1
|
Sponchiado M, Bonilla AL, Mata L, Jasso-Johnson K, Liao YSJ, Fagan A, Moncada V, Reznikov LR. Club cell CREB regulates the goblet cell transcriptional network and pro-mucin effects of IL-1B. Front Physiol 2023; 14:1323865. [PMID: 38173934 PMCID: PMC10761479 DOI: 10.3389/fphys.2023.1323865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Club cells are precursors for mucus-producing goblet cells. Interleukin 1β (IL-1B) is an inflammatory mediator with pro-mucin activities that increases the number of mucus-producing goblet cells. IL-1B-mediated mucin production in alveolar adenocarcinoma cells requires activation of the cAMP response element-binding protein (CREB). Whether the pro-mucin activities of IL-1B require club cell CREB is unknown. Methods: We challenged male mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-1B or vehicle. Secondarily, we studied human "club cell-like" H322 cells. Results: IL-1B increased whole lung mRNA of secreted (Mucin 5ac, Mucin 5b) and tethered (Mucin 1, Mucin 4) mucins independent of genotype. However, loss of club cell Creb1 increased whole lung mRNA of member RAS oncogene family (Rab3D), decreased mRNA of the muscarinic receptor 3 (M3R) and prevented IL-1B mediated increases in purinergic receptor P2Y, (P2ry2) mRNA. IL-1B increased the density of goblet cells containing neutral mucins in wildtype mice but not in mice with loss of club cell Creb1. These findings suggested that club cell Creb1 regulated mucin secretion. Loss of club cell Creb1 also prevented IL-1B-mediated impairments in airway mechanics. Four days of pharmacologic CREB inhibition in H322 cells increased mRNA abundance of forkhead box A2 (FOXA2), a repressor of goblet cell expansion, and decreased mRNA expression of SAM pointed domain containing ETS transcription factor (SPDEF), a driver of goblet cell expansion. Chromatin immunoprecipitation demonstrated that CREB directly bound to the promoter region of FOXA2, but not to the promoter region of SPDEF. Treatment of H322 cells with IL-1B increased cAMP levels, providing a direct link between IL-1B and CREB signaling. Conclusion: Our findings suggest that club cell Creb1 regulates the pro-mucin properties of IL-1B through pathways likely involving FOXA2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Najar M, Alsabri SG, Guedi GG, Merimi M, Lavoie F, Grabs D, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of epigenetics and the transcription factor Sp1 in the expression of the D prostanoid receptor 1 in human cartilage. Front Cell Dev Biol 2023; 11:1256998. [PMID: 38099292 PMCID: PMC10720455 DOI: 10.3389/fcell.2023.1256998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
D prostanoid receptor 1 (DP1), a prostaglandin D2 receptor, plays a central role in the modulation of inflammation and cartilage metabolism. We have previously shown that activation of DP1 signaling downregulated catabolic responses in cultured chondrocytes and was protective in mouse osteoarthritis (OA). However, the mechanisms underlying its transcriptional regulation in cartilage remained poorly understood. In the present study, we aimed to characterize the human DP1 promoter and the role of DNA methylation in DP1 expression in chondrocytes. In addition, we analyzed the expression level and methylation status of the DP1 gene promoter in normal and OA cartilage. Deletion and site-directed mutagenesis analyses identified a minimal promoter region (-250/-120) containing three binding sites for specificity protein 1 (Sp1). Binding of Sp1 to the DP1 promoter was confirmed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Treatment with the Sp1 inhibitor mithramycin A reduced DP1 promoter activity and DP1 mRNA expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine upregulated DP1 expression, and in vitro methylation reduced the DP1 promoter activity. Neither the methylation status of the DP1 promoter nor the DP1 expression level were different between normal and OA cartilage. In conclusion, our results suggest that the transcription factor Sp1 and DNA methylation are important determinants of DP1 transcription regulation. They also suggest that the methylation status and expression level of DP1 are not altered in OA cartilage. These findings will improve our understanding of the regulatory mechanisms of DP1 transcription and may facilitate the development of intervention strategies involving DP1.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G. Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, University of Montreal Hospital Center (CHUM), Montréal, QC, Canada
| | - Detlev Grabs
- Research Unit in Clinical and Functional Anatomy, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
3
|
Ding D, Gao R, Xue Q, Luan R, Yang J. Genomic Fingerprint Associated with Familial Idiopathic Pulmonary Fibrosis: A Review. Int J Med Sci 2023; 20:329-345. [PMID: 36860670 PMCID: PMC9969503 DOI: 10.7150/ijms.80358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease; although the recent introduction of two anti-fibrosis drugs, pirfenidone and Nidanib, have resulted in a significant reduction in lung function decline, IPF is still not curable. Approximately 2-20% of patients with IPF have a family history of the disease, which is considered the strongest risk factor for idiopathic interstitial pneumonia. However, the genetic predispositions of familial IPF (f-IPF), a particular type of IPF, remain largely unknown. Genetics affect the susceptibility and progression of f-IPF. Genomic markers are increasingly being recognized for their contribution to disease prognosis and drug therapy outcomes. Existing data suggest that genomics may help identify individuals at risk for f-IPF, accurately classify patients, elucidate key pathways involved in disease pathogenesis, and ultimately develop more effective targeted therapies. Since several genetic variants associated with the disease have been found in f-IPF, this review systematically summarizes the latest progress in the gene spectrum of the f-IPF population and the underlying mechanisms of f-IPF. The genetic susceptibility variation related to the disease phenotype is also illustrated. This review aims to improve the understanding of the IPF pathogenesis and facilitate his early detection.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Defective synaptic plasticity in a model of Coffin-Lowry syndrome is rescued by simultaneously targeting PKA and MAPK pathways. Learn Mem 2022; 29:435-446. [PMID: 36446603 PMCID: PMC9749851 DOI: 10.1101/lm.053625.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Empirical and computational methods were combined to examine whether individual or dual-drug treatments can restore the deficit in long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse observed in a cellular model of Coffin-Lowry syndrome (CLS). The model was produced by pharmacological inhibition of p90 ribosomal S6 kinase (RSK) activity. In this model, coapplication of an activator of the mitogen-activated protein kinase (MAPK) isoform ERK and an activator of protein kinase A (PKA) resulted in enhanced phosphorylation of RSK and enhanced LTF to a greater extent than either drug alone and also greater than their additive effects, which is termed synergism. The extent of synergism appeared to depend on another MAPK isoform, p38 MAPK. Inhibition of p38 MAPK facilitated serotonin (5-HT)-induced RSK phosphorylation, indicating that p38 MAPK inhibits activation of RSK. Inhibition of p38 MAPK combined with activation of PKA synergistically activated both ERK and RSK. Our results suggest that cellular models of disorders that affect synaptic plasticity and learning, such as CLS, may constitute a useful strategy to identify candidate drug combinations, and that combining computational models with empirical tests of model predictions can help explain synergism of drug combinations.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Huang X, Guan W, Xiang B, Wang W, Xie Y, Zheng J. MUC5B regulates goblet cell differentiation and reduces inflammation in a murine COPD model. Respir Res 2022; 23:11. [PMID: 35042537 PMCID: PMC8764756 DOI: 10.1186/s12931-021-01920-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucus hypersecretion is one of the important pathological features of chronic obstructive pulmonary disease (COPD). MUC5B is the main mucin expressed in the airways of COPD patients and has been indicated to play an important role in airway defense. However, the specific biological function of MUC5B in COPD and the possible mechanism are not clear. Methods We established a COPD model with 24-week-old MUC5B−/− mice exposed to cigarette smoke and tested our hypothesis through lung function tests, HE and PAS staining, immunohistochemistry (IHC), western blot, q-PCR and ELISA. Results Compared with MUC5B+/+ mice, MUC5B−/− mice had worse general condition and lung function, increased inflammatory infiltration, reduced goblet cell differentiation as indicated by decreased PAS staining (PAS grade: 1.8 ± 0.24 vs. 0.6 ± 0.16), reduced MUC5AC expression (ELISA: 0.30 ± 0.01 vs. 0.17 ± 0.01 mg/ml, q-PCR: 9.4 ± 1.7 vs. 4.1 ± 0.1 fold, IHC score: 3.1 ± 0.9 vs. 1.6 ± 0.7), increased macrophage secretion of inflammatory factors (TNF-α and IL-6) and expression of downstream pathway factors (ERK1/2 and NF-κB), decreased expression of SPDEF and STAT6, and increased expression of FOXA2. Conclusion The protective effect of MUC5B in the development of COPD was mediated by the promotion of goblet cell differentiation and the inhibition of inflammation. The role of MUC5B in regulating inflammation was related to macrophage function, and goblet cell differentiation was promoted by the induced expression of STAT6 and SPDEF. This study describes a mechanism of mucus hypersecretion and identifies MUC5B as a new target for the treatment of mucus hypersecretion. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01920-8.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Weijie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Bin Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Yanqing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China
| | - Jinping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, No 151 Yanjiang Road, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
6
|
Lee K, Lee SH, Kim TH. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int J Mol Sci 2020; 21:ijms21051851. [PMID: 32182661 PMCID: PMC7084947 DOI: 10.3390/ijms21051851] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are a family of lipid compounds that are derived from arachidonic acid via the cyclooxygenase pathway, and consist of PGD2, PGI2, PGE2, PGF2, and thromboxane B2. PGs signal through G-protein coupled receptors, and individual PGs affect allergic inflammation through different mechanisms according to the receptors with which they are associated. In this review article, we have focused on the metabolism of the cyclooxygenase pathway, and the distinct biological effect of each PG type on various cell types involved in allergic airway diseases, including asthma, allergic rhinitis, nasal polyposis, and aspirin-exacerbated respiratory disease.
Collapse
|
7
|
Aoyagi H, Kajiwara D, Tsunekuni K, Tanaka K, Miyoshi K, Hirasawa N. Potential synergistic effects of novel hematopoietic prostaglandin D synthase inhibitor TAS-205 and different types of anti-allergic medicine on nasal obstruction in a Guinea pig model of experimental allergic rhinitis. Eur J Pharmacol 2020; 875:173030. [PMID: 32084417 DOI: 10.1016/j.ejphar.2020.173030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022]
Abstract
Nasal obstruction is one of the most bothersome symptoms of allergic rhinitis (AR) affecting sleep-related quality of life in AR patients. Although several treatments were tested to control nasal obstruction, some patients with moderate to severe AR do not respond to current treatments, including the combined administration of different types of anti-allergic medicine. Thus, new options for AR treatment are needed. This study aimed to evaluate the effects of combined treatment with a novel inhibitor of hematopoietic prostaglandin D synthase (HPGDS), TAS-205, and different types of anti-allergic medicine on nasal obstruction in AR. Firstly, we demonstrated that TAS-205 selectively inhibited prostaglandin D2 (PGD2) synthesis in an enzymatic assay in a cell-based assay and in vivo models of AR. Moreover, treatment with TAS-205 alone suppressed eosinophil infiltration into the nasal cavity and late phase nasal obstruction. The combined administration of TAS-205 with montelukast, a cysteinyl leukotriene receptor 1 antagonist, showed significant additive inhibitory effects on eosinophil infiltration and late phase nasal obstruction compared to treatment with each agent alone. In contrast, concomitant treatment with TAS-205 and fexofenadine, a histamine H1 blocker, showed inhibitory effects on late phase and early phase nasal obstruction, although the magnitude of the inhibitory effects upon combined administration was comparable to that of each single treatment. These results suggest that combined treatment with an HPGDS inhibitor and different types of anti-allergic medicine may be a promising strategy to control nasal obstruction in AR patients.
Collapse
Affiliation(s)
- Hiroki Aoyagi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Miyagi, Japan.
| | - Daisuke Kajiwara
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Kenta Tsunekuni
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Katsunao Tanaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Kazuhisa Miyoshi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Miyagi, Japan
| |
Collapse
|
8
|
Liu RY, Zhang Y, Smolen P, Cleary LJ, Byrne JH. Role of p90 ribosomal S6 kinase in long-term synaptic facilitation and enhanced neuronal excitability. Sci Rep 2020; 10:608. [PMID: 31953461 PMCID: PMC6969148 DOI: 10.1038/s41598-020-57484-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple kinases converge on the transcription factor cAMP response element-binding protein (CREB) to enhance the expression of proteins essential for long-term synaptic plasticity and memory. The p90 ribosomal S6 kinase (RSK) is one of these kinases, although its role is poorly understood. The present study exploited the technical advantages of the Aplysia sensorimotor culture system to examine the role of RSK in long-term synaptic facilitation (LTF) and long-term enhancement of neuronal excitability (LTEE), two correlates of long-term memory (LTM). Inhibition of RSK expression or RSK activity both significantly reduced CREB1 phosphorylation, LTF, and LTEE, suggesting RSK is required for learning-related synaptic plasticity and enhancement in neuronal excitability. In addition, knock down of RSK by RNAi in Aplysia sensory neurons impairs LTF, suggesting that this may be a useful single-cell system to study aspects of defective synaptic plasticity in Coffin-Lowry Syndrome (CLS), a cognitive disorder that is caused by mutations in rsk2 and associated with deficits in learning and memory. We found that the impairments in LTF and LTEE can be rescued by a computationally designed spaced training protocol, which was previously demonstrated to augment normal LTF and LTM.
Collapse
Affiliation(s)
- Rong-Yu Liu
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - Leonard J Cleary
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy. W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite MSB 7.046, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
The Possible Pathogenesis of Idiopathic Pulmonary Fibrosis considering MUC5B. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9712464. [PMID: 31309122 PMCID: PMC6594326 DOI: 10.1155/2019/9712464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Background Overexpression of the MUC5B protein is associated with idiopathic pulmonary fibrosis (IPF), but little information is available regarding the pathogenic effects and regulatory mechanisms of overexpressed MUC5B in IPF. Main Body The overexpression of MUC5B in terminal bronchi and honeycomb cysts produces mucosal host defensive dysfunction in the distal airway which may play an important role in the development of IPF. This review addresses the possible association of overexpression of MUC5B, with MUC5B promoter polymorphism, MUC5B gene epigenetic changes, effects of some transcriptional factors, and inflammatory mediators in IPF. In addition, the associated signaling pathways which may influence the expression of MUC5B are also discussed. Conclusion This work has important implications for further exploration of the mechanisms of overexpression of MUC5B in IPF, and future personalized treatment.
Collapse
|
10
|
Prostaglandin D₂ Induces Ca 2+ Sensitization of Contraction without Affecting Cytosolic Ca 2+ Level in Bronchial Smooth Muscle. Int J Mol Sci 2018; 19:ijms19103036. [PMID: 30301147 PMCID: PMC6213397 DOI: 10.3390/ijms19103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Prostaglandin D₂ (PGD₂) is one of the key lipid mediators of allergic airway inflammation, including bronchial asthma. However, the role of PGD₂ in the pathogenesis of asthma is not fully understood. In the present study, the effect of PGD₂ on smooth muscle contractility of the airways was determined to elucidate its role in the development of airway hyperresponsiveness (AHR). In isolated bronchial smooth muscles (BSMs) of naive mice, application of PGD₂ (10-9⁻10-5 M) had no effect on the baseline tension. However, when the tissues were precontracted partially with 30 mM K⁺ (in the presence of 10-6 M atropine), PGD₂ markedly augmented the contraction induced by the high K⁺ depolarization. The PGD₂-induced augmentation of contraction was significantly inhibited both by 10-6 M laropiprant (a selective DP₁ antagonist) and 10-7 M Y-27632 (a Rho-kinase inhibitor), indicating that a DP₁ receptor-mediated activation of Rho-kinase is involved in the PGD₂-induced BSM hyperresponsiveness. Indeed, the GTP-RhoA pull-down assay revealed an increase in active form of RhoA in the PGD₂-treated mouse BSMs. On the other hand, in the high K⁺-depolarized cultured human BSM cells, PGD₂ caused no further increase in cytosolic Ca2+ concentration. These findings suggest that PGD₂ causes RhoA/Rho-kinase-mediated Ca2+ sensitization of BSM contraction to augment its contractility. Increased PGD₂ level in the airways might be a cause of the AHR in asthma.
Collapse
|
11
|
Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, Karns R, Warth A, Fink-Baldauf IM, Nagayasu T, Naomoto Y, Xu Y, Mall MA, Maeda Y. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med 2017; 9:462-481. [PMID: 28255028 PMCID: PMC5376761 DOI: 10.15252/emmm.201606711] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Though invasive mucinous adenocarcinoma of the lung (IMA) is pathologically distinctive, the molecular mechanism driving IMA is not well understood, which hampers efforts to identify therapeutic targets. Here, by analyzing gene expression profiles of human and mouse IMA, we identified a Mucinous Lung Tumor Signature of 143 genes, which was unexpectedly enriched in mucin-producing gastrointestinal, pancreatic, and breast cancers. The signature genes included transcription factors FOXA3, SPDEF, HNF4A, mucins MUC5AC, MUC5B, MUC3, and an inhibitory immune checkpoint VTCN1/B7-H4 (but not PD-L1/B7-H1). Importantly, induction of FOXA3 or SPDEF along with mutant KRAS in lung epithelium was sufficient to develop benign or malignant mucinous lung tumors, respectively, in transgenic mice. FOXA3 and SPDEF induced MUC5AC and MUC5B, while HNF4A induced MUC3 in human mucinous lung cancer cells harboring a KRAS mutation. ChIP-seq combined with CRISPR/Cas9 determined that upstream enhancer regions of the mucin genes MUC5AC and MUC5B, which were bound by SPDEF, were required for the expression of the mucin genes. Here, we report the molecular signature and gene regulatory network driving mucinous lung tumors.
Collapse
Affiliation(s)
- Minzhe Guo
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, USA
| | - Koichi Tomoshige
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Arne Warth
- Institute of Pathology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Iris M Fink-Baldauf
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yan Xu
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Yutaka Maeda
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Biphasic Regulation of p38 MAPK by Serotonin Contributes to the Efficacy of Stimulus Protocols That Induce Long-Term Synaptic Facilitation. eNeuro 2017; 4:eN-NWR-0373-16. [PMID: 28197555 PMCID: PMC5307297 DOI: 10.1523/eneuro.0373-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
The MAPK isoforms ERK and p38 MAPK are believed to play opposing roles in long-term synaptic facilitation (LTF) induced by serotonin (5-HT) in Aplysia. To fully understand their roles, however, it is necessary to consider the dynamics of ERK and p38 MAPK activation. Previous studies determined that activation of ERK occurred ∼45 min after a 5-min pulse of 5-HT treatment. The dynamics of p38 MAPK activation following 5-HT are yet to be elucidated. Here, the activity of p38 MAPK was examined at different times after 5-HT, and the interaction between the ERK and p38 MAPK pathways was investigated. A 5-min pulse of 5-HT induced a transient inhibition of p38 MAPK, followed by a delayed activation between 25 and 45 min. This activation was blocked by a MAPK kinase inhibitor, suggesting that similar pathways are involved in activation of ERK and p38 MAPK. ERK activity decreased shortly after the activation of p38 MAPK. A p38 MAPK inhibitor blocked this decrease in ERK activity, suggesting a causal relationship. The p38 MAPK activity ∼45 min after different stimulus protocols was also characterized. These data were incorporated into a computational model for the induction of LTF. Simulations and empirical data suggest that p38 MAPK, together with ERK, contributes to the efficacy of spaced stimulus protocols to induce LTF, a correlate of long-term memory (LTM). For example, decreased p38 MAPK activity ∼45 min after the first of two sensitizing stimuli might be an important determinant of an optimal interstimulus interval (ISI) for LTF induction.
Collapse
|
14
|
McMillin M, Frampton G, Grant S, DeMorrow S. The Neuropeptide Galanin Is Up-Regulated during Cholestasis and Contributes to Cholangiocyte Proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:819-830. [PMID: 28196718 DOI: 10.1016/j.ajpath.2016.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Abstract
During the course of cholestatic liver diseases, mitotically dormant cholangiocytes proliferate and subsequently acquire a neuroendocrine phenotype. Galanin is a neuroendocrine factor responsible for regulation of physiological responses, such as feeding behavior and mood, and has been implicated in the development of fatty liver disease, although its role in biliary hyperplasia is unknown. Biliary hyperplasia was induced in rats via bile duct ligation (BDL) surgery, and galanin was increased in serum and liver homogenates from BDL rats. Treatment of sham and BDL rats with recombinant galanin increased cholangiocyte proliferation and intrahepatic biliary mass, liver damage, and inflammation, whereas blocking galanin expression with specific vivo-morpholino sequences inhibited hyperplastic cholangiocyte proliferation, liver damage, inflammation, and subsequent fibrosis. The proliferative effects of galanin were via activation of galanin receptor 1 expressed specifically on cholangiocytes and were associated with an activation of extracellular signal-regulated kinase 1/2, and ribosomal S6 kinase 1 signal transduction pathways and subsequent increase in cAMP responsive element binding protein DNA-binding activity and induction of Yes-associated protein expression. Strategies to inhibit extracellular signal-regulated kinase 1/2, ribosomal S6 kinase 1, or cAMP responsive element binding protein DNA-binding activity prevented the proliferative effects of galanin. Taken together, these data suggest that targeting galanin signaling may be effective for the maintenance of biliary mass during cholestatic liver diseases.
Collapse
Affiliation(s)
- Matthew McMillin
- Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Gabriel Frampton
- Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Stephanie Grant
- Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Sharon DeMorrow
- Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas.
| |
Collapse
|
15
|
Kanai K, Okano M, Fujiwara T, Kariya S, Haruna T, Omichi R, Makihara SI, Hirata Y, Nishizaki K. Effect of prostaglandin D2 on VEGF release by nasal polyp fibroblasts. Allergol Int 2016; 65:414-419. [PMID: 27091669 DOI: 10.1016/j.alit.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is known to be associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). VEGF is produced by a variety of cells including fibroblasts. It was recently reported that prostaglandin (PG) E2 induces VEGF release by nasal polyp fibroblasts. However, little is known regarding possible regulation of VEGF by other PGs. We have reported that molecules that regulate PGD2 metabolism play roles in the pathogenesis of CRS including in local eosinophilia and type 2 cytokine production. In the present study, we sought to determine whether PGD2 regulates VEGF release by nasal polyp fibroblasts. METHODS Nasal polyp fibroblasts were established from nasal polyps. These fibroblasts were stimulated with serial dilutions of PGD2 or PGD2 receptor (DP/CRTH2)-selective agonists in the presence or absence of receptor-selective antagonists. The concentration of VEGF in the culture supernatants was determined using ELISA. RESULTS 5 μM of PGD2 significantly induced VEGF release by nasal polyp fibroblasts. VEGF release was also obtained by stimulation with a DP receptor-selective, but not with a CRTH2 receptor-selective agonist. In addition, PGD2-induced VEGF release was significantly inhibited by pre-treatment with DP receptor-selective antagonists. In contrast, pre-treatment with a CRTH2 receptor-selective antagonist significantly enhanced PGD2-induced VEGF release. CONCLUSIONS PGD2 stimulates VEGF production via DP but not CRTH2 receptors in nasal polyp fibroblasts.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cells, Cultured
- Eosinophils/immunology
- Eosinophils/metabolism
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression
- Humans
- Immunoglobulin E/immunology
- Leukocyte Count
- Male
- Middle Aged
- Nasal Polyps/diagnosis
- Nasal Polyps/etiology
- Nasal Polyps/metabolism
- Prostaglandin D2/metabolism
- Prostaglandin D2/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Respiratory Function Tests
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kengo Kanai
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Mitsuhiro Okano
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Tazuko Fujiwara
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takenori Haruna
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryotaro Omichi
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Yuji Hirata
- Department Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Kazunori Nishizaki
- Department Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| |
Collapse
|
16
|
Ouyang Q, Zhang L, Jiang Y, Ni X, Chen S, Ye F, Du Y, Huang L, Ding P, Wang N, Yang C, Huang T, Sun Y, Li S, Xia Y, Hu W, Luo R, Shao Z. The membrane complement regulatory protein CD59 promotes tumor growth and predicts poor prognosis in breast cancer. Int J Oncol 2016; 48:2015-2024. [PMID: 26935178 DOI: 10.3892/ijo.2016.3408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. CD59, a membrane complement regulatory protein, has been demonstrated to be overexpressed in most solid tumors, where it facilitates tumor cell escape from complement surveillance. However, the role of CD59 in breast cancer growth and clinical prognosis is not fully revealed. To investigate the role of CD59 in breast cancer growth and prognostic significance, we knocked down CD59 in a breast cancer cell line that is highly metastatic to the lungs, MDA-MB‑231-HM. Cell growth was measured in vitro and in vivo using a xenograft model. In addition, clinical data on a cohort of 120 patients with or without lung metastasis was analyzed based on CD59 expression, which was detected by immunohistochemistry. Knockdown of CD59 significantly inhibited MDA-MB‑231-HM cell growth both in vitro and in vivo. An analysis of clinical data on 120 patients revealed that patients with CD59 overexpression may have a worse prognosis. CD59 may therefore be a prognostic biomarker for poor outcome in breast cancer patients.
Collapse
Affiliation(s)
- Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi, P.R. China
| | - Long Zhang
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Yizhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Xiaojian Ni
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Sheng Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Fugui Ye
- Department of General Surgery, Affiliated Union Hospital of Fujian Medical University, Union Clinical School, Fujian Medical University, Fujian, P.R. China
| | - Yiqun Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Peipei Ding
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Na Wang
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Chaoqun Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Tianbao Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, P.R. China
| | - Yujing Sun
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Shan Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Yun Xia
- Department of Breast Surgery, The Third Hospital of Nanchang, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi, P.R. China
| | - Weiguo Hu
- Fudan University Cancer Institute, Shanghai Cancer Center, Shanghai, P.R. China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| |
Collapse
|
17
|
Santini G, Mores N, Malerba M, Mondino C, Macis G, Montuschi P. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin Investig Drugs 2016; 25:639-52. [PMID: 27094922 DOI: 10.1080/13543784.2016.1175434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION By activating DP1 and DP2 receptors on immune and non-immune cells, prostaglandin D2 (PGD2), a major metabolic product of cyclo-oxygenase pathway released after IgE-mediated mast cell activation, has pro-inflammatory effects, which are relevant to the pathophysiology of allergic airway disease. At least 15 selective, orally active, DP2 receptor antagonists and one DP1 receptor antagonist (asapiprant) are under development for asthma and/or allergic rhinitis. AREAS COVERED In this review, the authors cover the pharmacology of PGD2 and PGD2 receptor antagonists and look at the preclinical, phase I and phase II studies with selective DP1 and DP2 receptor antagonists. EXPERT OPINION Future research should aim to develop once daily compounds and increase the drug clinical potency which, apart from OC000459 and ADC-3680, seems to be relatively low. Further research and development of DP2 receptor antagonists is warranted, particularly in patients with severe uncontrolled asthma, whose management is a top priority. Pediatric studies, which are not available, are required for assessing the efficacy and safety of this novel drug class in children with asthma and allergic rhinitis. Studies on the efficacy of DP2 receptor antagonists in various asthma phenotypes including: smokers, obese subjects, early vs late asthma onset, fixed vs reversible airflow limitation, are required for establishing their pharmacotherapeutic role.
Collapse
Affiliation(s)
- Giuseppe Santini
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Nadia Mores
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Mario Malerba
- b Department of Internal Medicine , University of Brescia , Brescia , Italy
| | - Chiara Mondino
- c Department of Allergology , 'Bellinzona e Valli' Hospital , Bellinzona , Switzerland
| | - Giuseppe Macis
- d Department of Radiological Sciences, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Paolo Montuschi
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| |
Collapse
|
18
|
Le Loupp AG, Bach-Ngohou K, Bourreille A, Boudin H, Rolli-Derkinderen M, Denis MG, Neunlist M, Masson D. Activation of the prostaglandin D2 metabolic pathway in Crohn's disease: involvement of the enteric nervous system. BMC Gastroenterol 2015; 15:112. [PMID: 26338799 PMCID: PMC4558965 DOI: 10.1186/s12876-015-0338-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023] Open
Abstract
Background Recent works provide evidence of the importance of the prostaglandin D2 (PGD2) metabolic pathway in inflammatory bowel diseases. We investigated the expression of PGD2 metabolic pathway actors in Crohn’s disease (CD) and the ability of the enteric nervous system (ENS) to produce PGD2 in inflammatory conditions. Methods Expression of key actors involved in the PGD2 metabolic pathway and its receptors was analyzed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in colonic mucosal biopsies of patients from three groups: controls, quiescent and active CD patients. To determine the ability of the ENS to secrete PGD2 in proinflammatory conditions, Lipocalin-type prostaglandin D synthase (L-PGDS) expression by neurons and glial cells was analyzed by immunostaining. PGD2 levels were determined in a medium of primary culture of ENS and neuro-glial coculture model treated by lipopolysaccharide (LPS). Results In patients with active CD, inflamed colonic mucosa showed significantly higher COX2 and L-PGDS mRNA expression, and significantly higher PGD2 levels than healthy colonic mucosa. On the contrary, peroxysome proliferator-activated receptor Gamma (PPARG) expression was reduced in inflamed colonic mucosa of CD patients with active disease. Immunostaining showed that L-PGDS was expressed in the neurons of human myenteric and submucosal plexi. A rat ENS primary culture model confirmed this expression. PGD2 levels were significantly increased on primary culture of ENS treated with LPS. This production was abolished by AT-56, a specific competitive L-PGDS inhibitor. The neuro-glial coculture model revealed that each component of the ENS, ECG and neurons, could contribute to PGD2 production. Conclusions Our results highlight the activation of the PGD2 metabolic pathway in Crohn’s disease. This study supports the hypothesis that in Crohn’s disease, enteric neurons and glial cells form a functional unit reacting to inflammation by producing PGD2.
Collapse
Affiliation(s)
- Anne-Gaelle Le Loupp
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Kalyane Bach-Ngohou
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Arnaud Bourreille
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Hélène Boudin
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Malvyne Rolli-Derkinderen
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Marc G Denis
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Michel Neunlist
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| | - Damien Masson
- INSERM Unité 913, 1 rue Gaston Veil, Nantes, F-44035, France. .,Université Nantes, 1 quai de Tourville, BP 13522, Nantes, F-44035, France. .,Institut des Maladies de l'Appareil Digestif, 1 place Alexis Ricordeau, Nantes, F-44093, France. .,Laboratoire de Biochimie, Institut de Biologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes, F-44093, France.
| |
Collapse
|
19
|
Effect of the potent and selective DP1 receptor antagonist, asapiprant (S-555739), in animal models of allergic rhinitis and allergic asthma. Eur J Pharmacol 2015; 765:15-23. [PMID: 26277322 DOI: 10.1016/j.ejphar.2015.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 01/06/2023]
Abstract
Prostaglandin (PG) D2 elicits responses through either the DP1 and/or DP2 receptor. Experimental evidence suggests that stimulation of the DP1 receptor contributes to allergic responses, such that antagonists are considered to be directed therapies for allergic diseases. In this study, we demonstrate the activity of a novel synthetic DP1 receptor antagonist termed asapiprant (S-555739) for the DP1 receptor and other receptors in vitro, and assess the efficacy of asapiprant in several animal models of allergic diseases. We determined the affinity and selectivity of asapiprant for the DP1 receptor in binding assays. In the animal models of allergic rhinitis, changes in nasal resistance, nasal secretion, and cell infiltration in nasal mucosa were assessed after antigen challenge with and without asapiprant. Similarly, in the animal models of asthma, the effect of antigen challenge with and without asapiprant on antigen-induced bronchoconstriction, airway hyper-responsiveness, mucin production, and cell infiltration in lung were assessed. In binding studies, asapiprant exhibited high affinity and selectivity for the DP1 receptor. Significant suppression of antigen-induced nasal resistance, nasal secretion, and cell infiltration in nasal mucosa was observed with asapiprant treatment. In addition, treatment with asapiprant suppressed antigen-induced asthmatic responses, airway hyper-responsiveness, and cell infiltration and mucin production in lung. These results show that asapiprant is a potent and selective DP1 receptor antagonist, and exerts suppressive effects in the animal models of allergic diseases. Thus, asapiprant has potential as a novel therapy for allergic airway diseases.
Collapse
|
20
|
Le Loupp AG, Bach-Ngohou K, Bettan A, Denis M, Masson D. [Dual role for prostaglandin D2 in intestinal epithelial homeostasis]. Med Sci (Paris) 2015; 31:617-21. [PMID: 26152165 DOI: 10.1051/medsci/20153106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prostaglandin D2 (PGD2) and derivatives are lipid mediators involved in the control of the intestinal epithelial barrier homeostasis. Their involvement in the pathophysiology of chronic inflammatory bowel disease (IBD) is still debated. Several results highlight the duality of PGD2 as an anti- or pro-inflammatory mediator. This duality seems to be related to a differential expression of its receptors by intestinal epithelial cells and the surrounding immunocompetent cells. The enteric glial cells from the enteric nervous system (ENS) express the lipocalin-type-prostaglandin D synthase and secrete PGD2 and 15d-PGJ2. The protective role of the ENS in the homeostatic control of the epithelial intestinal barrier and its involvement in the pathogenesis of IBD have already been demonstrated. Thus, these lipid mediators seem to be new actors of the neuro-glio-epithelial unit and could play a crucial role maintaining gut barrier integrity.
Collapse
Affiliation(s)
- Anne-Gaelle Le Loupp
- Inserm UMR913, institut des maladies de l'appareil digestif, Université de Nantes, CHU Hôtel-Dieu, 1, place Alexis Ricordeau, 44093 Nantes, France - Laboratoire de Biochimie, institut de biologie, CHU Nantes, 9, quai Moncousu, 44093 Nantes, France
| | - Kalyane Bach-Ngohou
- Inserm UMR913, institut des maladies de l'appareil digestif, Université de Nantes, CHU Hôtel-Dieu, 1, place Alexis Ricordeau, 44093 Nantes, France - Laboratoire de Biochimie, institut de biologie, CHU Nantes, 9, quai Moncousu, 44093 Nantes, France
| | - Armel Bettan
- Inserm UMR913, institut des maladies de l'appareil digestif, Université de Nantes, CHU Hôtel-Dieu, 1, place Alexis Ricordeau, 44093 Nantes, France
| | - Marc Denis
- Inserm UMR913, institut des maladies de l'appareil digestif, Université de Nantes, CHU Hôtel-Dieu, 1, place Alexis Ricordeau, 44093 Nantes, France - Laboratoire de Biochimie, institut de biologie, CHU Nantes, 9, quai Moncousu, 44093 Nantes, France
| | - Damien Masson
- Inserm UMR913, institut des maladies de l'appareil digestif, Université de Nantes, CHU Hôtel-Dieu, 1, place Alexis Ricordeau, 44093 Nantes, France - Laboratoire de Biochimie, institut de biologie, CHU Nantes, 9, quai Moncousu, 44093 Nantes, France
| |
Collapse
|
21
|
Xie Y, Nakanishi T, Natarajan K, Safren L, Hamburger AW, Hussain A, Ross DD. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:317-27. [PMID: 25615818 DOI: 10.1016/j.bbagrm.2015.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways.
Collapse
Affiliation(s)
- Yi Xie
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Karthika Natarajan
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lowell Safren
- Schnaper Summer Internship Program, University of Maryland Greenebaum Cancer Center, USA
| | - Anne W Hamburger
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Arif Hussain
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Douglas D Ross
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore VA Medical Center, Baltimore, MD 21201, USA; Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Currais A, Prior M, Dargusch R, Armando A, Ehren J, Schubert D, Quehenberger O, Maher P. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer's disease transgenic mice. Aging Cell 2014; 13:379-90. [PMID: 24341874 PMCID: PMC3954948 DOI: 10.1111/acel.12185] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. It is the only one of the top ten causes of death in the USA for which prevention strategies have not been developed. Although AD has traditionally been associated with the deposition of amyloid β plaques and tau tangles, it is becoming increasingly clear that it involves disruptions in multiple cellular systems. Therefore, it is unlikely that hitting a single target will result in significant benefits to patients with AD. An alternative approach is to identify molecules that have multiple biological activities that are relevant to the disease. Fisetin is a small, orally active molecule which can act on many of the target pathways implicated in AD. We show here that oral administration of fisetin to APPswe/PS1dE9 double transgenic AD mice from 3 to 12 months of age prevents the development of learning and memory deficits. This correlates with an increase in ERK phosphorylation along with a decrease in protein carbonylation, a marker of oxidative stress. Importantly, fisetin also reduces the levels of the cyclin-dependent kinase 5 (Cdk5) activator p35 cleavage product, p25, in both control and AD brains. Elevated levels of p25 relative to p35 cause dysregulation of Cdk5 activity leading to neuroinflammation and neurodegeneration. These fisetin-dependent changes correlate with additional anti-inflammatory effects, including alterations in global eicosanoid synthesis, and the maintenance of markers of synaptic function in the AD mice. Together, these results suggest that fisetin may provide a new approach to the treatment of AD.
Collapse
Affiliation(s)
- Antonio Currais
- The Salk Institute for Biological Studies 10010 N. Torrey Pines RoadLa Jolla CA 92037USA
| | - Marguerite Prior
- The Salk Institute for Biological Studies 10010 N. Torrey Pines RoadLa Jolla CA 92037USA
| | - Richard Dargusch
- The Salk Institute for Biological Studies 10010 N. Torrey Pines RoadLa Jolla CA 92037USA
| | - Aaron Armando
- Depatment of Medicine University of California at San Diego 9500 Gilman Drive #0601La Jolla CA 92093‐0601USA
| | - Jennifer Ehren
- The Salk Institute for Biological Studies 10010 N. Torrey Pines RoadLa Jolla CA 92037USA
| | - David Schubert
- The Salk Institute for Biological Studies 10010 N. Torrey Pines RoadLa Jolla CA 92037USA
| | - Oswald Quehenberger
- Depatment of Medicine University of California at San Diego 9500 Gilman Drive #0601La Jolla CA 92093‐0601USA
| | - Pamela Maher
- The Salk Institute for Biological Studies 10010 N. Torrey Pines RoadLa Jolla CA 92037USA
| |
Collapse
|
23
|
Hao Y, Kuang Z, Xu Y, Walling BE, Lau GW. Pyocyanin-induced mucin production is associated with redox modification of FOXA2. Respir Res 2013; 14:82. [PMID: 23915402 PMCID: PMC3765780 DOI: 10.1186/1465-9921-14-82] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background The redox-active pyocyanin (PCN) is a toxic, secondary metabolite secreted by the respiratory pathogen Pseudomonas aeruginosa (PA). Previously, we have shown that mouse lungs chronically exposed to PCN develop goblet cell hyperplasia and metaplasia (GCHM) and mucus hypersecretion, fibrosis and emphysema. These pathological features are commonly found in the airways of several chronic lung diseases, including cystic fibrosis (CF), as well as in mouse airways deficient in the forkhead box A2 (FOXA2), a transcriptional repressor of goblet GCHM and mucus biosynthesis. Furthermore, PCN inhibits FOXA2 by activating the pro-GCHM signaling pathways Stat6 and EGFR. However, it is not known whether PCN-generated reactive oxygen (ROS) and nitrogen (RNS) species posttranslationally modify and inactivate FOXA2. Methods We examined the posttranslational modifications of FOXA2 by PCN using specific antibodies against oxidation, nitrosylation, acetylation and ubiquitination. Electrophoretic mobility shift assay (EMSA) was used to examine the ability of modified FOXA2 to bind the promoter of MUC5B mucin gene. In addition, we used quantitative real time PCR, ELISA, immunofluorescence and mouse lung infection to assess whether the loss of FOXA2 function caused GCHM and mucin overexpression. Finally, we examined the restoration of FOXA2 function by the antioxidant glutathione (GSH). Results We found that PCN-generated ROS/RNS caused nitrosylation, acetylation, ubiquitination and degradation of FOXA2. Modified FOXA2 had reduced ability to bind the promoter of the MUC5B gene. The antioxidant GSH alleviated the modification of FOXA2 by PCN, and inhibited the overexpression of MUC5AC and MUC5B mucins. Conclusion These results suggest that PCN-mediated posttranslational modifications of FOXA2 are positively correlated with GCHM and overexpression of airway mucins. Furthermore, antioxidant treatment restores the function of FOXA2 to attenuate GCHM and mucus hypersecretion.
Collapse
Affiliation(s)
- Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign 2001, Lincoln Avenue, Urbana, IL, 61802, United States of America.
| | | | | | | | | |
Collapse
|
24
|
Ayabe S, Kida T, Hori M, Ozaki H, Murata T. Prostaglandin D2 inhibits collagen secretion from lung fibroblasts by activating the DP receptor. J Pharmacol Sci 2013; 121:312-7. [PMID: 23538675 DOI: 10.1254/jphs.12275fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Lung fibroblasts are responsible for collagen secretion during normal tissue repair and the development of fibrosis. Many other prostaglandins have been reported to regulate collagen synthesis in lung fibroblasts, but the role of prostaglandin D2 (PGD2) is unknown. In this study, we investigated the effect of PGD2 on type I collagen secretion in human lung fibroblasts. Pretreatment with PGD2 (0.1 - 10 μM, 1 h) significantly attenuated type I collagen secretion to the cell supernatant induced by transforming growth factor-β (TGF-β). Although an agonist on chemoattractant receptorhomologous molecule expressed on Th2 cells (CRTH2) did not have any effect, the prostanoid DP-receptor agonist BW245C (0.01 - 1 μM) suppressed TGF-β-induced collagen secretion. PGD2 and BW245C significantly increased intracellular cAMP level. One-hour pretreatment with forskolin (0.1 - 10 μM), dibutyryl-cAMP (0.01 - 1 mM), and the protein kinase A (PKA)-activator N(6)-phenyl-cyclic AMP (100 μM) significantly reduced TGF-β-induced collagen secretion, while exchange protein activated by cAMP (Epac) activator 8-bromo-2'-O-methyladenosine-3',5'-cyclic AMP (10 μM) did not affect collagen deposition. These results suggest that PGD2 inhibits TGF-β-induced collagen secretion via intracellular cAMP accumulation through activating DP receptor.
Collapse
Affiliation(s)
- Shinya Ayabe
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
25
|
Čokić VP, Smith RD, Biancotto A, Noguchi CT, Puri RK, Schechter AN. Globin gene expression in correlation with G protein-related genes during erythroid differentiation. BMC Genomics 2013; 14:116. [PMID: 23425329 PMCID: PMC3602204 DOI: 10.1186/1471-2164-14-116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 02/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results demonstrate the concomitant activity of GPCR-coupled genes and related signaling pathways during erythropoietic stimulation of globin genes. In accordance with previous reports, the stimulation of GPCRs supports the postulated connection between cAMP/PKA and NO/cGMP pathways in activation of γ-globin expression, via JUN and p38 MAPK signaling.
Collapse
Affiliation(s)
- Vladan P Čokić
- Laboratory of Experimental Hematology, Institute for Medical Research, University of Belgrade, Dr, Subotica 4, 11129, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
26
|
Takabayashi T, Kato A, Peters AT, Suh LA, Carter R, Norton J, Grammer LC, Tan BK, Chandra RK, Conley DB, Kern RC, Fujieda S, Schleimer RP. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2012; 130:410-20.e5. [PMID: 22534535 DOI: 10.1016/j.jaci.2012.02.046] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Although chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is characterized by T(H)2 inflammation, the role of mast cells is poorly understood. OBJECTIVE The objective of this study was to investigate the presence, localization, and phenotype of mast cells in patients with CRS. METHODS We collected nasal tissue and nasal lavage fluid from patients with CRS and control subjects. We analyzed mRNA for the mast cell proteases tryptase, chymase, and carboxypeptidase A3 by using real-time PCR and measured mast cell protease proteins by using ELISA, immunohistochemistry, and immunofluorescence. RESULTS Tryptase mRNA was significantly increased in nasal polyps (NPs) from patients with CRSwNP (P< .001) compared with uncinate tissue from patients with CRS or control subjects. Tryptase protein was also elevated in NPs and in nasal lavage fluids from patients with CRSwNP. Immnohistochemistry showed increased numbers of mast cells in epithelium and glands but not within the lamina propria in NPs. The mast cells detected in the epithelium in NPs were characterized by the expression of tryptase and carboxypeptidase A3 but not chymase. Mast cells expressing all the 3 proteases were abundant within the glandular epithelium of NPs but were not found in normal glandular structures. CONCLUSIONS Herein we demonstrated a unique localization of mast cells within the glandular epithelium of NPs and showed that mast cells in NPs have distinct phenotypes that vary by tissue location. Glandular mast cells and the diverse subsets of mast cells detected may contribute to the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|