1
|
Duarte-Silva AT, Domith I, Gonçalves-da-Silva I, Paes-de-Carvalho R. Vitamin C Modulates the PI3K/AKT Pathway via Glutamate and Nitric Oxide in Developing Avian Retina Cells in Culture. Brain Sci 2025; 15:369. [PMID: 40309873 PMCID: PMC12025763 DOI: 10.3390/brainsci15040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background: In addition to its known antioxidant function, the reduced form of vitamin C, ascorbate, also acts as a neuromodulator in the nervous system. Previous work showed a reciprocal interaction of ascorbate with glutamate in chicken embryo retinal cultures. Ascorbate modulates extracellular glutamate levels by inhibiting excitatory amino acid transporter 3 and promoting the activation of NMDA receptors and the consequent activation of intracellular signaling pathways involved in transcription and survival. Objective: In the present work, we investigated the regulation of AKT phosphorylation by ascorbate in chicken embryo retina cultures. Methodology: Cultures of chicken embryo retina cells were tested using Western blot, immunocytochemistry, fluorescent probe transfection, and cellular imaging techniques. Results: Our results show that ascorbate induces a concentration and time-dependent increase in AKT phosphorylation via the accumulation of extracellular glutamate, the activation of glutamate receptors, and the activation of the PI3K pathway. Ascorbate produces an increase in intracellular calcium accumulation and, accordingly, AKT phosphorylation by ascorbate is blocked by the calcium chelator BAPTA-AM. Moreover, AKT phosphorylation is also blocked by the nitric oxide synthase inhibitor 7-nitroindazole, indicating that it is mediated by calcium and nitric oxide-dependent mechanisms. Conclusions: We demonstrate that ascorbate modulates the PI3K/AKT pathway in retinal cultures through the activation of glutamate receptors and NO production in a calcium-dependent manner. Given that previous research has shown that glutamate induces ascorbate release in retinal cultures, our findings emphasize the significance of the reciprocal interactions between ascorbate and glutamate in retinal development. These findings provide further evidence supporting the role of ascorbate as a neuromodulator in retinal development.
Collapse
Affiliation(s)
- Aline T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, RJ, Brazil
| | - Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, RJ, Brazil
- IDOR/Pioneer Science Initiative, Rio de Janeiro 22281-100, RJ, Brazil
| | - Isabele Gonçalves-da-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil
| |
Collapse
|
2
|
Liang H, Song K. Elucidating ascorbate and aldarate metabolism pathway characteristics via integration of untargeted metabolomics and transcriptomics of the kidney of high-fat diet-fed obese mice. PLoS One 2024; 19:e0300705. [PMID: 38603672 PMCID: PMC11008897 DOI: 10.1371/journal.pone.0300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity is a major independent risk factor for chronic kidney disease and can activate renal oxidative stress injury. Ascorbate and aldarate metabolism is an important carbohydrate metabolic pathway that protects cells from oxidative damage. However the effect of oxidative stress on this pathway is still unclear. Therefore, the primary objective of this study was to investigate the ascorbate and aldarate metabolism pathway in the kidneys of high-fat diet-fed obese mice and determine the effects of oxidative stress. Male C57BL/6J mice were fed on a high-fat diet for 12 weeks to induce obesity. Subsequently, non-targeted metabolomics profiling was used to identify metabolites in the kidney tissues of the obese mice, followed by RNA sequencing using transcriptomic methods. The integrated analysis of metabolomics and transcriptomics revealed the alterations in the ascorbate and aldarate metabolic pathway in the kidneys of these high-fat diet-fed obese mice. The high-fat diet-induced obesity resulted in notable changes, including thinning of the glomerular basement membrane, alterations in podocyte morphology, and an increase in oxidative stress. Metabolomics analysis revealed 649 metabolites in the positive-ion mode, and 470 metabolites in the negative-ion mode. Additionally, 659 differentially expressed genes (DEGs) were identified in the obese mice, of which 34 were upregulated and 625 downregulated. Integrated metabolomics and transcriptomics analyses revealed two DEGs and 13 differential metabolites in the ascorbate and aldarate metabolic pathway. The expression levels of ugt1a9 and ugt2b1 were downregulated, and the ascorbate level in kidney tissue of obese mice was reduced. Thus, renal oxidative stress injury induced by high-fat diet affects metabolic regulation of ascorbate and aldarate metabolism in obese mice. Ascorbate emerged as a potential marker for predicting kidney damage due to high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Hong Liang
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, Qinghai, China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
- Qinghai University Affiliated People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
3
|
Portugal CC. Ascorbate and its transporter SVCT2: The dynamic duo's integrated roles in CNS neurobiology and pathophysiology. Free Radic Biol Med 2024; 212:448-462. [PMID: 38182073 DOI: 10.1016/j.freeradbiomed.2023.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ascorbate is a small antioxidant molecule essential for the proper development and function of the brain. Ascorbate is transported into the brain and between brain cells via the Sodium vitamin C co-transporter 2 (SVCT2). This review provides an in-depth analysis of ascorbate's physiology, including how ascorbate is absorbed from food into the CNS, emphasizing cellular mechanisms of ascorbate recycling and release in different CNS compartments. Additionally, the review delves into the various functions of ascorbate in the CNS, including its impact on epigenetic modulation, synaptic plasticity, and neurotransmission. It also emphasizes ascorbate's role on neuromodulation and its involvement in neurodevelopmental processes and disorders. Furthermore, it analyzes the relationship between the duo ascorbate/SVCT2 in neuroinflammation, particularly its effects on microglial activation, cytokine release, and oxidative stress responses, highlighting its association with neurodegenerative diseases, such as Alzheimer's disease (AD). Overall, this review emphasizes the crucial role of the dynamic duo ascorbate/SVCT2 in CNS physiology and pathology and the need for further research to fully comprehend its significance in a neurobiological context and its potential therapeutic applications.
Collapse
Affiliation(s)
- Camila C Portugal
- I3s - Instituto de Investigação e Inovação em Saúde da Universidade do Porto and IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
5
|
Yang R, Deng F, Yang Y, Tian Q, Huangfu S, Yang L, Hou J, Yang G, Pang W, Lu J, Liu H, Chen Y, Gao J, Zhang L. Blue light promotes vitamin C-mediated ferroptosis of melanoma through specifically upregulating transporter SVCT2 and generating Fe 2. Biomaterials 2023; 299:122186. [PMID: 37276798 DOI: 10.1016/j.biomaterials.2023.122186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Vitamin C (VC)-based cancer therapy is a promising therapeutic approach for a variety of cancers due to its profound effects on redox reactions and metabolic pathways. However, high administration dosage of VC for necessary therapeutic efficacy for cancers increases the risk of overt side effects and limits its clinical use. Here, we show cutaneous blue light irradiation can specifically upregulate the sodium-dependent vitamin C transporter 2 (SVCT2) of the tumor and increase effectively the VC concentration at the tumor sites by an overall low dosage administration. In the mouse melanoma model, blue light stimulates the SVCT2 expression through the nuclear factor-kappa B (NF-κB) signaling pathway both in vitro and in vivo. The increased cellular VC together with Fe2+ generated by blue light simultaneously elevate cellular oxidative stress and trigger the ferroptosis of melanoma. With this revealed mechanism, the synergistic actions of blue light on the VC transporter and Fe2+ generation lead to a ca. 20-fold reduction in the administration dosage of VC with an effective melanoma elimination and prolonged survival. The work defines the killing mechanism of blue light on VC-based cancer therapy and provides a practical approach for promoting VC uptake. This light-assisted VC therapy is not only highly efficient for melanoma but also considerable for a broad clinical utility.
Collapse
Affiliation(s)
- Rong Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fangqing Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingchun Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuaiqi Huangfu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Luqiu Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Hou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanghao Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Pang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jueru Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Liu
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
6
|
Guo C, Ning X, Zhang J, Zhang C, Wang J, Su L, Han J, Ma N. Ultraviolet B radiation induces oxidative stress and apoptosis in human lens epithelium cells by activating NF-κB signaling to down-regulate sodium vitamin C transporter 2 (SVCT2) expression. Cell Cycle 2023; 22:1450-1462. [PMID: 37246402 PMCID: PMC10281468 DOI: 10.1080/15384101.2023.2215084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023] Open
Abstract
Ultraviolet B (UVB) exposure is reported to cause cataract formation by inducing excessive reactive oxygen species (ROS) and apoptosis in human lens epithelial cells (HLECs). Sodium-dependent Vitamin C transports-2 (SVCT2) is a ascorbic acid (AsA) transporter for that can protect cells and tissues from oxidative stress. Here, we focus on the functional characterization and mechanism analysis of SVCT2 in UVB-treated HLECs. The results showed a significant reduction of SVCT2 expression in HLECs treated with UVB. SVCT2 abated apoptosis and Bax expression and increased Bcl-2 expression. Moreover, SVCT2 decreased ROS accumulation and MDA level, but increased the activities of antioxidant enzymes (SOD and GSH-PX). NF-κB inhibitor (PDTC) alleviated ROS production and apoptosis, and promoted SVCT2 expression in UVB-treated HLECs. Additionally, ROS inhibitor (NAC) suppressed oxidative stress, apoptosis, and induced SVCT2 expression in UVB-treated HLECs, while these effects were significantly abated due to the activation of NF-κB signaling. Furthermore, SVCT2 facilitated 14C-AsA absorption in UVB-treated HLECs. Together, our findings demonstrated that UVB exposure-induced ROS generation, which further activated NF-κB signaling to down-regulate SVCT2 expression in HLECs. Then, downregulated SVCT2 promoted ROS accumulation and induced apoptosis by decreasing AsA uptake. Our data reveal a novel NF-κB/SVCT2/AsA regulatory pathway and suggest the therapeutic potential of SVCT2 in UVB-induced cataract.
Collapse
Affiliation(s)
- Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jie Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Chen Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
- Graduate school, Xi’an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jue Wang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Liping Su
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
7
|
Vitamin C Modes of Action in Calcium-Involved Signaling in the Brain. Antioxidants (Basel) 2023; 12:antiox12020231. [PMID: 36829790 PMCID: PMC9952025 DOI: 10.3390/antiox12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Vitamin C (ascorbic acid) is well known for its potent antioxidant properties, as it can neutralize ROS and free radicals, thereby protecting cellular elements from oxidative stress. It predominantly exists as an ascorbate anion and after oxidation to dehydroascorbic acid and further breakdown, is removed from the cells. In nervous tissue, a progressive decrease in vitamin C level or its prolonged deficiency have been associated with an increased risk of disturbances in neurotransmission, leading to dysregulation in brain function. Therefore, understanding the regulatory function of vitamin C in antioxidant defence and identification of its molecular targets deserves more attention. One of the key signalling ions is calcium and a transient rise in its concentration is crucial for all neuronal processes. Extracellular Ca2+ influx (through specific ion channels) or Ca2+ release from intracellular stores (endoplasmic reticulum, mitochondria) are precisely controlled. Ca2+ regulates the functioning of the CNS, including growth, development, myelin formation, synthesis of catecholamines, modulation of neurotransmission and antioxidant protection. A growing body of evidence indicates a unique role for vitamin C in these processes. In this short review, we focus on vitamin C in the regulation of calcium-involved pathways under physiological and stress conditions in the brain.
Collapse
|
8
|
Duarte-Silva AT, Ximenes LGR, Guimarães-Souza M, Domith I, Paes-de-Carvalho R. Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways. Front Cell Dev Biol 2022; 10:1058925. [PMID: 36568967 PMCID: PMC9780464 DOI: 10.3389/fcell.2022.1058925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Communication between developing progenitor cells as well as differentiated neurons and glial cells in the nervous system is made through direct cell contacts and chemical signaling mediated by different molecules. Several of these substances are synthesized and released by developing cells and play roles since early stages of Central Nervous System development. The chicken retina is a very suitable model for neurochemical studies, including the study of regulation of signaling pathways during development. Among advantages of the model are its very well-known histogenesis, the presence of most neurotransmitter systems found in the brain and the possibility to make cultures of neurons and/or glial cells where many neurochemical functions develop in a similar way than in the intact embryonic tissue. In the chicken retina, some neurotransmitters or neuromodulators as dopamine, adenosine, and others are coupled to cyclic AMP production or adenylyl cyclase inhibition since early stages of development. Other substances as vitamin C and nitric oxide are linked to the major neurotransmitter glutamate and AKT metabolism. All these different systems regulate signaling pathways, including PKA, PKG, SRC, AKT and ERK, and the activation of the transcription factor CREB. Dopamine and adenosine stimulate cAMP accumulation in the chick embryo retina through activation of D1 and A2a receptors, respectively, but the onset of dopamine stimulation is much earlier than that of adenosine. However, adenosine can inhibit adenylyl cyclase and modulate dopamine-dependent cAMP increase since early developmental stages through A1 receptors. Dopamine stimulates different PKA as well as EPAC downstream pathways both in intact tissue and in culture as the CSK-SRC pathway modulating glutamate NMDA receptors as well as vitamin C release and CREB phosphorylation. By the other hand, glutamate modulates nitric oxide production and AKT activation in cultured retinal cells and this pathway controls neuronal survival in retina. Glutamate and adenosine stimulate the release of vitamin C and this vitamin regulates the transport of glutamate, activation of NMDA receptors and AKT phosphorylation in cultured retinal cells. In the present review we will focus on these reciprocal interactions between neurotransmitters or neuromodulators and different signaling pathways during retinal development.
Collapse
Affiliation(s)
- A. T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - L. G. R. Ximenes
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - M. Guimarães-Souza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - I. Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - R. Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil,*Correspondence: R. Paes-de-Carvalho,
| |
Collapse
|
9
|
Effect of Lipopolysaccharide and TNF α on Neuronal Ascorbic Acid Uptake. Mediators Inflamm 2021; 2021:4157132. [PMID: 34285658 PMCID: PMC8275400 DOI: 10.1155/2021/4157132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
Vitamin C (ascorbic acid: AA) uptake in neurons occurs via the sodium-dependent vitamin C transporter-2 (SVCT2), which is highly expressed in the central nervous system (CNS). During chronic neuroinflammation or infection, CNS levels of lipopolysaccharide (LPS) and LPS-induced tumor necrosis factor-α (TNFα) are increased. Elevated levels of LPS and TNFα have been associated with neurodegenerative diseases together with reduced levels of AA. However, little is known about the impacts of LPS and TNFα on neuronal AA uptake. The objective of this study was to examine the effect of LPS and TNFα on SVCT2 expression and function using in vitro and in vivo approaches. Treatment of SH-SY5Y cells with either LPS or TNFα inhibited AA uptake. This reduced uptake was associated with a significant decrease in SVCT2 protein and mRNA levels. In vivo exposure to LPS or TNFα also decreased SVCT2 protein and mRNA levels in mouse brains. Both LPS and TNFα decreased SLC23A2 promoter activity. Further, the inhibitory effect of LPS on a minimal SLC23A2 promoter was attenuated when either the binding site for the transcription factor Sp1 was mutated or cells were treated with the NF-κB inhibitor, celastrol. We conclude that inflammatory signals suppress AA uptake by impairing SLC23A2 transcription through opposing regulation of Sp1 and NF-κB factors.
Collapse
|
10
|
Portugal CC, da Encarnação TG, Sagrillo MA, Pereira MR, Relvas JB, Socodato R, Paes-de-Carvalho R. Activation of adenosine A3 receptors regulates vitamin C transport and redox balance in neurons. Free Radic Biol Med 2021; 163:43-55. [PMID: 33307167 DOI: 10.1016/j.freeradbiomed.2020.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | | | - Mayara A Sagrillo
- Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
11
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
12
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
13
|
Cossenza M, Socodato R, Mejía-García TA, Domith I, Portugal CC, Gladulich LFH, Duarte-Silva AT, Khatri L, Antoine S, Hofmann F, Ziff EB, Paes-de-Carvalho R. Protein synthesis inhibition promotes nitric oxide generation and activation of CGKII-dependent downstream signaling pathways in the retina. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118732. [PMID: 32360667 DOI: 10.1016/j.bbamcr.2020.118732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023]
Abstract
Nitric oxide is an important neuromodulator in the CNS, and its production within neurons is modulated by NMDA receptors and requires a fine-tuned availability of L-arginine. We have previously shown that globally inhibiting protein synthesis mobilizes intracellular L-arginine "pools" in retinal neurons, which concomitantly enhances neuronal nitric oxide synthase-mediated nitric oxide production. Activation of NMDA receptors also induces local inhibition of protein synthesis and L-arginine intracellular accumulation through calcium influx and stimulation of eucariotic elongation factor type 2 kinase. We hypothesized that protein synthesis inhibition might also increase intracellular L-arginine availability to induce nitric oxide-dependent activation of downstream signaling pathways. Here we show that nitric oxide produced by inhibiting protein synthesis (using cycloheximide or anisomycin) is readily coupled to AKT activation in a soluble guanylyl cyclase and cGKII-dependent manner. Knockdown of cGKII prevents cycloheximide or anisomycin-induced AKT activation and its nuclear accumulation. Moreover, in retinas from cGKII knockout mice, cycloheximide was unable to enhance AKT phosphorylation. Indeed, cycloheximide also produces an increase of ERK phosphorylation which is abrogated by a nitric oxide synthase inhibitor. In summary, we show that inhibition of protein synthesis is a previously unanticipated driving force for nitric oxide generation and activation of downstream signaling pathways including AKT and ERK in cultured retinal cells. These results may be important for the regulation of synaptic signaling and neuronal development by NMDA receptors as well as for solving conflicting data observed when using protein synthesis inhibitors for studying neuronal survival during development as well in behavior and memory studies.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil.
| | - Renato Socodato
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Telmo A Mejía-García
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Camila C Portugal
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Luis F H Gladulich
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Aline T Duarte-Silva
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Shannon Antoine
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY, United States
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie der TU-München, Munich, Germany
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
14
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
15
|
Portugal CC, da Encarnação TG, Domith I, Dos Santos Rodrigues A, de Oliveira NA, Socodato R, Paes-de-Carvalho R. Dopamine-Induced Ascorbate Release From Retinal Neurons Involves Glutamate Release, Activation of AMPA/Kainate Receptors and Downstream Signaling Pathways. Front Neurosci 2019; 13:453. [PMID: 31143097 PMCID: PMC6521073 DOI: 10.3389/fnins.2019.00453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/23/2019] [Indexed: 01/28/2023] Open
Abstract
Ascorbate, the reduced form of Vitamin C, is one of the most abundant and important low-molecular weight antioxidants in living tissues. Most animals synthesize vitamin C, but some primates, including humans, have lost this capacity due to disruption in L-gulono-gamma-lactone oxidase gene. Because of this incapacity, those animals must obtain Vitamin C from the diet. Ascorbate is highly concentrated in the central nervous system (CNS), including the retina, and plays essential roles in neuronal physiology. Ascorbate transport into cells is controlled by Sodium Vitamin C Co-Transporters (SVCTs). There are four SVCT isoforms and SVCT2 is the major isoform controlling ascorbate transport in the CNS. Regarding ascorbate release from retinal neurons, Glutamate, by activating its ionotropic receptors leads to ascorbate release via the reversion of SVCT2. Moreover, dopamine, via activation of D1 receptor/cyclic AMP/EPAC2 pathway, also induces ascorbate release via SVCT2 reversion. Because the dopaminergic and glutamatergic systems are interconnected in the CNS, we hypothesized that dopamine could regulate ascorbate release indirectly, via the glutamatergic system. Here we reveal that dopamine increases the release of D-Aspartate from retinal neurons in a way independent on calcium ions and dependent on excitatory amino acid transporters. In addition, dopamine-dependent SVCT2 reversion leading to ascorbate release occurs by activation of AMPA/Kainate receptors and downstream ERK/AKT pathways. Overall, our data reveal a dopamine-to-glutamate signaling that regulates the bioavailability of ascorbate in neuronal cells.
Collapse
Affiliation(s)
- Camila Cabral Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Thaísa Godinho da Encarnação
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Ivan Domith
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Alexandre Dos Santos Rodrigues
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Nádia Almeida de Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
16
|
Dopamine Promotes Ascorbate Release from Retinal Neurons: Role of D1 Receptors and the Exchange Protein Directly Activated by cAMP type 2 (EPAC2). Mol Neurobiol 2018; 55:7858-7871. [DOI: 10.1007/s12035-018-0962-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
|
17
|
Combination Therapy with Sulfasalazine and Valproic Acid Promotes Human Glioblastoma Cell Death Through Imbalance of the Intracellular Oxidative Response. Mol Neurobiol 2018; 55:6816-6833. [PMID: 29349577 DOI: 10.1007/s12035-018-0895-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor and still lacks effective therapeutic strategies. It has already been shown that old drugs like sulfasalazine (SAS) and valproic acid (VPA) present antitumoral activities in glioma cell lines. SAS has also been associated with a decrease of intracellular glutathione (GSH) levels through a potent inhibition of xc- glutamate/cystine exchanger leading to an antioxidant deprotection. In the same way, VPA was recently identified as a histone deacetylase (HDAT) inhibitor capable of activating tumor suppression genes. As both drugs are widely used in clinical practice and their profile of adverse effects is well known, the aim of our study was to investigate the effects of the combined treatment with SAS and VPA in GBM cell lines. We observed that both drugs were able to reduce cell viability in a dose-dependent manner and the combined treatment potentiated these effects. Combined treatment also increased cell death and inhibited proliferation of GBM cells, while having no effect on human and rat cultured astrocytes. Also, we observed high protein expression of the catalytic subunit of xc- in all the examined GBM cell lines, and treatment with SAS blocked its activity and decreased intracellular GSH levels. Noteworthy, SAS but not VPA was also able to reduce the [14C]-ascorbate uptake. Together, these data indicate that SAS and VPA exhibit a substantial effect on GBM cell's death related to an intracellular oxidative response imbalance, making this combination of drugs a promising therapeutic strategy.
Collapse
|
18
|
Domith I, Socodato R, Portugal CC, Munis AF, Duarte-Silva AT, Paes-de-Carvalho R. Vitamin C modulates glutamate transport and NMDA receptor function in the retina. J Neurochem 2017; 144:408-420. [PMID: 29164598 DOI: 10.1111/jnc.14260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 12/27/2022]
Abstract
Vitamin C (in the reduced form ascorbate or in the oxidized form dehydroascorbate) is implicated in signaling events throughout the central nervous system (CNS). In the retina, a high-affinity transport system for ascorbate has been described and glutamatergic signaling has been reported to control ascorbate release. Here, we investigated the modulatory role played by vitamin C upon glutamate uptake and N-methyl-d-aspartate (NMDA) receptor activation in cultured retinal cells or in intact retinal tissue using biochemical and imaging techniques. We show that both forms of vitamin C, ascorbate or dehydroascorbate, promote an accumulation of extracellular glutamate by a mechanism involving the inhibition of glutamate uptake. This inhibition correlates with the finding that ascorbate promotes a decrease in cell surface levels of the neuronal glutamate transporter excitatory amino acid transporter 3 in retinal neuronal cultures. Interestingly, vitamin C is prone to increase the activity of NMDA receptors but also promotes a decrease in glutamate-stimulated [3 H] MK801 binding and decreases cell membrane content of NMDA receptor glutamate ionotropic receptor subunit 1 (GluN1) subunits. Both compounds were also able to increase cAMP response element-binding protein phosphorylation in neuronal nuclei in a glutamate receptor and calcium/calmodulin kinase-dependent manner. Moreover, the effect of ascorbate is not blocked by sulfinpyrazone and then does not depend on its uptake by retinal cells. Overall, these data indicate a novel molecular and functional target for vitamin C impacting on glutamate signaling in retinal neurons.
Collapse
Affiliation(s)
- Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Andressa F Munis
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Aline T Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| |
Collapse
|
19
|
Salazar K, Martínez F, Pérez-Martín M, Cifuentes M, Trigueros L, Ferrada L, Espinoza F, Saldivia N, Bertinat R, Forman K, Oviedo MJ, López-Gambero AJ, Bonansco C, Bongarzone ER, Nualart F. SVCT2 Expression and Function in Reactive Astrocytes Is a Common Event in Different Brain Pathologies. Mol Neurobiol 2017; 55:5439-5452. [PMID: 28942474 DOI: 10.1007/s12035-017-0762-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
Abstract
Ascorbic acid (AA), the reduced form of vitamin C, acts as a neuroprotector by eliminating free radicals in the brain. Sodium/vitamin C co-transporter isoform 2 (SVCT2) mediates uptake of AA by neurons. It has been reported that SVCT2 mRNA is induced in astrocytes under ischemic damage, suggesting that its expression is enhanced in pathological conditions. However, it remains to be established if SVCT expression is altered in the presence of reactive astrogliosis generated by different brain pathologies. In the present work, we demonstrate that SVCT2 expression is increased in astrocytes present at sites of neuroinflammation induced by intracerebroventricular injection of a GFP-adenovirus or the microbial enzyme, neuraminidase. A similar result was observed at 5 and 10 days after damage in a model of traumatic injury and in the hippocampus and cerebral cortex in the in vivo kindling model of epilepsy. Furthermore, we defined that cortical astrocytes maintained in culture for long periods acquire markers of reactive gliosis and express SVCT2, in a similar way as previously observed in situ. Finally, by means of second harmonic generation and 2-photon fluorescence imaging, we analyzed brain necropsied material from patients with Alzheimer's disease (AD), which presented with an accumulation of amyloid plaques. Strikingly, although AD is characterized by focalized astrogliosis surrounding amyloid plaques, SVCT2 expression at the astroglial level was not detected. We conclude that SVCT2 is heterogeneously induced in reactive astrogliosis generated in different pathologies affecting the central nervous system (CNS).
Collapse
Affiliation(s)
- Katterine Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepcion, Chile
| | - Margarita Pérez-Martín
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
| | - Laura Trigueros
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
| | - Luciano Ferrada
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Francisca Espinoza
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Romina Bertinat
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Katherine Forman
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Antonio J López-Gambero
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain
| | - Christian Bonansco
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña Avenida 1111, 2360102, Valparaíso, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile. .,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepcion, Chile.
| |
Collapse
|
20
|
Portugal CC, Socodato R, Canedo T, Silva CM, Martins T, Coreixas VSM, Loiola EC, Gess B, Röhr D, Santiago AR, Young P, Minshall RD, Paes-de-Carvalho R, Ambrósio AF, Relvas JB. Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype. Sci Signal 2017; 10:10/472/eaal2005. [PMID: 28351945 DOI: 10.1126/scisignal.aal2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin C is essential for the development and function of the central nervous system (CNS). The plasma membrane sodium-vitamin C cotransporter 2 (SVCT2) is the primary mediator of vitamin C uptake in neurons. SVCT2 specifically transports ascorbate, the reduced form of vitamin C, which acts as a reducing agent. We demonstrated that ascorbate uptake through SVCT2 was critical for the homeostasis of microglia, the resident myeloid cells of the CNS that are essential for proper functioning of the nervous tissue. We found that depletion of SVCT2 from the plasma membrane triggered a proinflammatory phenotype in microglia and resulted in microglia activation. Src-mediated phosphorylation of caveolin-1 on Tyr14 in microglia induced the internalization of SVCT2. Ascorbate treatment, SVCT2 overexpression, or blocking SVCT2 internalization prevented the activation of microglia. Overall, our work demonstrates the importance of the ascorbate transport system for microglial homeostasis and hints that dysregulation of ascorbate transport might play a role in neurological disorders.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal.
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Teresa Canedo
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Cátia M Silva
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Tânia Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Health Sciences Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Consortium, University of Coimbra, Coimbra, Portugal
| | - Vivian S M Coreixas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Health Sciences Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal.,Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Rua Outeiro São João Batista, 24020-971 Niterói, Rio de Janeiro, Brazil
| | - Erick C Loiola
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Health Sciences Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal.,Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Rua Outeiro São João Batista, 24020-971 Niterói, Rio de Janeiro, Brazil
| | - Burkhard Gess
- Department of Neurology, University of Muenster, 48149 Muenster, Germany.,Department of Neurology, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Dominik Röhr
- Department of Neurology, University of Muenster, 48149 Muenster, Germany
| | - Ana R Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Health Sciences Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Consortium, University of Coimbra, Coimbra, Portugal
| | - Peter Young
- Department of Neurology, University of Muenster, 48149 Muenster, Germany
| | - Richard D Minshall
- Department of Pharmacology and Center for Lung and Vascular Biology and Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Roberto Paes-de-Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Rua Outeiro São João Batista, 24020-971 Niterói, Rio de Janeiro, Brazil
| | - António F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Health Sciences Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Consortium, University of Coimbra, Coimbra, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal.
| |
Collapse
|
21
|
Dopamine promotes NMDA receptor hypofunction in the retina through D 1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation. Sci Rep 2017; 7:40912. [PMID: 28098256 PMCID: PMC5241882 DOI: 10.1038/srep40912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons.
Collapse
|
22
|
Tian H, Ye X, Hou X, Yang X, Yang J, Wu C. SVCT2, a potential therapeutic target, protects against oxidative stress during ethanol-induced neurotoxicity via JNK/p38 MAPKs, NF-κB and miRNA125a-5p. Free Radic Biol Med 2016; 96:362-73. [PMID: 27085842 DOI: 10.1016/j.freeradbiomed.2016.03.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
Sodium vitamin C transporter 2 (SVCT2) plays a key role in transporting ascorbic acid (AA), an important intracellular antioxidant, into neurons. It is well known that ethanol (EtOH) abuse causes significant neurodegeneration, as well as endogenous AA release in certain encephalic regions. Here, we identified that SVCT2 forms part of a self-defense mechanism that protects against oxidative stress in binge drinking rats, and SVCT2 levels are correlated with antioxidants and neuronal injury. Four days of binge drinking led to massive neuron degeneration in prefrontal cortex (PFC), accompanied by increased levels of 4-hydroxynonenal (4-HNE)-adducted proteins and SVCT2 expression, as well as dramatic changes in AA levels in rat brain. AA levels were decreased in PFC and increased in cerebrospinal fluid (CSF) after binge drinking, but returned to normal on the 7th day following EtOH withdrawal. These processes were further evaluated in primary cortical neurons exposed to 100mM EtOH in vitro. Neurons transfected with SVCT2 siRNA were more susceptible than controls to certain aspects of EtOH-induced injury, including cell death, dendrite damage and increased oxidative stress. EtOH-induced up-regulation of SVCT2 was associated with activation of JNK and p38 MAPKs and the NF-κB pathway. More importantly, miRNA-125a-5p was down-regulated in PFC of 4-day binge drinking rats and negatively regulated protein expression during EtOH-induced neuronal injury. MiR-125a-5p over-expression attenuated intracellular AA levels, promoted cell death and suppressed the EtOH-induced up-regulation of p38 MAPK and SVCT2, which suggested that miR-125a-5p plays an important role in SVCT2 function in EtOH-induced neuronal injury. We speculate that SVCT2, possibly regulated by JNK/p38 MAPKs, NF-κB signaling and miR-125a-5p, has a neuroprotective effect against EtOH-induced oxidative stress. Promotion of SVCT2 expression or stimulation of SVCT2 activity may be a promising therapeutic strategy for the prevention of EtOH-associated neurodegeneration.
Collapse
Affiliation(s)
- Hua Tian
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Pharmacology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiaoxia Ye
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaojie Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaowei Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
23
|
Carroll VN, Truillet C, Shen B, Flavell RR, Shao X, Evans MJ, VanBrocklin HF, Scott PJH, Chin FT, Wilson DM. [(11)C]Ascorbic and [(11)C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb) 2016; 52:4888-90. [PMID: 26963495 PMCID: PMC4854297 DOI: 10.1039/c6cc00895j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we report the radiosynthesis of an endogenous redox pair, [(11)C]ascorbic acid ([(11)C]VitC) and [(11)C]dehydroascorbic acid ([(11)C]DHA), the reduced and oxidized forms of vitamin C, and their application to ROS sensing. These results provide the basis for in vivo detection of ROS using positron emission tomography (PET).
Collapse
Affiliation(s)
- V. N. Carroll
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - C. Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - B. Shen
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - R. R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - X. Shao
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - M. J. Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - H. F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - P. J. H. Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - F. T. Chin
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - D. M. Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| |
Collapse
|
24
|
Sangani R, Periyasamy-Thandavan S, Kolhe R, Bhattacharyya MH, Chutkan N, Hunter M, Isales C, Hamrick M, Hill WD, Fulzele S. MicroRNAs-141 and 200a regulate the SVCT2 transporter in bone marrow stromal cells. Mol Cell Endocrinol 2015; 410:19-26. [PMID: 25617715 PMCID: PMC4824062 DOI: 10.1016/j.mce.2015.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 12/16/2022]
Abstract
Vitamin C is a micro-nutrient which plays an important role in bone marrow stromal cell (BMSCs) differentiation to osteogenesis. This vitamin is transported into the BMSCs through the sodium dependent vitamin C transporter 2 (SVCT2). We previously reported that knockdown of the SVCT2 transporter decreases osteogenic differentiation. However, our understanding of the post-transcriptional regulatory mechanism of the SVCT2 transporter remains poor. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate the messenger RNAs of protein-coding genes. In this study, we aimed to investigate the impact of miR-141 and miR-200a on SVCT2 expression. We found that mouse BMSCs expressed miR-141 and miR-200a and repressed SVCT2 expression at the functional level by targeting the 3'-untranslated region of mRNA. We also found that miR-141 and miR-200a decreased osteogenic differentiation. Furthermore, miRNA inhibitors increased SVCT2 and osteogenic gene expression in BMSCs. Taken together, these results indicate that both miRNAs are novel regulators of the SVCT2 transporter and play an important role in the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Rajnikumar Sangani
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ravindra Kolhe
- Department of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Maryka H Bhattacharyya
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Monte Hunter
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Carlos Isales
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Mark Hamrick
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - William D Hill
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
25
|
Fiorani M, Azzolini C, Cerioni L, Scotti M, Guidarelli A, Ciacci C, Cantoni O. The mitochondrial transporter of ascorbic acid functions with high affinity in the presence of low millimolar concentrations of sodium and in the absence of calcium and magnesium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1393-401. [DOI: 10.1016/j.bbamem.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 03/10/2015] [Indexed: 12/30/2022]
|
26
|
Ferreira NR, Lourenço C, Barbosa RM, Laranjinha J. Coupling of ascorbate and nitric oxide dynamics in vivo in the rat hippocampus upon glutamatergic neuronal stimulation: A novel functional interplay. Brain Res Bull 2015; 114:13-9. [DOI: 10.1016/j.brainresbull.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/09/2015] [Accepted: 03/07/2015] [Indexed: 01/01/2023]
|
27
|
Socodato R, Portugal CC, Domith I, Oliveira NA, Coreixas VSM, Loiola EC, Martins T, Santiago AR, Paes-de-Carvalho R, Ambrósio AF, Relvas JB. c-Src function is necessary and sufficient for triggering microglial cell activation. Glia 2014; 63:497-511. [PMID: 25421817 DOI: 10.1002/glia.22767] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation.
Collapse
Affiliation(s)
- Renato Socodato
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Faculty of Medicine, Centre of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Effects and Mechanism Analysis of Vascular Endothelial Growth Factor and Salvianolic Acid B on 125I-Low Density Lipoprotein Permeability of the Rabbit Aortary Endothelial Cells. Cell Biochem Biophys 2014; 70:1533-8. [DOI: 10.1007/s12013-014-0089-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
The nitric oxide-cGKII system relays death and survival signals during embryonic retinal development via AKT-induced CREB1 activation. Cell Death Differ 2014; 21:915-28. [PMID: 24531539 DOI: 10.1038/cdd.2014.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 01/28/2023] Open
Abstract
During early neurogenesis, retinal neuronal cells display a conserved differentiation program in vertebrates. Previous studies established that nitric oxide (NO) and cGMP accumulation regulate essential events in retinal physiology. Here we used pharmacological and genetic loss-of-function to investigate the effects of NO and its downstream signaling pathway in the survival of developing avian retinal neurons in vitro and in vivo. Six-day-old (E6) chick retinal cells displayed increased calcium influx and produced higher amounts of NO when compared with E8 cells. L-arginine (substrate for NO biosynthesis) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP; a nitrosothiol NO donor) promoted extensive cell death in E6 retinas, whereas in E8 both substances decreased apoptosis. The effect of NO at both periods was mediated by soluble guanylyl cyclase (sGC) and cGMP-dependent kinase (cGK) activation. In addition, shRNA-mediated cGKII knockdown prevented NO-induced cell death (E6) and cell survival (E8). This, NO-induced cell death or cell survival was not correlated with an early inhibition of retinal cell proliferation. E6 cells also responded differentially from E8 neurons regarding cyclic AMP-responsive element-binding protein (CREB) activation in the retina in vivo. NO strongly decreased nuclear phospho-CREB staining in E6 but it robustly enhanced CREB phosphorylation in the nuclei of E8 neurons, an effect that was completely abrogated by cGKII shRNAs at both embryonic stages. The ability of NO in regulating CREB differentially during retinal development relied on the capacity of cGKII in decreasing (E6) or increasing (E8) nuclear AKT (V-Akt murine thymoma viral oncogene) activation. Accordingly, inhibiting AKT prevented both cGKII shRNA-mediated CREB upregulation in E6 and SNAP-induced CREB activation in E8. Furthermore, shRNA-mediated in vivo cGKII or in vitro CREB1 knockdown confirmed that NO/cGKII dualistically regulated the downstream CREB1 pathway and caspase activation in the chick retina to modulate neuronal viability. These data demonstrate that NO-mediated cGKII signaling may function to control the viability of neuronal cells during early retinal development via AKT/CREB1 activity.
Collapse
|
31
|
Yang ZH, Liu LB, Zhao LN, Liu YH, Xue YX. Permeability of the blood-tumor barrier is enhanced by combining vascular endothelial growth factor with papaverine. J Neurosci Res 2014; 92:703-13. [PMID: 24523141 DOI: 10.1002/jnr.23348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
Abstract
This study aims to determine the effects of vascular endothelial growth factor (VEGF), papaverine (PA), and the combination of VEGF and PA on the permeability of the blood-tumor barrier (BTB) and to determine possible molecular mechanisms contributing to the effects. In the rat C6 glioma model, the extravasation of Evans blue (EB) through the BTB was increased significantly by VEGF and PA. VEGF-induced and PA-induced increase of EB extravasation was further increased after combining VEGF with PA infusion. Transmission electron microscopy (TEM) showed that the combination of VEGF and PA not only opened tight junctions (TJ) dramatically but increased the presence of pinocytotic vesicles of brain microvascular endothelial cells (BMECs) significantly. Meanwhile, the downregulation of the TJ-associated proteins occludin and claudin-5 and the upregulation of the caveolae structure proteins caveolin-1 and caveolin-2 caused by the combination of VEGF and PA were observed by Western blot and immunohistochemistry, which were more remarkable than those by the two strategies separately. In addition, after VEGF and PA infusion, the results of radioimmunoassay, Western blot, and enzyme-linked immunosorbent assay (ELISA) revealed a significant increase in expression levels of cGMP and protein kinase G-1 (PKG-1) and the activation of nuclear factor-κB (NF-κB) p65. This study demonstrates that combination of VEGF and PA can increase the permeability of the BTB by a paracellular pathway (downregulation of occludin and claudin-5) and a transcellular pathway (upregulation of caveolin-1 and caveolin-2) and that the cGMP/PKG/NF-κB signal pathway might be involved in the modulation process.
Collapse
Affiliation(s)
- Zhi-hang Yang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Mejía-García TA, Portugal CC, Encarnação TG, Prado MAM, Paes-de-Carvalho R. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. Cell Signal 2013; 25:2424-39. [DOI: 10.1016/j.cellsig.2013.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 02/07/2023]
|
33
|
Wright AD, Stevens E, Ali M, Carroll DW, Brown TM. The neuropsychiatry of scurvy. PSYCHOSOMATICS 2013; 55:179-85. [PMID: 24365538 DOI: 10.1016/j.psym.2013.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Elizabeth Stevens
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Maysun Ali
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - David W Carroll
- Audie L. Murphy Memorial Veterans Administration Center, San Antonio, TX
| | - Thomas M Brown
- Audie L. Murphy Memorial Veterans Administration Center, San Antonio, TX.
| |
Collapse
|
34
|
Sangani R, Naime M, Zakhary I, Ahmad S, Chutkan N, Zhu A, Ha Y, Hamrick M, Isales C, Elsalanty M, Smith S, Liou GI, Fulzele S. Regulation of vitamin C transporter in the type 1 diabetic mouse bone and bone marrow. Exp Mol Pathol 2013; 95:298-306. [PMID: 23999113 DOI: 10.1016/j.yexmp.2013.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/22/2023]
Abstract
A number of studies have revealed that Type I diabetes (T1D) is associated with bone loss and an increased risk of fractures. T1D induces oxidative stress in various tissues and organs. Vitamin C plays an important role in the attenuation of oxidative stress; however, little is known about the effect of T1D induced oxidative stress on the regulation of vitamin C transporter in bone and bone marrow cells. To investigate this, T1D was induced in mice by multiple low dose injections of streptozotocin. We have demonstrated that endogenous antioxidants, glutathione peroxidase (GPx) and superoxide dismutase (SOD) are down-regulated in the bone and bone marrow of T1D. The vitamin C transporter isoform SVCT2, the only known transporter expressed in bone and bone marrow stromal cells (BMSCs), is negatively regulated in the bone and bone marrow of T1D. The μCT imaging of the bone showed significantly lower bone quality in the 8 week T1D mouse. The in-vitro study in BMSCS showed that the knockdown of SVCT2 transporter decreases ascorbic acid (AA) uptake, and increases oxidative stress. The significant reversing effect of antioxidant vitamin C is only possible in control cells, not in knockdown cells. This study suggested that T1D induces oxidative stress and decreases SVCT2 expression in the bone and bone marrow environment. Furthermore, this study confirms that T1D increases bone resorption, decreases bone formation and changes the microstructure of bones. This study has provided evidence that the regulation of the SVCT2 transporter plays an important role not only in T1D osteoporosis but also in other oxidative stress-related musculoskeletal complications.
Collapse
Affiliation(s)
- Rajnikumar Sangani
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr 2013; 33:45-70. [PMID: 23642198 DOI: 10.1146/annurev-nutr-071812-161246] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk.
Collapse
|
36
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
37
|
Socodato R, Santiago FN, Portugal CC, Domingues AF, Santiago AR, Relvas JB, Ambrósio AF, Paes-de-Carvalho R. Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors trigger neuronal nitric-oxide synthase activation to promote nerve cell death in an Src kinase-dependent fashion. J Biol Chem 2012; 287:38680-94. [PMID: 22992730 DOI: 10.1074/jbc.m112.353961] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.
Collapse
Affiliation(s)
- Renato Socodato
- Program of Neurosciences and Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, 24020-971, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fulzele S, Chothe P, Sangani R, Chutkan N, Hamrick M, Bhattacharyya M, Prasad PD, Zakhary I, Bowser M, Isales C, Ganapathy V. Sodium-dependent vitamin C transporter SVCT2: expression and function in bone marrow stromal cells and in osteogenesis. Stem Cell Res 2012; 10:36-47. [PMID: 23089627 DOI: 10.1016/j.scr.2012.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/07/2023] Open
Abstract
Ascorbic acid (Vitamin C) has a critical role in bone formation and osteoblast differentiation, but very little is known about the molecular mechanisms of ascorbic acid entry into bone marrow stromal cells (BMSCs). To address this gap in knowledge, we investigated the identity of the transport system that is responsible for the uptake of ascorbic acid into bone marrow stromal cells (BMSCs). First, we examined the expression of the two known isoforms of the sodium-coupled ascorbic acid transporter, namely SVCT1 and SVCT2, in BMSCs (Lin-ve Sca1+ve) and bone at the mRNA level. Only SVCT2 mRNA was detected in BMSCs and bone. Uptake of ascorbic acid in BMSCs was Na(+)-dependent and saturable. In order to define the role of SVCT2 in BMSC differentiation into osteoblasts, BMSCs were stimulated with osteogenic media for different time intervals, and the activity of SVCT2 was monitored by ascorbic acid uptake. SVCT2 expression was up-regulated during the osteogenic differentiation of BMSCs; the expression was maximal at the earliest phase of differentiation. Subsequently, osteogenesis was inhibited in BMSCs upon knock-down of SVCT2 by lentivirus shRNA. We also found that the expression of the SVCT2 could be negatively or positively modulated by the presence of oxidant (Sin-1) or antioxidant (Ascorbic acid) compounds, respectively, in BMSCs. Furthermore, we found that this transporter is also regulated with age in mouse bone. These data show that SVCT2 plays a vital role in the osteogenic differentiation of BMSCs and that its expression is altered under conditions associated with redox reaction. Our findings could be relevant to bone tissue engineering and bone related diseases such as osteoporosis in which oxidative stress and aging plays important role.
Collapse
Affiliation(s)
- Sadanand Fulzele
- Department of Orthopaedic Surgery, Georgia health Science University, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|