liu C, Chen J, Chen L, Huang X, Cheung PCK. Immunomodulatory Activity of Polysaccharide-Protein Complex from the Mushroom Sclerotia of Polyporus rhinocerus in Murine Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3206-3214. [PMID: 27054263 DOI: 10.1021/acs.jafc.6b00932] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel water-soluble polysaccharide-protein complex (PRW1) isolated from the sclerotia of an edible mushroom Polyporus rhinocerus which was purified by membrane ultrafiltration could significantly activate murine macrophages RAW264.7 in vitro. PRW1 had a molecular weight of less than 50 kDa and was found to be a highly branched heteropolysaccharide-protein complex composed of 45.7 ± 0.97% polysaccharide and 44.2 ± 0.41% protein. Based on the results of total acid hydrolysis, methylation analysis, and Fourier transform infrared spectroscopy, the carbohydrate moiety of PRW1 was found to be a β-d-mannoglucan with its backbone containing →1)-d-Glcp-(4→, →1)-d-Glcp-(6→, and →1)-d-Manp-(2→ residues (molar ratio of 5:4:6) and having terminal d-Glcp as side chain (degree of branching of 0.62). In vitro studies showed that PRW1 significantly induced NO production and enhanced the release of a variety of cytokines including G-CSF, GM-CSF, IL-6, IL12p40/70, MCP-1, MCP-5, MIP-1-α, MIP-2, RANTES, sTNFRI, and TNF-α. Mechanistically, PRW1 treatment triggered ERK phosphorylation to activate macrophages within 15 min and significantly increased the expression level of inducible NOS after 6 h. In summary, this study indicates that PRW1 derived from the sclerotia of P. rhinocerus is a potential immunomodulatory agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoran Liu
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR (HKSAR), China
| | - Jialun Chen
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR (HKSAR), China
| | - Lei Chen
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101, China
| | - Xuesong Huang
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR (HKSAR), China
| |
Collapse
|
28
|
Liu Q, Dong L, Li H, Yuan J, Peng Y, Dai S. Lentinan mitigates therarubicin-induced myelosuppression by activating bone marrow-derived macrophages in an MAPK/NF-κB-dependent manner. Oncol Rep 2016; 36:315-23. [PMID: 27121155 DOI: 10.3892/or.2016.4769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/06/2016] [Indexed: 11/06/2022] Open
Abstract
Bone marrow (BM) suppression (also known as myelosuppression) is the most common and most severe side-effect of therarubicin (THP) and thereby limits the clinical application of this anticancer agent. Lentinan (LNT), a glucan extracted from dried shiitake mushrooms (Lentinula edodes), exhibits a variety of pharmacological activities. The objectives of the present study were to determine the effect of LNT on the myelosuppression of THP-treated mice and to examine the pharmacological mechanism of these effects. In vivo experiments indicated that non-cytotoxic levels of LNT strongly increased blood myeloperoxidase (MPO) activity; improved BM structural injuries; increased the numbers of leukocytes and neutrophils in the blood and BM; elevated the blood levels of granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF); and reduced the self-healing period in THP-treated mice. In vitro experiments indicated that LNT increased the viability of BM-derived macrophages (BMDMs) in a time- and dose-dependent manner without toxic side-effects and markedly increased the release of G-CSF, GM-CSF and M-CSF by BMDMs. Further analyses revealed that LNT activated the NF-κB and MAPK signalling pathways and promoted the nuclear import of p65 and that BAY 11-7082 (a specific inhibitor of NF-κB) suppressed the release of G-CSF, GM-CSF and M-CSF. Furthermore, we found that U0126, SB203580 and SP600125 (specific inhibitors of ERK, p38 and JNK, respectively) markedly inhibited the IKK/IκB/NF-κB-dependent release of G-CSF, GM-CSF and M-CSF. In conclusion, LNT induces the production of G-CSF, GM-CSF and M-CSF by activating the MAPK/NF-κB signalling pathway in BM cells, thereby mitigating THP-induced myelosuppression.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Radiology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jia Yuan
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuping Peng
- Department of Radiology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shejiao Dai
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
29
|
Zheng X, Zou S, Xu H, Liu Q, Song J, Xu M, Xu X, Zhang L. The linear structure of β-glucan from baker's yeast and its activation of macrophage-like RAW264.7 cells. Carbohydr Polym 2016; 148:61-8. [PMID: 27185116 DOI: 10.1016/j.carbpol.2016.04.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/21/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
Abstract
Yeast β-glucan has many formulations with different chemical structures, water solubility and purity. In particular, the purity of β-glucan in these formulations is variable and relatively low, contributing to different data on its biological activity. In this study, the major polysaccharide component in the crude Baker's yeast polysaccharides coded as BBG with high purity of 99% was obtained, and its chemical structure was determined to be a linear β-(1,3)-glucan. It was found that BBG interacted with complement receptor 3 (CR3) and toll-like receptor 2 (TLR2) on the surface of macrophage-like RAW264.7 cells, and initiated activation of RAW264.7 cells characterized by significant production of tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Additionally, activation of the nuclear factor kappaB p65 (NF-κB p65), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) induced by BBG, were also observed, further confirming the stimulation of RAW264.7 cells by BBG. All these findings provided important scientific evidences for better understanding the molecular mechanism of action for the linear β-(1,3)-glucan in cells.
Collapse
Affiliation(s)
- Xing Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingye Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianhui Song
- Physics Department & The Key Laboratory of Education Ministry for Optics and Magnetic Resonance Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Min Xu
- Physics Department & The Key Laboratory of Education Ministry for Optics and Magnetic Resonance Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Ping Z, Xu H, Liu T, Huang J, Meng Y, Xu X, Li W, Zhang L. Anti-hepatoma activity of the stiff branched β-d-glucan and effects of molecular weight. J Mater Chem B 2016; 4:4565-4573. [DOI: 10.1039/c6tb01299j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The water soluble β-d-glucan AF1 with short branches isolated from Auricularia auricula-judae exhibited significant anti-hepatoma activities, and it was confirmed that AF1 had stiff chains and could induce cancer cell apoptosis and anti-angiogenesis through activating immune responses.
Collapse
Affiliation(s)
- Zhaohua Ping
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Hui Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ting Liu
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Junchao Huang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Yan Meng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Wenhua Li
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
31
|
Wang WJ, Wu YS, Chen S, Liu CF, Chen SN. Mushroom β-Glucan May Immunomodulate the Tumor-Associated Macrophages in the Lewis Lung Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:604385. [PMID: 26167490 PMCID: PMC4488085 DOI: 10.1155/2015/604385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/13/2014] [Accepted: 11/10/2014] [Indexed: 01/29/2023]
Abstract
The present study showed that oral mushroom beta-glucan treatment significantly increased IFN-γ mRNA expression but significantly reduced COX-2 mRNA expression within the lung. For LLC tumor model, oral Ganoderma lucidum or Antrodia camphorata polysaccharides treatments significantly reduced TGF-β production in serum. In addition, IL-12 and IFN-γ mRNA expression were significantly increased, but IL-6, IL-10, COX-2, and TGF-β mRNA expression were substantially following oral mushroom polysaccharides treatments. The study highlights the efficacious effect of mushroom polysaccharides for ameliorating the immune suppression in the tumor microenvironment. Increased M1 phenotype of tumor-associated macrophages and attenuated M2 phenotype of tumor-associated macrophages could be achieved by ingesting mushroom polysaccharides.
Collapse
Affiliation(s)
- Wan-Jhen Wang
- College of Life Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da' an District, Taipei City 10617, Taiwan
| | - Yu-Sheng Wu
- College of Life Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da' an District, Taipei City 10617, Taiwan
| | - Sherwin Chen
- Department of Research and Development, Super Beta Glucan Inc., Irvine, CA, USA
| | - Chi-Feng Liu
- Graduate Institute of Integration of Traditional Chinese Medicine with Western Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shiu-Nan Chen
- College of Life Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da' an District, Taipei City 10617, Taiwan
| |
Collapse
|
32
|
Liu Q, Xu H, Cao Y, Li M, Xu X, Zhang L. Transfection efficiency and internalization of the gene carrier prepared from a triple-helical β-glucan and polydeoxyadenylic acid in macrophage RAW264.7 cells. J Mater Chem B 2015; 3:3789-3798. [DOI: 10.1039/c4tb02127d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stability and gene transfection efficiency of poly(dA)–s-LNT complexes strongly depend on the base length of poly(dA) in the target DNA sequence.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Hui Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Yan Cao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Mengxia Li
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
33
|
Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.09.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Jia X, Liu Q, Zou S, Xu X, Zhang L. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr Polym 2014; 117:434-442. [PMID: 25498656 DOI: 10.1016/j.carbpol.2014.09.088] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022]
Abstract
We report on a green procedure for the stabilization of selenium nanoparticles (SeNPs) by a naturally occurring β-glucan with triple helical conformation known as Lentinan (t-LNT) in water after denaturing into single chains (s-LNT) at 140 °C. The results demonstrated that the s-LNT can interact with SeNPs through Se-O-H interaction. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectra, UV/vis, X-ray diffraction (XRD) and dynamic light scattering (DLS) showed that s-LNT coated SeNPs to form a stable nano-composite Se/s-LNT, leading to good dispersion of SeNPs. Especially, the as-prepared Se/s-LNT composite in the solution could remain homogeneous and translucent for 30 days without any precipitates. Different size distribution of SeNPs was prepared by simply controlling the concentrations of selenite sodium and the corresponding reducing agent ascorbic acid. The size effect of SeNPs on anti-tumor activity was revealed that the SeNPs with more evenly particle size distribution show the higher anticancer activity.
Collapse
Affiliation(s)
- Xuewei Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuchang Luojiashan, Wuhan 430072, China
| | - Qingye Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuchang Luojiashan, Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuchang Luojiashan, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuchang Luojiashan, Wuhan 430072, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuchang Luojiashan, Wuhan 430072, China
| |
Collapse
|
35
|
Konno N, Nakade K, Nishitani Y, Mizuno M, Sakamoto Y. Lentinan degradation in the Lentinula edodes fruiting body during postharvest preservation is reduced by downregulation of the exo-β-1,3-glucanase EXG2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8153-7. [PMID: 25033107 DOI: 10.1021/jf501578w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lentinan from Lentinula edodes fruiting bodies (shiitake mushrooms) is a valuable β-glucan for medical purposes based on its anticancer activity and immunomodulating activity. However, lentinan content in fruiting bodies decreases after harvesting and storage due to an increase in glucanase activity. In this study, we downregulated the expression of an exo-β-1,3-glucanase, exg2, in L. edodes using RNA interference. In the wild-type strain, β-1,3-glucanase activity in fruiting bodies remarkably increased after harvesting, and 41.7% of the lentinan content was lost after 4 days of preservation. The EXG2 downregulated strain showed significantly lower lentinan degrading activity (60-70% of the wild-type strain) in the fruiting bodies 2-4 days after harvesting. The lentinan content of fresh fruiting bodies was similar in the wild-type and EXG2 downregulated strains, but in the downregulated strain, only 25.4% of the lentinan was lost after 4 days, indicating that downregulation of EXG2 enables keeping the lentinan content high longer.
Collapse
MESH Headings
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/supply & distribution
- Crops, Agricultural/enzymology
- Crops, Agricultural/growth & development
- Crops, Agricultural/metabolism
- Down-Regulation
- Food Preservation
- Food, Genetically Modified
- Fruiting Bodies, Fungal/enzymology
- Fruiting Bodies, Fungal/growth & development
- Fruiting Bodies, Fungal/metabolism
- Fungal Proteins/antagonists & inhibitors
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Glucan 1,3-beta-Glucosidase/antagonists & inhibitors
- Glucan 1,3-beta-Glucosidase/genetics
- Glucan 1,3-beta-Glucosidase/metabolism
- Hydrolysis
- Immunologic Factors/isolation & purification
- Immunologic Factors/metabolism
- Immunologic Factors/supply & distribution
- Japan
- Lentinan/isolation & purification
- Lentinan/metabolism
- Lentinan/supply & distribution
- Organisms, Genetically Modified/growth & development
- Organisms, Genetically Modified/metabolism
- RNA Interference
- Recombinant Proteins/metabolism
- Shiitake Mushrooms/enzymology
- Shiitake Mushrooms/growth & development
- Shiitake Mushrooms/metabolism
- Time Factors
- Transformation, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Naotake Konno
- Iwate Biotechnology Research Center , 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | | | | | | | | |
Collapse
|
36
|
Meng LZ, Feng K, Wang LY, Cheong KL, Nie H, Zhao J, Li SP. Activation of mouse macrophages and dendritic cells induced by polysaccharides from a novel Cordyceps sinensis fungus UM01. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
37
|
Li S, Huang Y, Wang S, Xu X, Zhang L. Determination of the Triple Helical Chain Conformation of β-Glucan by Facile and Reliable Triple-Detector Size Exclusion Chromatography. J Phys Chem B 2014; 118:668-75. [DOI: 10.1021/jp4087199] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Li
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yao Huang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Sen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
38
|
Zhan Y, Wang Z, Yang P, Wang T, Xia L, Zhou M, Wang Y, Wang S, Hua Z, Zhang J. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice. Cell Death Dis 2014; 5:e985. [PMID: 24407238 PMCID: PMC4040656 DOI: 10.1038/cddis.2013.516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 11/09/2022]
Abstract
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Collapse
Affiliation(s)
- Y Zhan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Wang
- East Hospital, Tongji University, Shanghai 200120, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Y Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Z Hua
- The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - J Zhang
- 1] Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China [2] The State Kay Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Liu Q, Wang C, Cao Y, Xu X, Zhang L. A novel gene carrier prepared from triple helical β-glucan and polydeoxyadenylic acid. J Mater Chem B 2014; 2:933-944. [DOI: 10.1039/c3tb21195a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Yan GH, Choi YH. Lentinus edodes Suppresses Allergen-Induced Airway Hyperresponsiveness and Inflammation by Downregulating Nuclear Factor-kappa B Activity in a Murine Model of Allergic Asthma. ACTA ACUST UNITED AC 2014. [DOI: 10.11637/kjpa.2014.27.2.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guang Hai Yan
- Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi City 133002, Jilin, China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-180, Korea
- Institute for Medical Science, Chonbuk National University, Jeonju, Jeonbuk 561-180, Korea
| |
Collapse
|
41
|
Li X, Wang J, Wang W, Liu C, Sun S, Gu J, Wang X, Boraschi D, Huang Y, Qu D. Immunomodulatory activity of a novel, synthetic beta-glucan (β-glu6) in murine macrophages and human peripheral blood mononuclear cells. PLoS One 2013; 8:e80399. [PMID: 24223225 PMCID: PMC3819285 DOI: 10.1371/journal.pone.0080399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Natural β-glucans extracted from plants and fungi have been used in clinical therapies since the late 20th century. However, the heterogeneity of natural β-glucans limits their clinical applicability. We have synthesized β-glu6, which is an analog of the lentinan basic unit, β-(1→6)-branched β-(1→3) glucohexaose, that contains an α-(1→3)-linked bond. We have demonstrated the stimulatory effect of this molecule on the immune response, but the mechanisms by which β-glu6 activates innate immunity have not been elucidated. In this study, murine macrophages and human PBMCs were used to evaluate the immunomodulatory effects of β-glu6. We showed that β-glu6 activated ERK and c-Raf phosphorylation but suppressed the AKT signaling pathway in murine macrophages. Additionally, β-glu6 enhanced the secretion of large levels of cytokines and chemokines, including CD54, IL-1α, IL-1β, IL-16, IL-17, IL-23, IFN-γ, CCL1, CCL3, CCL4, CCL12, CXCL10, tissue inhibitor of metalloproteinase-1 (TIMP-1) and G-CSF in murine macrophages as well as IL-6, CCL2, CCL3, CCL5, CXCL1 and macrophage migration inhibitory factor (MIF) in human PBMCs. In summary, it demonstrates the immunomodulatory activity of β-glu6 in innate immunity.
Collapse
Affiliation(s)
- Xiaofei Li
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Wei Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunhong Liu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuhui Sun
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianxin Gu
- Key Laboratory of Glycoconjugates Research Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Blood Center, Shanghai, China
| | - Diana Boraschi
- Laboratory of Cytokines, Unit of Immunobiology, Institute of Biomedical Technologies, National Research Council, Pisa, Italy
| | - Yuxian Huang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (DQ); (YH)
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (DQ); (YH)
| |
Collapse
|
42
|
β-Glucan from Saccharomyces cerevisiae reduces lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Biochim Biophys Acta Gen Subj 2012; 1820:1656-63. [DOI: 10.1016/j.bbagen.2012.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/31/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022]
|
43
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of oat β-glucan on the macrophage cytokine response to herpes simplex virus 1 infection in vitro. J Interferon Cytokine Res 2012; 32:362-7. [PMID: 22817337 DOI: 10.1089/jir.2011.0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oat β-glucan can counteract the increased risk for Herpes Simplex Virus 1 (HSV-1) infection in mice, the effects of which have, at least in part, been attributed to macrophages. However, the specific responses of macrophages to oat β-glucan treatment in this model have yet to be elucidated. We examined the effects of varying doses of oat β-glucan on the pro-inflammatory cytokine response in both peritoneal and lung macrophages with and without exposure to HSV-1 infection in vitro. Peritoneal and lung macrophages were obtained from mice and cultured with varying concentrations of oat β-glucan (0 (control), 10, 100, and 1,000 μg) for 24 h and supernatants were collected. A standardized dose of HSV-1 was added for a second 24 h incubation period after which supernatants were again collected. Samples were analyzed for interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) using enzyme linked immunosorbent assay (ELISA). In most cases, oat β-glucan resulted in a dose-dependent increase in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in lung and peritoneal macrophages with and without exposure to HSV-1 infection. When comparing across macrophage source, this response was greater for IL-1β and IL-6 in peritoneal macrophages and for TNF-α in lung macrophages. This may be a mechanism for the decreased risk for HSV-1 infection following oat β-glucan feedings in mice.
Collapse
Affiliation(s)
- E Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29201, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Wen CC, Chen HM, Yang NS. Developing Phytocompounds from Medicinal Plants as Immunomodulators. ADVANCES IN BOTANICAL RESEARCH 2012; 62:197-272. [PMID: 32300254 PMCID: PMC7150268 DOI: 10.1016/b978-0-12-394591-4.00004-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Imbalance or malfunction of the immune systems is associated with a range of chronic diseases including autoimmune diseases, allergies, cancers and others. Various innate and adaptive immune cells that are integrated in this complex networking system may represent promising targets for developing immunotherapeutics for treating specific immune diseases. A spectrum of phytochemicals have been isolated, characterized and modified for development and use as prevention or treatment of human diseases. Many cytotoxic drugs and antibiotics have been developed from phytocompounds, but the application of traditional or new medicinal plants for use as immunomodulators in treating immune diseases is still relatively limited. In this review, a selected group of medicinal herbs, their derived crude or fractionated phytoextracts and the specific phytochemicals/phytocompounds isolated from them, as well as categorized phytocompound groups with specific chemical structures are discussed in terms of their immunomodulatory bioactivities. We also assess their potential for future development as immunomodulatory or inflammation-regulatory therapeutics or agents. New experimental approaches for evaluating the immunomodulatory activities of candidate phytomedicines are also discussed.
Collapse
Affiliation(s)
- Chih-Chun Wen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ning-Sun Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
45
|
Kim SP, Moon E, Nam SH, Friedman M. Hericium erinaceus mushroom extracts protect infected mice against Salmonella Typhimurium-Induced liver damage and mortality by stimulation of innate immune cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5590-5596. [PMID: 22624604 DOI: 10.1021/jf300897w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present study investigated the antibacterial effect of four extracts from the fruitbody of the edible medicinal mushroom Hericium erinaceus (hot water extract, HWE; microwave/50% ethanol extract, MWE; acid extract, ACE; and alkaline extract, AKE) against murine salmonellosis. The extracts had no effect on Salmonella ser. Typhimurium growth in culture. Nor were the extracts toxic to murine macrophage cells, RAW 264.7. HWE and MWE stimulated uptake of the bacteria into the macrophage cells as indicated by increased colony-forming unit (CFU) counts of the contents of the lysed macrophages infected with Salmonella Typhimurium for 30 and 60 min. Two hours postinfection, the bacterial counts increased in the macrophages, but 4 and 8 h postinfection the HWE- and MWE-treated cells showed greater activity against the bacteria than the control. HWE- and MWE-treated noninfected macrophages had altered morphology and elevated inducible nitric oxide (NO) synthase (iNOS) mRNA expression. In the presence of S. Typhimurium, iNOS mRNA expression was further increased, accompanied by an increase in NO production. Histology assays of the livers of mice infected with a sublethal dose (1 × 10(4) CFU) of S. Typhimurium showed that HWE and MWE, administered by daily intraperitoneal injection, protected against necrosis of the liver, a biomarker of in vivo salmonellosis. The lifespans of mice similarly infected with a lethal dose of S. Typhimurium (1 × 10(5) CFU) were significantly extended by HWE and MWE. β-Glucan, known to stimulate the immune system, was previously found to be present in high amounts in the active extracts. These results suggest that the mushroom extract activities against bacterial infection in mice occur through the activation of innate immune cells.
Collapse
Affiliation(s)
- Sung Phil Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Li YQ, Hou XH, Wang YF, Zhang LN. Correlation between structure and anti-gastric adenocarcinoma activity of b-D-glucan isolated from Poria cocos sclerotium. Shijie Huaren Xiaohua Zazhi 2012; 20:1277-1283. [DOI: 10.11569/wcjd.v20.i15.1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the correlation between structure and anti-gastric adenocarcinoma activities of polysaccharides isolated from the sclerotiuma of Poria cocos and their derivatives.
METHODS: A water insoluble (1→3)-b-D-glucan PCS3-Ⅱ isolated from fresh sclerotium of Poria cocos was sulfated, carboxymethylated, methylated, hydroxyethylated or hydroxypropylated to prepare five water-soluble derivatives, coded as S-PCS3-Ⅱ, C-PCS3-Ⅱ, M-PCS3-Ⅱ, HE-PCS3-Ⅱ and HP-PCS3-Ⅱ. Their weight-average molecular mass (Mw), intrinsic viscosity ([η]) and <s2>z1/2 were characterized by size exclusion chromatography (SEC) combined with laser light scattering (LLS), LLS, and viscometry. The antitumor activities of PCS3-Ⅱ and its derivatives were tested in vitro by MTT assay using gastric adenocarcinoma cell lines MKN-45, SGC-7901 and MKN-28.
RESULTS: The Mw values of the derivatives S-PCS3-Ⅱ, C-PCS3-Ⅱ, M-PCS3-Ⅱ, HE-PCS3-Ⅱand HP-PCS3-Ⅱ in PBS were determined to be 3.8×104, 18.9×104, 16.0×104, 76.8×104, and 224.3×104, respectively. The native b-glucan did not show any anti-gastric adenocarcinoma activity, while the sulfated and carboxymethylated derivatives exhibited significant anti-gastric adenocarcinoma activity in MKN-45, SGC-7901 and MKN-28 cell lines.
CONCLUSION: The polysaccharides from fresh sclerotium of Poria cocos showed no anti-gastric adenocarcinoma activity in vitro. The introduction of carboxymethylated and sulfated groups to water insoluble polysaccharide PCS3-Ⅱ increased their water-solubility, chain stiffness and anti-gastric adenocarcinoma activity. The sulfated derivatives showed obvious inhibitory effects on gastric adenocarcinoma cells.
Collapse
|
47
|
Xu X, Yasuda M, Nakamura-Tsuruta S, Mizuno M, Ashida H. β-Glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-α production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages. J Biol Chem 2012; 287:871-8. [PMID: 22102286 PMCID: PMC3256862 DOI: 10.1074/jbc.m111.297887] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/31/2011] [Indexed: 01/12/2023] Open
Abstract
Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.
Collapse
Affiliation(s)
- Xiaojuan Xu
- From the Department of Chemistry, Wuhan University, Wuhan 430072, China
- the Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Michiko Yasuda
- the Organization of Advanced Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan, and
| | - Sachiko Nakamura-Tsuruta
- the Organization of Advanced Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan, and
| | - Masashi Mizuno
- the Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- the Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|