1
|
Teixeira RT, Marchese D, Duckney PJ, Dias FV, Carapeto AP, Louro M, Silva MS, Cordeiro C, Rodrigues MS, Malhó R. Functional characterization reveals the importance of Arabidopsis ECA4 and EPSIN3 in clathrin mediated endocytosis and wall structure in apical growing cells. THE NEW PHYTOLOGIST 2025; 245:1056-1071. [PMID: 39555685 DOI: 10.1111/nph.20282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
Localized clathrin mediated endocytosis is vital for secretion and wall deposition in apical growing plant cells. Adaptor and signalling proteins, along with phosphoinositides, are known to play a regulatory, yet poorly defined role in this process. Here we investigated the function of Arabidopsis ECA4 and EPSIN3, putative mediators of the process, in pollen tubes and root hairs. Homozygous eca4 and epsin3 plants exhibited altered pollen tube morphology (in vitro) and self-pollination led to fewer seeds and shorter siliques. These effects were augmented in eca4/epsin3 double mutant and quantitative polymerase chain reaction data revealed changes in phosphoinositide metabolism and flowering genes suggestive of a synergistic action. No visible changes were observed in root morphology, but atomic force microscopy in mutant root hairs showed altered structural stiffness. Imaging and FRET-FLIM analysis of ECA4 and EPSIN3 X-FP constructs revealed that both proteins interact at the plasma membrane but exhibit slightly different intracellular localization. FT-ICR-MS metabolomic analysis of mutant cells showed changes in lipids, amino acids and carbohydrate composition consistent with a role in secretion and growth. Characterization of double mutants of eca4 and epsin3 with phospholipase C genes (plc5, plc7) indicates that phosphoinositides (e.g. PtdIns(4,5)P2) are fundamental for a combined and complementary role of ECA4-EPSIN3 in cell secretion.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Dario Marchese
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | | | - Fernando Vaz Dias
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Ana P Carapeto
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mariana Louro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mário S Rodrigues
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
2
|
Minamino N, Fujii H, Murata H, Hachinoda S, Kondo Y, Hotta K, Ueda T. Analysis of Plant-Specific ANTH Domain-Containing Protein in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1331-1342. [PMID: 37804254 DOI: 10.1093/pcp/pcad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Membrane trafficking is a fundamental mechanism for protein and lipid transport in eukaryotic cells and exhibits marked diversity among eukaryotic lineages with distinctive body plans and lifestyles. Diversification of the membrane trafficking system is associated with the expansion and secondary loss of key machinery components, including RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and adaptor proteins, during plant evolution. The number of AP180 N-terminal homology (ANTH) proteins, an adaptor family that regulates vesicle formation and cargo sorting during clathrin-mediated endocytosis, increases during plant evolution. In the genome of Arabidopsis thaliana, 18 genes for ANTH proteins have been identified, a higher number than that in yeast and animals, suggesting a distinctive diversification of ANTH proteins. Conversely, the liverwort Marchantia polymorpha possesses a simpler repertoire; only two genes encoding canonical ANTH proteins have been identified in its genome. Intriguingly, a non-canonical ANTH protein is encoded in the genome of M. polymorpha, which also harbors a putative kinase domain. Similar proteins have been detected in sporadic lineages of plants, suggesting their ancient origin and multiple secondary losses during evolution. We named this unique ANTH group phosphatidylinositol-binding clathrin assembly protein-K (PICALM-K) and characterized it in M. polymorpha using genetic, cell biology-based and artificial intelligence (AI)-based approaches. Our results indicate a flagella-related function of MpPICALM-K in spermatozoids, which is distinct from that of canonical ANTH proteins. Therefore, ANTH proteins have undergone significant functional diversification during evolution, and PICALM-K represents a plant-unique ANTH protein that is delivered by neofunctionalization through exon shuffling.
Collapse
Affiliation(s)
- Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Haruki Fujii
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Haruhiko Murata
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Sho Hachinoda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yohei Kondo
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
3
|
Feng Y, Hiwatashi T, Minamino N, Ebine K, Ueda T. Membrane trafficking functions of the ANTH/ENTH/VHS domain-containing proteins in plants. FEBS Lett 2022; 596:2256-2268. [PMID: 35505466 DOI: 10.1002/1873-3468.14368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
Subcellular localization of proteins acting on the endomembrane system is primarily regulated via membrane trafficking. To obtain and maintain the correct protein composition of the plasma membrane and membrane-bound organelles, the loading of selected cargos into transport vesicles is critically regulated at donor compartments by adaptor proteins binding to the donor membrane, the cargo molecules, and the coat-protein complexes, including the clathrin coat. The ANTH/ENTH/VHS domain-containing protein superfamily generally comprises a structurally related ENTH, ANTH, or VHS domain in the N-terminal region and a variable C-terminal region, which is thought to act as an adaptor during transport vesicle formation. This protein family is involved in various plant processes, including pollen tube growth, abiotic stress response, and development. In this review, we provide an overview of the recent findings on ANTH/ENTH/VHS domain-containing proteins in plants.
Collapse
Affiliation(s)
- Yihong Feng
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takuma Hiwatashi
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
4
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Putta P, Creque E, Piontkivska H, Kooijman EE. Lipid-protein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. Chem Phys Lipids 2020; 231:104919. [PMID: 32416105 DOI: 10.1016/j.chemphyslip.2020.104919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
Epsin-like Clathrin Adaptor 1 (ECA1/ PICALM1A) is an A/ENTH domain protein that acts as an adaptor protein in clathrin-mediated endocytosis. ECA1 is recruited to the membrane during salt stress signaling in plants in a phosphatidic acid (PA)-dependent manner. PA is a lipid second messenger that rapidly and transiently increases in concentration under stress stimuli. Upon an increase in PA concentration another lipid, diacylglycerol pyrophosphate (DGPP), starts to accumulate. The accumulation of DGPP is suggested to be a cue for attenuating PA signaling during stress in plants. We showed in vitro that ECA1-PA binding is modulated as a function of membrane curvature stress and charge. In this work, we investigate ECA1 binding to DGPP in comparison with PA. We show that ECA1 has more affinity for the less charged PA, and this binding is pH dependent. Additionally, plant PA binding proteins SnRK2.10, TGD2C, and PDK1-PH2 were investigated for their interaction with DGPP, since no known DGPP binding proteins are available in the literature to date. Our results shed further light on DGPP and its interactions with membrane proteins which brings us closer toward understanding the complexity of protein interactions with anionic lipids, especially the enigmatic anionic lipid DGPP.
Collapse
Affiliation(s)
- Priya Putta
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Emily Creque
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Helen Piontkivska
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Edgar E Kooijman
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| |
Collapse
|
6
|
Kaneda M, van Oostende-Triplet C, Chebli Y, Testerink C, Bednarek SY, Geitmann A. Plant AP180 N-Terminal Homolog Proteins Are Involved in Clathrin-Dependent Endocytosis during Pollen Tube Growth in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1316-1330. [PMID: 30796435 DOI: 10.1093/pcp/pcz036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/18/2019] [Indexed: 05/05/2023]
Abstract
Polarized cell growth in plants is maintained under the strict control and exquisitely choreographed balance of exocytic and endocytic membrane trafficking. The pollen tube has become a model system for rapid polar growth in which delivery of cell wall material and membrane recycling are controlled by membrane trafficking. Endocytosis plays an important role that is poorly understood. The plant AP180 N-Terminal Homolog (ANTH) proteins are putative homologs of Epsin 1 that recruits clathrin to phosphatidylinositol 4, 5-bisphosphate (PIP2) containing membranes to facilitate vesicle budding during endocytosis. Two Arabidopsis ANTH encoded by the genes AtAP180 and AtECA2 are highly expressed in pollen tubes. Pollen tubes from T-DNA inserted knockout mutant lines display significant morphological defects and unique pectin deposition. Fluorescent tagging reveals organization into dynamic foci located at the lateral flanks of the pollen tube. This precisely defined subapical domain coincides which clathrin-mediated endocytosis (CME) and PIP2 localization. Using a liposome-protein binding test, we showed that AtECA2 protein and ANTH domain recombinant proteins have strong affinity to PIP2 and phosphatidic acid containing liposomes in vitro. Taken together these data suggest that Arabidopsis ANTH proteins may play an important role in CME, proper cell wall assembly and morphogenesis.
Collapse
Affiliation(s)
- Minako Kaneda
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
| | - Chloï van Oostende-Triplet
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
- Present address: Cell Biology and Image Acquisition Core Facility, Faculty of Medicine, University of Ottawa, RGN 3171, 451 Smyth Road, Ottawa, ON, Canada
| | - Youssef Chebli
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Qu�bec, Canada
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
- Present address: Laboratory of Plant Physiology, Wageningen University and Research, PB Wageningen, The Netherlands
| | | | - Anja Geitmann
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Qu�bec, Canada
| |
Collapse
|
7
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
A High-Throughput Fluorometric Assay for Lipid-Protein Binding. Methods Enzymol 2017. [PMID: 28063486 DOI: 10.1016/bs.mie.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An increasing number of intracellular and extracellular proteins are shown to interact with membrane lipids under physiological conditions. For rapid and robust quantitative measurement of lipid-protein interaction, we developed a sensitive fluorescence quenching-based assay that is universally applicable to all proteins and lipids. The assay employs fluorescence protein (FP)-tagged proteins whose fluorescence emission intensity is decreased when they bind vesicles containing quenching lipids. This simple assay can be performed with a fluorescence plate reader or a spectrofluorometer and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows a rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid-binding proteins, and high-throughput screening of molecules that modulate their membrane binding.
Collapse
|
9
|
Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2709-2716. [PMID: 27480805 DOI: 10.1016/j.bbamem.2016.07.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 01/16/2023]
Abstract
Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins.
Collapse
|
10
|
Sheng R, Jung DJ, Silkov A, Kim H, Singaram I, Wang ZG, Xin Y, Kim E, Park MJ, Thiagarajan-Rosenkranz P, Smrt S, Honig B, Baek K, Ryu S, Lorieau J, Kim YM, Cho W. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain. J Biol Chem 2016; 291:17639-50. [PMID: 27334919 DOI: 10.1074/jbc.m116.720284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/06/2022] Open
Abstract
Lymphocyte-specific protein-tyrosine kinase (Lck) plays an essential role in T cell receptor (TCR) signaling and T cell development, but its activation mechanism is not fully understood. To explore the possibility that plasma membrane (PM) lipids control TCR signaling activities of Lck, we measured the membrane binding properties of its regulatory Src homology 2 (SH2) and Src homology 3 domains. The Lck SH2 domain binds anionic PM lipids with high affinity but with low specificity. Electrostatic potential calculation, NMR analysis, and mutational studies identified the lipid-binding site of the Lck SH2 domain that includes surface-exposed basic, aromatic, and hydrophobic residues but not the phospho-Tyr binding pocket. Mutation of lipid binding residues greatly reduced the interaction of Lck with the ζ chain in the activated TCR signaling complex and its overall TCR signaling activities. These results suggest that PM lipids, including phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, modulate interaction of Lck with its binding partners in the TCR signaling complex and its TCR signaling activities in a spatiotemporally specific manner via its SH2 domain.
Collapse
Affiliation(s)
- Ren Sheng
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Da-Jung Jung
- the Division of Integrative Biosciences and Biotechnology and
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 11032, and
| | - Hyunjin Kim
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Indira Singaram
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Zhi-Gang Wang
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Yao Xin
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Eui Kim
- the Division of Integrative Biosciences and Biotechnology and
| | - Mi-Jeong Park
- the Division of Integrative Biosciences and Biotechnology and
| | | | - Sean Smrt
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 11032, and
| | - Kwanghee Baek
- the Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Korea
| | - Sungho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Justin Lorieau
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - You-Me Kim
- the Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea,
| | - Wonhwa Cho
- From the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, the Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
11
|
Abstract
Membrane-protein interaction plays key roles in a wide variety of biological processes. To facilitate rapid and sensitive measurement of membrane binding of soluble proteins, we developed a fluorescence-based quantitative assay that is universally applicable to all proteins. This fluorescence-quenching assay employs fluorescence protein (FP)-tagged proteins whose fluorescence intensity is greatly decreased when they bind vesicles containing synthetic lipid dark quenchers, such as N-dimethylaminoazobenzenesulfonylphosphatidylethanolamine (dabsyl-PE). This simple assay can be performed with either a spectrofluorometer or a plate reader and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains and proteins, and also high-throughput screening of small molecules that modulate membrane binding of proteins.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hyunjin Kim
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yusi Hu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
12
|
Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK, Cho W. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 2014; 5:4393. [PMID: 25024088 PMCID: PMC4100210 DOI: 10.1038/ncomms5393] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Wnt proteins control diverse biological processes through β-catenin-dependent canonical signalling and β-catenin-independent non-canonical signalling. The mechanisms by which these signalling pathways are differentially triggered and controlled are not fully understood. Dishevelled (Dvl) is a scaffold protein that serves as the branch point of these pathways. Here, we show that cholesterol selectively activates canonical Wnt signalling over non-canonical signalling under physiological conditions by specifically facilitating the membrane recruitment of the PDZ domain of Dvl and its interaction with other proteins. Single-molecule imaging analysis shows that cholesterol is enriched around the Wnt-activated Frizzled and low-density lipoprotein receptor-related protein 5/6 receptors and plays an essential role for Dvl-mediated formation and maintenance of the canonical Wnt signalling complex. Collectively, our results suggest a new regulatory role of cholesterol in Wnt signalling and a potential link between cellular cholesterol levels and the balance between canonical and non-canonical Wnt signalling activities.
Collapse
Affiliation(s)
- Ren Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | - Yao Xin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yong Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wen Tian
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jong-Cheol Choi
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Junsang Doh
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined.
Collapse
|
14
|
Stahelin RV, Scott JL, Frick CT. Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem Phys Lipids 2014; 182:3-18. [PMID: 24556335 DOI: 10.1016/j.chemphyslip.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022]
Abstract
Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Cary T Frick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
15
|
Best MD. Global approaches for the elucidation of phosphoinositide-binding proteins. Chem Phys Lipids 2013; 182:19-28. [PMID: 24220499 DOI: 10.1016/j.chemphyslip.2013.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/13/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022]
Abstract
Phosphoinositide lipids (PIPns) control numerous critical biological pathways, typically through the regulation of protein function driven by non-covalent protein-lipid binding interactions. Despite the importance of these systems, the unraveling of the full scope of protein-PIPn interactions has represented a significant challenge due to the massive complexity associated with these events, including the large number of diverse proteins that bind to these lipids, variations in the mechanisms by which proteins bind to lipids, and the presence of multiple distinct PIPn isomers. As a result of this complexity, global methods in which numerous proteins that bind PIPns can be identified and characterized simultaneously from complex samples, which have been enabled by key technological advancements, have become popular as an efficient means for tackling this challenge. This review article provides an overview of advancements in large-scale methods for profiling protein-PIPn binding, including experimental methods, such as affinity enrichment, microarray analysis and activity-based protein profiling, as well as computational methods, and combined computational/experimental efforts.
Collapse
Affiliation(s)
- Michael D Best
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, United States.
| |
Collapse
|
16
|
Kim H, Afsari HS, Cho W. High-throughput fluorescence assay for membrane-protein interaction. J Lipid Res 2013; 54:3531-8. [PMID: 24006510 DOI: 10.1194/jlr.d041376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane-protein interaction plays key roles in a wide variety of biological processes. Although various methods have been employed to measure membrane binding of soluble proteins, a robust high-throughput assay that is universally applicable to all proteins is lacking at present. Here we report a new fluorescence quenching assay utilizing enhanced green fluorescence protein (EGFP)-fusion proteins and a lipid containing a dark quencher, N-dimethylaminoazobenzenesulfonyl-phosphatidylethanolamine (dabsyl-PE). The EGFP fluorescence emission intensity showed a large decrease (i.e., >50%) when EGFP-fusion proteins bound the vesicles containing 5 mol% dabsyl-PE. This simple assay, which can be performed using either a cuvette-based spectrofluorometer or a fluorescence plate reader, allowed rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains, including two pleckstrin homology domains, an epsin N-terminal homology domain, and a phox homology domain. The assay can also be applied to high-throughput screening of small molecules that modulate membrane binding of proteins.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607
| | | | | |
Collapse
|
17
|
Sheng R, Chen Y, Yung Gee H, Stec E, Melowic HR, Blatner NR, Tun MP, Kim Y, Källberg M, Fujiwara TK, Hye Hong J, Pyo Kim K, Lu H, Kusumi A, Goo Lee M, Cho W. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun 2013; 3:1249. [PMID: 23212378 PMCID: PMC3526836 DOI: 10.1038/ncomms2221] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is known to modulate the physical properties of cell membranes but its direct involvement in cellular signaling has not been thoroughly investigated. Here we show that cholesterol specifically binds many PDZ domains found in scaffold proteins, including the N-terminal PDZ domain of NHERF1/EBP50. This modular domain has a cholesterol-binding site topologically distinct from its canonical protein-binding site and serves as a dual specificity domain that bridges the membrane and juxta-membrane signaling complexes. Disruption of the cholesterol binding activity of NHERF1 largely abrogates its dynamic colocalization with and activation of cystic fibrosis transmembrane conductance regulator, one of its binding partners in the plasma membrane of mammalian cells. At least seven more PDZ domains from other scaffold proteins also bind cholesterol and have cholesterol-binding sites, suggesting that cholesterol modulates cell signaling through direct interactions with these scaffold proteins. This mechanism may provide an alternative explanation for the formation of signaling platforms in cholesterol-rich membrane domains.
Collapse
Affiliation(s)
- Ren Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J 2013; 450:573-81. [PMID: 23323832 DOI: 10.1042/bj20121639] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PA (phosphatidic acid) is a lipid second messenger involved in an array of processes occurring during a plant's life cycle. These include development, metabolism, and both biotic and abiotic stress responses. PA levels increase in response to salt, but little is known about its function in the earliest responses to salt stress. In the present study we have combined an approach to isolate peripheral membrane proteins of Arabidopsis thaliana roots with lipid-affinity purification, to identify putative proteins that interact with PA and are recruited to the membrane in response to salt stress. Of the 42 putative PA-binding proteins identified by MS, a set of eight new candidate PA-binding proteins accumulated at the membrane fraction after 7 min of salt stress. Among these were CHC (clathrin heavy chain) isoforms, ANTH (AP180 N-terminal homology) domain clathrin-assembly proteins, a putative regulator of potassium transport, two ribosomal proteins, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and a PI (phosphatidylinositol) 4-kinase. PA binding and salt-induced membrane recruitment of GAPDH and CHC were confirmed by Western blot analysis of the cellular fractions. In conclusion, the approach of the present study is an effective way to isolate biologically relevant lipid-binding proteins and provides new leads in the study of PA-mediated salt-stress responses in roots.
Collapse
|
19
|
Song K, Jang M, Kim SY, Lee G, Lee GJ, Kim DH, Lee Y, Cho W, Hwang I. An A/ENTH domain-containing protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells. PLANT PHYSIOLOGY 2012; 159:1013-25. [PMID: 22635117 PMCID: PMC3387690 DOI: 10.1104/pp.112.199380] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/21/2012] [Indexed: 05/21/2023]
Abstract
Cytokinesis is the process of partitioning the cytoplasm of a dividing cell, thereby completing mitosis. Cytokinesis in the plant cell is achieved by the formation of a new cell wall between daughter nuclei using components carried in Golgi-derived vesicles that accumulate at the midplane of the phragmoplast and fuse to form the cell plate. Proteins that play major roles in the development of the cell plate in plant cells are not well defined. Here, we report that an AP180 amino-terminal homology/epsin amino-terminal homology domain-containing protein from Arabidopsis (Arabidopsis thaliana) is involved in clathrin-coated vesicle formation from the cell plate. Arabidopsis Epsin-like Clathrin Adaptor1 (AtECA1; At2g01600) and its homologous proteins AtECA2 and AtECA4 localize to the growing cell plate in cells undergoing cytokinesis and also to the plasma membrane and endosomes in nondividing cells. AtECA1 (At2g01600) does not localize to nascent cell plates but localizes at higher levels to expanding cell plates even after the cell plate fuses with the parental plasma membrane. The temporal and spatial localization patterns of AtECA1 overlap most closely with those of the clathrin light chain. In vitro protein interaction assays revealed that AtECA1 binds to the clathrin H chain via its carboxyl-terminal domain. These results suggest that these AP180 amino-terminal homology/epsin amino-terminal homology domain-containing proteins, AtECA1, AtECA2, and AtECA4, may function as adaptors of clathrin-coated vesicles budding from the cell plate.
Collapse
|
20
|
Scott JL, Musselman CA, Adu-Gyamfi E, Kutateladze TG, Stahelin RV. Emerging methodologies to investigate lipid-protein interactions. Integr Biol (Camb) 2012; 4:247-58. [PMID: 22327461 DOI: 10.1039/c2ib00143h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellular membranes are composed of hundreds of different lipids, ion channels, receptors and scaffolding complexes that act as signalling and trafficking platforms for processes fundamental to life. Cellular signalling and membrane trafficking are often regulated by peripheral proteins, which reversibly interact with lipid molecules in highly regulated spatial and temporal fashions. In most cases, one or more modular lipid-binding domain(s) mediate recruitment of peripheral proteins to specific cellular membranes. These domains, of which more than 10 have been identified since 1989, harbour structurally selective lipid-binding sites. Traditional in vitro and in vivo studies have elucidated how these domains coordinate their cognate lipids and thus how the parent proteins associate with membranes. Cellular activities of peripheral proteins and subsequent physiological processes depend upon lipid binding affinities and selectivity. Thus, the development of novel sensitive and quantitative tools is essential in furthering our understanding of the function and regulation of these proteins. As this field expands into new areas such as computational biology, cellular lipid mapping, single molecule imaging, and lipidomics, there is an urgent need to integrate technologies to detail the molecular architecture and mechanisms of lipid signalling. This review surveys emerging cellular and in vitro approaches for studying protein-lipid interactions and provides perspective on how integration of methodologies directs the future development of the field.
Collapse
Affiliation(s)
- Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|