1
|
Azariadis A, Vouligeas F, Salame E, Kouhen M, Rizou M, Blazakis K, Sotiriou P, Ezzat L, Mekkaoui K, Monzer A, Krokida A, Adamakis ID, Dandachi F, Shalha B, Kostelenos G, Figgou E, Giannoutsou E, Kalaitzis P. Response of Prolyl 4 Hydroxylases, Arabinogalactan Proteins and Homogalacturonans in Four Olive Cultivars under Long-Term Salinity Stress in Relation to Physiological and Morphological Changes. Cells 2023; 12:1466. [PMID: 37296587 PMCID: PMC10252747 DOI: 10.3390/cells12111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water.
Collapse
Affiliation(s)
- Aristotelis Azariadis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Filippos Vouligeas
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Elige Salame
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Mohamed Kouhen
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Myrto Rizou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Kostantinos Blazakis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Penelope Sotiriou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Lamia Ezzat
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Aline Monzer
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Afroditi Krokida
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Faten Dandachi
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Boushra Shalha
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Eleftheria Figgou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| |
Collapse
|
2
|
Moreira D, Lopes AL, Silva J, Ferreira MJ, Pinto SC, Mendes S, Pereira LG, Coimbra S, Pereira AM. New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1083098. [PMID: 36531351 PMCID: PMC9755587 DOI: 10.3389/fpls.2022.1083098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Collapse
Affiliation(s)
- Diana Moreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Lúcia Lopes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Jessy Silva
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
- Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria João Ferreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Cristina Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Luís Gustavo Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Marta Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
An Arabidopsis thaliana arabinogalactan-protein (AGP31) and several cationic AGP fragments catalyse the boron bridging of rhamnogalacturonan-II. Biochem J 2022; 479:1967-1984. [PMID: 36062804 PMCID: PMC9555800 DOI: 10.1042/bcj20220340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022]
Abstract
Rhamnogalacturonan-II (RG-II) is a complex pectic domain in plant primary cell walls. In vivo, most RG-II domains are covalently dimerised via borate diester bridges, essential for correct cell-wall assembly, but the dimerisation of pure RG-II monomers by boric acid in vitro is extremely slow. Cationic ‘chaperones’ can promote dimerisation, probably by overcoming the mutual repulsion between neighbouring anionic RG-II molecules. Highly effective artificial chaperones include Pb2+ and polyhistidine, but the proposed natural chaperones remained elusive. We have now tested cationic peptide fragments of several Arabidopsis thaliana arabinogalactan-proteins (AGPs) as candidates. Fragments of AGP17, 18, 19 and 31 were effective, typically at ∼25 µg/ml (9–19 µM), promoting the boron bridging of 16–20 µM monomeric RG-II at pH 4.8 in vitro. Native AGP31 glycoprotein was also effective, and hexahistidine was moderately so. All chaperones tested interacted reversibly with RG-II and were not consumed during the reaction; thus they acted catalytically, and may constitute the first reported boron-acting enzyme activity, an RG-II borate diesterase. Many of the peptide chaperones became less effective catalysts at higher concentration, which we interpret as due to the formation of RG-II–peptide complexes with a net positive charge, as mutually repulsive as negatively charged pure RG-II molecules. The four unique AGPs studied here may serve an enzymic role in the living plant cell, acting on RG-II within Golgi cisternae and/or in the apoplast after secretion. In this way, RG-II and specific AGPs may contribute to cell-wall assembly and hence plant cell expansion and development.
Collapse
|
4
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
5
|
Somatic Embryogenesis in Centaurium erythraea Rafn-Current Status and Perspectives: A Review. PLANTS 2020; 10:plants10010070. [PMID: 33396285 PMCID: PMC7823438 DOI: 10.3390/plants10010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Centaurium erythraea (centaury) is a traditionally used medicinal plant, with a spectrum of secondary metabolites with confirmed healing properties. Centaury is an emerging model in plant developmental biology due to its vigorous regenerative potential and great developmental plasticity when cultured in vitro. Hereby, we review nearly two decades of research on somatic embryogenesis (SE) in centaury. During SE, somatic cells are induced by suitable culture conditions to express their totipotency, acquire embryogenic characteristics, and eventually give rise to somatic embryos. When SE is initiated from centaury root explants, the process occurs spontaneously (on hormone-free medium), directly (without the callusing phase), and the somatic embryos are of unicellular origin. SE from leaf explants has to be induced by plant growth regulators and is indirect (preceded by callusing). Histological observations and culture conditions are compared in these two systems. The changes in antioxidative enzymes were followed during SE from the leaf explants. Special focus is given to the role of arabinogalactan proteins during SE, which were analyzed using a variety of approaches. The newest and preliminary results, including centaury transcriptome, novel potential SE markers, and novel types of arabinogalactan proteins, are discussed as perspectives of centaury research.
Collapse
|
6
|
Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:563735. [PMID: 33013983 PMCID: PMC7511660 DOI: 10.3389/fpls.2020.563735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.
Collapse
Affiliation(s)
- Georg J. Seifert
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
7
|
Liang R, You L, Dong F, Zhao X, Zhao J. Identification of Hydroxyproline-Containing Proteins and Hydroxylation of Proline Residues in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1207. [PMID: 32849749 PMCID: PMC7427127 DOI: 10.3389/fpls.2020.01207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The hydroxyproline-containing proteins (HCPs) among secretory and vacuolar proteins play important roles in growth and development of higher plants. Many hydroxyproline-rich glycoproteins (HRGPs), including Arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins (PRPs), are identified as HCPs by bioinformatics approaches. The experimental evidence for validation of novel proline hydroxylation sites is vital for understanding their functional roles. In this study, the 62 HCPs containing 114 hydroxyproline (O, Hyp) residues were identified, and it was found that hydroxylation of proline residues in the HCPs could either constitute attachment sites for glycans or have other biological function in rice. The glycomodules of AO, OA, OG, VO, LO, and OE were abundant in the 62 HCPs. Further analysis showed that the 22 of 62 HCPs contained both signal peptides and transmembrane domains, and the 19 HCPs only contained transmembrane domains, while 21 HCPs contained neither. This study indicated the feasibility of mass spectrometry-based proteomics combined with bioinformatics approaches for the large-scale characterization of Hyp sites from complex protein digest mixtures. Furthermore, the expression of AGPs in rice was detected by using β-GlcY reagent and JIM13 antibody. The results displayed that the AGPs were widely distributed in different tissues and organs of rice, especially expressed highly in lateral root, pollen and embryo. In conclusion, our study revealed that the HCPs and Hyp residues in rice were ubiquitous and that these Hyps could be candidates for linking to glycans, which laid the foundation for further studying the functions of HCPs and hydroxylation of proline residues in rice.
Collapse
|
8
|
The Cell Wall PAC (Proline-Rich, Arabinogalactan Proteins, Conserved Cysteines) Domain-Proteins Are Conserved in the Green Lineage. Int J Mol Sci 2020; 21:ijms21072488. [PMID: 32260156 PMCID: PMC7177597 DOI: 10.3390/ijms21072488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Plant cell wall proteins play major roles during plant development and in response to environmental cues. A bioinformatic search for functional domains has allowed identifying the PAC domain (Proline-rich, Arabinogalactan proteins, conserved Cysteines) in several proteins (PDPs) identified in cell wall proteomes. This domain is assumed to interact with pectic polysaccharides and O-glycans and to contribute to non-covalent molecular scaffolds facilitating the remodeling of polysaccharidic networks during rapid cell expansion. In this work, the characteristics of the PAC domain are described in detail, including six conserved Cys residues, their spacing, and the predicted secondary structures. Modeling has been performed based on the crystal structure of a Plantago lanceolata PAC domain. The presence of β-sheets is assumed to ensure the correct folding of the PAC domain as a β-barrel with loop regions. We show that PDPs are present in early divergent organisms from the green lineage and in all land plants. PAC domains are associated with other types of domains: Histidine-rich, extensin, Proline-rich, or yet uncharacterized. The earliest divergent organisms having PDPs are Bryophytes. Like the complexity of the cell walls, the number and complexity of PDPs steadily increase during the evolution of the green lineage. The association of PAC domains with other domains suggests a neo-functionalization and different types of interactions with cell wall polymers
Collapse
|
9
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
10
|
Yang J, Zhang Y, Wang X, Wang W, Li Z, Wu J, Wang G, Wu L, Zhang G, Ma Z. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC PLANT BIOLOGY 2018; 18:339. [PMID: 30526498 PMCID: PMC6286592 DOI: 10.1186/s12870-018-1565-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/22/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Developing tolerant cultivars by incorporating resistant genes is regarded as a potential strategy for controlling Verticillium wilt that causes severe losses in the yield and fiber quality of cotton. RESULTS Here, we identified the gene GbHyPRP1 in Gossypium barbadense, which encodes a protein containing both proline-rich repetitive and Pollen Ole e I domains. GbHyPRP1 is located in the cell wall. The transcription of this gene mainly occurs in cotton roots and stems, and is drastically down-regulated upon infection with Verticillium dahliae. Silencing HyPRP1 dramatically enhanced cotton resistance to V. dahliae. Over-expression of HyPRP1 significantly compromised the resistance of transgenic Arabidopsis plants to V. dahliae. The GbHyPRP1 promoter region contained several putative phytohormone-responsive elements, of which SA was associated with gene down-regulation. We compared the mRNA expression patterns of HyPRP1-silenced plants and the control at the global level by RNA-Seq. A total of 1735 unique genes exhibited significant differential expression. Of these, 79 DEGs involved in cell wall biogenesis and 43 DEGs associated with the production of ROS were identified. Further, we observed a dramatic thickening of interfascicular fibers and vessel walls and an increase in lignin in the HyPRP1-silenced cotton plants compared with the control after inoculation with V. dahliae. Additionally, silencing of HyPRP1 markedly enhanced ROS accumulation in the root tips of cotton inoculated with V. dahliae. CONCLUSIONS Taken together, our results suggest that HyPRP1 performs a role in the negative regulation of cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation.
Collapse
Affiliation(s)
- Jun Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Yan Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Xingfen Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Weiqiao Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Zhikun Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Jinhua Wu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Guoning Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Liqiang Wu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Guiyin Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Zhiying Ma
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
11
|
Hunt L, Amsbury S, Baillie A, Movahedi M, Mitchell A, Afsharinafar M, Swarup K, Denyer T, Hobbs JK, Swarup R, Fleming AJ, Gray JE. Formation of the Stomatal Outer Cuticular Ledge Requires a Guard Cell Wall Proline-Rich Protein. PLANT PHYSIOLOGY 2017; 174:689-699. [PMID: 28153922 PMCID: PMC5462008 DOI: 10.1104/pp.16.01715] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Stomata are formed by a pair of guard cells which have thickened, elastic cell walls to withstand the large increases in turgor pressure that have to be generated to open the pore that they surround. We have characterized FOCL1, a guard cell-expressed, secreted protein with homology to Hyp-rich cell wall proteins. FOCL1-GFP localizes to the guard cell outer cuticular ledge and plants lacking FOCL1 produce stomata without a cuticular ledge. Instead the majority of stomatal pores are entirely covered over by a continuous fusion of the cuticle, and consequently plants have decreased levels of transpiration and display drought tolerance. The focl1 guard cells are larger and less able to reduce the aperture of their stomatal pore in response to closure signals suggesting that the flexibility of guard cell walls is impaired. FOCL1 is also expressed in lateral root initials where it aids lateral root emergence. We propose that FOCL1 acts in these highly specialized cells of the stomata and root to impart cell wall strength at high turgor and/or to facilitate interactions between the cell wall and the cuticle.
Collapse
Affiliation(s)
- Lee Hunt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Samuel Amsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Alice Baillie
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Mahsa Movahedi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Alice Mitchell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Mana Afsharinafar
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Kamal Swarup
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Thomas Denyer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Jamie K Hobbs
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Ranjan Swarup
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Andrew J Fleming
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.)
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (L.H., M.M., A.M., M.A., J.E.G.);
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S3 7HF, United Kingdom (S.A., A.B., A.J.F.);
- Centre for Integrative Plant Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom (K.S., T.D., R.S.); and
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom (J.K.H.)
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
13
|
Raja MRC, Vinod Kumar V, Srinivasan V, Selvaraj S, Radhakrishnan N, Mukundan R, Raghunandan S, Anthony SP, Kar Mahapatra S. ApAGP-fabricated silver nanoparticles induce amendment of murine macrophage polarization. J Mater Chem B 2017; 5:3511-3520. [PMID: 32264287 DOI: 10.1039/c6tb02095j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
M2 polarization of macrophages is predominant in case of tumors and some other infectious diseases for disease progression. Repolarization of the M2 phenotype to the M1 state may be required to cure diseases. Hence, it is of great interest to find out a material that would repolarize the M2 phenotype to the M1 state. Herein, the arabinogalactan protein from Andrographis paniculata (ApAGP) was used to prepare a silver nanoparticle-ApAGP (SNP-ApAGP) bioconjugate, which was characterized via UV-vis spectroscopy, zeta potential analysis, FT-IR spectroscopy, and HR-TEM. Studies suggest that SNP-ApAGP (2.5 μg mL-1) up-regulates ROS generation, NO generation, and pro-inflammatory cytokine release (IL-12, IFN-γ, TNF-α, and IL-6). SNP-ApAGP also down-regulates the arginase-1 activity and anti-inflammatory cytokine release (IL-4 & IL-10) in M0, M1, and M2-polarized peritoneal macrophages in vitro. Therefore, SNP-ApAGP induces M1 polarization in M0 macrophages, enhances the pro-inflammatory activity of the M1 phenotype, and can also repolarize M2 macrophages into the M1 phenotype. Therefore, SNP-ApAGP could be used for treating various infectious diseases and cancers where repolarization of M2 macrophages may be required to cure the disease.
Collapse
Affiliation(s)
- Mamilla R Charan Raja
- Medicinal Chemistry and Immunology Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur - 613 401, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ma Y, Yan C, Li H, Wu W, Liu Y, Wang Y, Chen Q, Ma H. Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom. FRONTIERS IN PLANT SCIENCE 2017; 8:66. [PMID: 28184232 PMCID: PMC5266747 DOI: 10.3389/fpls.2017.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for "classical" and "chimeric" family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many "ancient" AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm.
Collapse
Affiliation(s)
- Yuling Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Chenchao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Yaxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Yuqian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- National Base for the Talents on Life-Science and Technology, Innovation Experimental College, Northwest A&F UniversityYangling, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
15
|
Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E. Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules? FRONTIERS IN PLANT SCIENCE 2017; 8:1802. [PMID: 29089960 PMCID: PMC5651053 DOI: 10.3389/fpls.2017.01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to N-glycosylation, O-glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for O-glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five Arabidopsis thaliana proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Hervé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- INRS – Institut Armand Frappier, Laval, Canada
| | - Thierry Balliau
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- *Correspondence: Elisabeth Jamet,
| |
Collapse
|
16
|
Canut H, Albenne C, Jamet E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:983-90. [PMID: 26945515 DOI: 10.1016/j.bbapap.2016.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hervé Canut
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Cécile Albenne
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
17
|
Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, Jamet E. Arabidopsis thaliana
root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics 2016; 16:491-503. [DOI: 10.1002/pmic.201500129] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Huan Nguyen-Kim
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Thierry Balliau
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Michel Zivy
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| |
Collapse
|
18
|
Pitzschke A, Xue H, Persak H, Datta S, Seifert GJ. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis. Int J Mol Sci 2016; 17:E85. [PMID: 26771603 PMCID: PMC4730328 DOI: 10.3390/ijms17010085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunner Strasse 34, Salzburg A-5020, Austria.
| | - Hui Xue
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| | - Helene Persak
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| | - Sneha Datta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| | - Georg J Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna A-1190, Austria.
| |
Collapse
|
19
|
Chen Y, Ye D, Held MA, Cannon MC, Ray T, Saha P, Frye AN, Mort AJ, Kieliszewski MJ. Identification of the Abundant Hydroxyproline-Rich Glycoproteins in the Root Walls of Wild-Type Arabidopsis, an ext3 Mutant Line, and Its Phenotypic Revertant. PLANTS (BASEL, SWITZERLAND) 2015; 4:85-111. [PMID: 27135319 PMCID: PMC4844335 DOI: 10.3390/plants4010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/15/2015] [Indexed: 11/22/2022]
Abstract
Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP) superfamily that form covalently cross-linked networks in primary cell walls. A knockout mutation in EXT3 (AT1G21310), the gene coding EXTENSIN 3 (EXT3) in Arabidopsis Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants have an apparently normal phenotype (ANP). In this study the root cell wall HRGP components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest that changes in the amount and perhaps type may account for the corresponding phenotypes.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Dening Ye
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Maura C Cannon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Tui Ray
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Prasenjit Saha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alexandra N Frye
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Andrew J Mort
- Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
20
|
Ford KL, Zeng W, Heazlewood JL, Bacic A. Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques. FRONTIERS IN PLANT SCIENCE 2015; 6:674. [PMID: 26379696 PMCID: PMC4551829 DOI: 10.3389/fpls.2015.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/15/2015] [Indexed: 05/03/2023]
Abstract
The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. We have used three common fragmentation techniques, namely CID, HCD, and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.
Collapse
Affiliation(s)
- Kristina L. Ford
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
| | - Joshua L. Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
- Physical Biosciences Division, Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of MelbourneMelbourne, VIC, Australia
- *Correspondence: Antony Bacic, ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Building 122, Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Hijazi M, Roujol D, Nguyen-Kim H, Del Rocio Cisneros Castillo L, Saland E, Jamet E, Albenne C. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? ANNALS OF BOTANY 2014; 114:1087-97. [PMID: 24685714 PMCID: PMC4195544 DOI: 10.1093/aob/mcu038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Arabinogalactan protein 31 (AGP31) is a remarkable plant cell-wall protein displaying a multi-domain organization unique in Arabidopsis thaliana: it comprises a predicted signal peptide (SP), a short AGP domain of seven amino acids, a His-stretch, a Pro-rich domain and a PAC (PRP-AGP containing Cys) domain. AGP31 displays different O-glycosylation patterns with arabinogalactans on the AGP domain and Hyp-O-Gal/Ara-rich motifs on the Pro-rich domain. AGP31 has been identified as an abundant protein in cell walls of etiolated hypocotyls, but its function has not been investigated thus far. Literature data suggest that AGP31 may interact with cell-wall components. The purpose of the present study was to identify AGP31 partners to gain new insight into its function in cell walls. METHODS Nitrocellulose membranes were prepared by spotting different polysaccharides, which were either obtained commercially or extracted from cell walls of Arabidopsis thaliana and Brachypodium distachyon. After validation of the arrays, in vitro interaction assays were carried out by probing the membranes with purified native AGP31 or recombinant PAC-V5-6xHis. In addition, dynamic light scattering (DLS) analyses were carried out on an AGP31 purified fraction. KEY RESULTS It was demonstrated that AGP31 interacts through its PAC domain with galactans that are branches of rhamnogalacturonan I. This is the first experimental evidence that a PAC domain, also found as an entire protein or a domain of AGP31 homologues, can bind carbohydrates. AGP31 was also found to bind methylesterified polygalacturonic acid, possibly through its His-stretch. Finally, AGP31 was able to interact with itself in vitro through its PAC domain. DLS data showed that AGP31 forms aggregates in solution, corroborating the hypothesis of an auto-assembly. CONCLUSIONS These results allow the proposal of a model of interactions of AGP31 with different cell-wall components, in which AGP31 participates in complex supra-molecular scaffolds. Such scaffolds could contribute to the strengthening of cell walls of quickly growing organs such as etiolated hypocotyls.
Collapse
Affiliation(s)
- May Hijazi
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - David Roujol
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Huan Nguyen-Kim
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | | | - Estelle Saland
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Cécile Albenne
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
22
|
Hijazi M, Velasquez SM, Jamet E, Estevez JM, Albenne C. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. FRONTIERS IN PLANT SCIENCE 2014; 5:395. [PMID: 25177325 PMCID: PMC4132260 DOI: 10.3389/fpls.2014.00395] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 05/04/2023]
Abstract
Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.
Collapse
Affiliation(s)
- May Hijazi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - Silvia M. Velasquez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - José M. Estevez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos AiresBuenos Aires, Argentina
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| |
Collapse
|
23
|
Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. MOLECULAR PLANT 2014; 7:722-38. [PMID: 24214892 PMCID: PMC3973493 DOI: 10.1093/mp/sst157] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly associated with numerous abiotic and biotic stress responses. Identification of MPK3 substrates is a milestone towards improving stress resistance in plants. Here, we characterize AZI1, a lipid transfer protein (LTP)-related hybrid proline-rich protein (HyPRP), as a novel target of MPK3. AZI1 is phosphorylated by MPK3 in vitro. As documented by co-immunoprecipitation and bimolecular fluorescence complementation experiments, AZI1 interacts with MPK3 to form protein complexes in planta. Furthermore, null mutants of azi1 are hypersensitive to salt stress, while AZI1-overexpressing lines are markedly more tolerant. AZI1 overexpression in the mpk3 genetic background partially alleviates the salt-hypersensitive phenotype of this mutant, but functional MPK3 appears to be required for the full extent of AZI1-conferred robustness. Notably, this robustness does not come at the expense of normal development. Immunoblot and RT-PCR data point to a role of MPK3 as positive regulator of AZI1 abundance.
Collapse
Affiliation(s)
- Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | |
Collapse
|
24
|
Albenne C, Canut H, Jamet E. Plant cell wall proteomics: the leadership of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:111. [PMID: 23641247 PMCID: PMC3640192 DOI: 10.3389/fpls.2013.00111] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/10/2013] [Indexed: 05/18/2023]
Abstract
Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.
Collapse
Affiliation(s)
- Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546Castanet-Tolosan, France
- CNRS, UMR 5546Castanet-Tolosan, France
| |
Collapse
|
25
|
Qin LX, Rao Y, Li L, Huang JF, Xu WL, Li XB. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One 2013; 8:e59115. [PMID: 23527103 PMCID: PMC3601089 DOI: 10.1371/journal.pone.0059115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Arabinogalactan proteins (AGPs), are a group of highly glycosylated proteins that are found throughout the plant kingdom. To date, glycosyltransferases that glycosylate AGP backbone have remained largely unknown. In this study, a gene (GhGalT1) encoding a putative β-1,3-galactosyltransferase (GalT) was identified in cotton. GhGalT1, belonging to CAZy GT31 family, is the type II membrane protein that contains an N-terminal transmembrane domain and a C-terminal galactosyltransferase functional domain. A subcellular localization assay demonstrated that GhGalT1 was localized in the Golgi apparatus. RT-PCR analysis revealed that GhGalT1 was expressed at relatively high levels in hypocotyls, roots, fibers and ovules. Overexpression of GhGalT1 in Arabidopsis promoted plant growth and metabolism. The transgenic seedlings had much longer primary roots, higher chlorophyll content, higher photosynthetic efficiency, the increased biomass, and the enhanced tolerance to exogenous D-arabinose and D-galactose. In addition, gas chromatography (GC) analysis of monosaccharide composition of cell wall fractions showed that pectin was changed in the transgenic plants, compared with that of wild type. Three genes (GAUT8, GAUT9 and xgd1) involved in pectin biosynthesis were dramatically up-regulated in the transgenic lines. These data suggested that GhGalT1 may be involved in regulation of pectin biosynthesis required for plant development.
Collapse
Affiliation(s)
- Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yue Rao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jun-Feng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
26
|
Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Bacic A. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. FRONTIERS IN PLANT SCIENCE 2012; 3:140. [PMID: 22754559 PMCID: PMC3384089 DOI: 10.3389/fpls.2012.00140] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/10/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Centre, The University of Georgia,Athens, GA, USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University,Athens, OH, USA
| | - Jack Egelund
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen,Frederiksberg, Denmark
| | - Arianna Hernandez-Sanchez
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
- *Correspondence: Antony Bacic, ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, VIC 3010, Australia. e-mail:
| |
Collapse
|