1
|
Sánchez-Alba L, Ying L, Maletic MD, De Bolòs A, Borràs-Gas H, Liu B, Varejão N, Amador V, Mulder MPC, Reverter D. Structural basis for the human SENP5's SUMO isoform discrimination. Nat Commun 2025; 16:4764. [PMID: 40404649 PMCID: PMC12098989 DOI: 10.1038/s41467-025-60029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Post-translational SUMO modification is a widespread mechanism for regulating protein function within cells. In humans, SUMO-conjugated proteins are partially regulated by the deconjugating activity of six SENP family members. The proteolytic activity of these enzymes resides within a conserved catalytic domain that exhibits specificity for the two primary SUMO isoforms: SUMO1 and SUMO2/3. SENP5, along with SENP3, are nucleolar proteins involved in ribosome biogenesis and preferentially target SUMO2/3 isoforms. Here, we present the crystal structures of human SENP5 in complex with both SUMO1 and SUMO2 isoforms. These structures reveal a minimal complex interface and elucidate the molecular basis for SENP5's preference for the SUMO2 isoform. This preference can be attributed to a basic patch surrounding SENP5 Arg624 at the interface. Swapping mutagenesis and structural analysis demonstrate that Arg624 is favorably oriented to interact with Asp63 in SUMO2/3, while its interaction with the equivalent Glu67 in SUMO1 is less favorable. These results suggest that subtle structural differences within SUMO isoforms can significantly influence their deconjugation by SENP enzymes, opening new avenues for exploring the regulation of SUMOylation in various cellular processes and for developing therapeutic agents targeting SUMOylation pathways.
Collapse
Affiliation(s)
- Lucía Sánchez-Alba
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Li Ying
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Qingdao University, Qingdao, China
| | - Matthew D Maletic
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anna De Bolòs
- Institut de Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBABS), Barcelona, Spain
| | - Helena Borràs-Gas
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bing Liu
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Amador
- Institut de Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBABS), Barcelona, Spain
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
2
|
Sánchez-Alba L, Borràs-Gas H, Huang G, Varejão N, Reverter D. Structural diversity of the CE-clan proteases in bacteria to disarm host ubiquitin defenses. Trends Biochem Sci 2024; 49:1111-1123. [PMID: 39343712 DOI: 10.1016/j.tibs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitin (Ub) and ubiquitin-like (UbL) modifications are critical regulators of multiple cellular processes in eukaryotes. These modifications are dynamically controlled by proteases that balance conjugation and deconjugation. In eukaryotes, these proteases include deubiquitinases (DUBs), mostly belonging to the CA-clan of cysteine proteases, and ubiquitin-like proteases (ULPs), belonging to the CE-clan proteases. Intriguingly, infectious bacteria exploit the CE-clan protease fold to generate deubiquitinating activities to disarm the immune system and degradation defenses of the host during infection. In this review, we explore the substrate preferences encoded within the CE-clan proteases and the structural determinants in the protease fold behind its selectivity, in particular those from infectious bacteria and viruses. Understanding this protease family provides crucial insights into the molecular mechanisms underlying infection and transmission of pathogenic organisms.
Collapse
Affiliation(s)
- Lucía Sánchez-Alba
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Helena Borràs-Gas
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Ge Huang
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Nathalia Varejão
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - David Reverter
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
3
|
Li Y, Perez-Gil J, Lois LM, Varejão N, Reverter D. Broad-spectrum ubiquitin/ubiquitin-like deconjugation activity of the rhizobial effector NopD from Bradyrhizobium (sp. XS1150). Commun Biol 2024; 7:644. [PMID: 38802699 PMCID: PMC11130253 DOI: 10.1038/s42003-024-06344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.
Collapse
Affiliation(s)
- Ying Li
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Qingdao University, 266071, Qingdao, China
| | - Jordi Perez-Gil
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, 08193, Bellaterra, Barcelona, Spain
- ARC Centre of Excellence in Synthetic Biology and Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - L Maria Lois
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, 08193, Bellaterra, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
4
|
Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci 2024; 31:16. [PMID: 38280996 PMCID: PMC10821541 DOI: 10.1186/s12929-024-01003-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
SUMOylation, which is a type of post-translational modification that involves covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular processes, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO is immature and cleaved by the SUMO-specific protease family, resulting in exposure of the C-terminal Gly-Gly motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2-conjugating enzyme Ubc9 in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOylation. SUMOylation is a reversible modification and mediated by SUMO-specific proteases. Cumulative studies have indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localization and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery proteins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoimmune diseases. This review summarizes the biochemistry of SUMO modification and the general biological functions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site-specific interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.
Collapse
Affiliation(s)
- Chien-Hsin Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Tsan-Tzu Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
Alfaro AJ, Dittner C, Becker J, Loft A, Mhamane A, Maida A, Georgiadi A, Tsokanos F, Klepac K, Molocea C, El‐Merahbi R, Motzler K, Geppert J, Karikari RA, Szendrödi J, Feuchtinger A, Hofmann S, Karaca S, Urlaub H, Berriel Diaz M, Melchior F, Herzig S. Fasting-sensitive SUMO-switch on Prox1 controls hepatic cholesterol metabolism. EMBO Rep 2023; 24:e55981. [PMID: 37560809 PMCID: PMC10561358 DOI: 10.15252/embr.202255981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.
Collapse
Affiliation(s)
- Ana Jimena Alfaro
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Claudia Dittner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)Heidelberg University, DKFZ‐ZMBH AllianceHeidelbergGermany
| | - Janina Becker
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)Heidelberg University, DKFZ‐ZMBH AllianceHeidelbergGermany
| | - Anne Loft
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
- Center for Functional Genomics and Tissue Plasticity (ATLAS), SDUOdenseDenmark
| | - Amit Mhamane
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Adriano Maida
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Anastasia Georgiadi
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Foivos‐Filippos Tsokanos
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Katarina Klepac
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Claudia‐Eveline Molocea
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Rabih El‐Merahbi
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Karsten Motzler
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Rhoda Anane Karikari
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Julia Szendrödi
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | | | - Susanna Hofmann
- Institute of Diabetes and Regeneration ResearchHelmholtz MunichNeuherbergGermany
| | - Samir Karaca
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Bioanalytics, Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)Heidelberg University, DKFZ‐ZMBH AllianceHeidelbergGermany
| | - Stephan Herzig
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalHeidelbergGermany
- German Center for Diabetes Research (DZD), and German Center for Cardiovascular Disease (DZHK)NeuherbergGermany
- Chair Molecular Metabolic ControlTechnical University MunichMunichGermany
| |
Collapse
|
6
|
Guo F, Song Y, Wu L, Zhao Y, Ma X, Wang J, Shao M, Ji H, Huang F, Fan X, Wang S, Qin G, Yang B. SUMO specific peptidase 6 regulates the crosstalk between podocytes and glomerular endothelial cells in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166685. [PMID: 36889557 DOI: 10.1016/j.bbadis.2023.166685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
There is increasing evidence that the crosstalk between podocytes and glomerular endothelial cells (GECs) exacerbates the progression of diabetic kidney disease (DKD). Here, we investigated the underlying role of SUMO specific peptidase 6 (SENP6) in this crosstalk. In the diabetic mice, SENP6 was decreased in glomerular tissues and its knockdown further exacerbated glomerular filtration barrier injury. In the mouse podocyte cell line MPC5 cells, SENP6 overexpression reversed HG-induced podocyte loss by suppressing the activation of Notch1 signaling. Notch1 intracellular domain (N1ICD) is the active form of Notch1. SENP6 upregulated the ubiquitination of N1ICD by deSUMOylating Notch1, thereby reducing N1ICD and suppressing Notch1 signaling activation in MPC5 cells. Endothelin-1 (EDN1) is a protein produced by podocytes and has been reported to promote GEC dysfunction. The supernatant from HG-treated MPC5 cells induced mitochondrial dysfunction and surface layer injury in GECs, and the supernatant from SENP6-deficient podocytes further exacerbated the above GEC dysfunction, while this trend was reversed by an EDN1 antagonist. The following mechanism study showed that SENP6 deSUMOylated KDM6A (a histone lysine demethylase) and then decreased the binding potency of KDM6A to EDN1. The latter led to the upregulation of H3K27me2 or H3K27me3 of EDN1 and suppressed its expression in podocytes. Taken together, SENP6 suppressed the HG-induced podocyte loss and ameliorated GEC dysfunction caused by crosstalk between podocytes and GECs, and the protective effect of SENP6 on DKD is attributed to its deSUMOylation activity.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xunjie Fan
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Baofeng Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
7
|
Huppelschoten Y, Mukhopadhyay R, Buchardt J, Nielsen TE, Vertegaal ACO, Ovaa H, van der Heden van Noort GJ. In-Plate Chemical Synthesis of Isopeptide-Linked SUMOylated Peptide Fluorescence Polarization Reagents for High-Throughput Screening of SENP Preferences. Chembiochem 2023; 24:e202200601. [PMID: 36377600 PMCID: PMC10107784 DOI: 10.1002/cbic.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Small ubiquitin-like modifiers (SUMOs) are conjugated to protein substrates in cells to regulate their function. The attachment of SUMO family members SUMO1-3 to substrate proteins is reversed by specific isopeptidases called SENPs (sentrin-specific protease). Whereas SENPs are SUMO-isoform or linkage type specific, comprehensive analysis is missing. Furthermore, the underlying mechanism of SENP linkage specificity remains unclear. We present a high-throughput synthesis of 83 isopeptide-linked SUMO-based fluorescence polarization reagents to study enzyme preferences. The assay reagents were synthesized via a native chemical ligation-desulfurization protocol between 11-mer peptides containing a γ-thiolysine and a SUMO3 thioester. Subsequently, five recombinantly expressed SENPs were screened using these assay reagents to reveal their deconjugation activity and substrate preferences. In general, we observed that SENP1 is the most active and nonselective SENP while SENP6 and SENP7 show the least activity. Furthermore, SENPs differentially process peptides derived from SUMO1-3, who form a minimalistic representation of diSUMO chains. To validate our findings, five distinct isopeptide-linked diSUMO chains were chemically synthesized and proteolysis was monitored using a gel-based read-out.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands.,Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Rishov Mukhopadhyay
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands
| | - Jens Buchardt
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark.,Current address: CMC API Development, Novo Nordisk A/S, Novo Nordisk Park, 2880, Bagsvaerd, Denmark
| | - Thomas E Nielsen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Alfred C O Vertegaal
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands
| | - Huib Ovaa
- Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands
| | | |
Collapse
|
8
|
Li Y, De Bolòs A, Amador V, Reverter D. Structural Basis for the SUMO2 Isoform Specificity of SENP7. J Mol Biol 2022; 434:167875. [PMID: 36334780 DOI: 10.1016/j.jmb.2022.167875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
Abstract
SUMO proteases or deSUMOylases regulate the lifetime of SUMO-conjugated targets in the cell by cleaving off the isopetidic bond between the substrate and the SUMO modifier, thus reversing the conjugation activity of the SUMO E3 ligases. In humans the deSUMOylating activity is mainly conducted by the SENP/ULP protease family, which is constituted of six members sharing a homologous catalytic globular domain. SENP6 and SENP7 are the most divergent members of the family and they show a unique SUMO2/3 isoform preference and a particular activity for dismantling polySUMO2 chains. Here, we present the crystal structure of the catalytic domain of human SENP7 bound to SUMO2, revealing structural key elements for the SUMO2 isoform specificity of SENP7. In particular, we describe the specific contacts between SUMO2 and a unique insertion in SENP7 (named Loop1) that is responsible for the SUMO2 isoform specificity. All the other interface contacts between SENP7 and SUMO2, including the SUMO2 C-terminal tail interaction, are conserved among members of the SENP/ULP family. Our data give insight into an evolutionary adaptation to restrict the deSUMOylating activity in SENP6 and SENP7 for the SUMO2/3 isoforms.
Collapse
Affiliation(s)
- Ying Li
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna De Bolòs
- Institut de Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBABS), Barcelona 08036, Spain
| | - Virginia Amador
- Institut de Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBABS), Barcelona 08036, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
9
|
Amrute-Nayak M, Gand LV, Khan B, Holler T, Kefalakes E, Kosanke M, Kraft T, Nayak A. SENP7 deSUMOylase-governed transcriptional program coordinates sarcomere assembly and is targeted in muscle atrophy. Cell Rep 2022; 41:111702. [DOI: 10.1016/j.celrep.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
10
|
Structural basis for the SUMO protease activity of the atypical ubiquitin-specific protease USPL1. Nat Commun 2022; 13:1819. [PMID: 35383180 PMCID: PMC8983731 DOI: 10.1038/s41467-022-29485-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Post-translational protein modifications by ubiquitin and ubiquitin-like modifiers regulate many major pathways in the cell. These modifications can be reversed by de-ubiquitinating enzymes such as ubiquitin-specific proteases (USPs). Proteolytic activity towards ubiquitin-modified substrates is common to all USP family members except for USPL1, which shows a unique preference for the ubiquitin-like modifier SUMO. Here, we present the crystal structure of USPL1 bound to SUMO2, defining the key structural elements for the unusual deSUMOylase activity of USPL1. We identify specific contacts between SUMO2 and the USPL1 subdomains, including a unique hydrogen bond network of the SUMO2 C-terminal tail. In addition, we find that USPL1 lacks major structural elements present in all canonical USPs members such as the so-called blocking loops, which facilitates SUMO binding. Our data give insight into how a structural protein scaffold designed to bind ubiquitin has evolved to bind SUMO, providing an example of divergent evolution in the USP family. USPL1 is a non-canonical member of the ubiquitin-specific protease (USP) family with activity toward SUMO instead of ubiquitin. Here, the authors present a crystal structure of USPL1 bound to SUMO2, revealing how this enzyme has evolved to bind SUMO as an example of divergent evolution in the USP family.
Collapse
|
11
|
Li YY, Cen H, Gong BN, Mai S, Wang QL, Mou S, Li Y. TCR-Induced Tyrosine Phosphorylation at Tyr270 of SUMO Protease SENP1 by Lck Modulates SENP1 Enzyme Activity and Specificity. Front Cell Dev Biol 2022; 9:789348. [PMID: 35186948 PMCID: PMC8847397 DOI: 10.3389/fcell.2021.789348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification plays an important regulatory role in T cell receptor (TCR) signaling transduction. SUMO-specific proteases (SENPs) have dual-enzyme activities; they can both process SUMO precursors as endopeptidases and participate in SUMO deconjugation as isopeptidases. It remains unclear how the SUMO system, especially SENP1, is regulated by TCR signaling. Here, we show that Lck phosphorylates tyrosine 270 (Y270) of SENP1 upon TCR stimulation, indicating that SENP1 is a substrate of Lck. In vitro endopeptidase activity analysis showed that mutating SENP1 Y270 to either phenylalanine (F) to mimic the phosphorylation-defective state or to glutamate (E) to mimic the negative charge of tyrosine phosphorylation in the enzyme microenvironment did not change its endopeptidase activity towards pre-SUMO1. However, SENP1 Y270E but not Y270F mutation exhibited decreased endopeptidase activity towards pre-SUMO3. Through in vivo isopeptidase activity analysis by rescue expression of SENP1 and its Y270 mutants in a SENP1 CRISPR knockout T cell line, we found that SENP1 Y270F downregulated its isopeptidase activity towards both SUMO1 and SUMO2/3 conjugation by reducing SENP1 binding with sumoylated targets. While overexpression of SENP1 inhibited TCR-induced IL-2 production, overexpression of SENP1 Y270F enhanced it instead. In summary, TCR-induced Y270 phosphorylation of SENP1 may promote its isopeptidase activity and specifically decrease its endopeptidase activity against pre-SUMO3, which finely tunes activation of T cells.
Collapse
Affiliation(s)
- Yun-Yi Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haohua Cen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bei-Ni Gong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Siqi Mai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Long Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sisi Mou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Zhao Q, Ma Y, Li Z, Zhang K, Zheng M, Zhang S. The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Department of Spine Center, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
13
|
Jia Y, Claessens LA, Vertegaal ACO, Ovaa H. Chemical Tools and Biochemical Assays for SUMO Specific Proteases (SENPs). ACS Chem Biol 2019; 14:2389-2395. [PMID: 31361113 PMCID: PMC6862319 DOI: 10.1021/acschembio.9b00402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SUMOylation is a reversible and highly dynamic post-translational modification of target proteins by small ubiquitin-like modifiers (SUMO). It is orchestrated by SUMO-activating, -conjugating, and -ligating enzymes in a sequential manner and is important in regulating a myriad of predominantly nuclear processes. DeSUMOylation is achieved by SUMO-specific proteases (SENPs). Deregulation of SUMOylation and deSUMOylation results in cellular dysfunction and is linked to various diseases, including cancer. In recent years, SENPs have emerged as potential therapeutic targets. In this review, we will describe the inhibitors and activity-based probes of SENPs. Furthermore, we will summarize the biochemical assays available for evaluating the activity of SENPs to identify inhibitors.
Collapse
Affiliation(s)
- Yuqing Jia
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura A. Claessens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Wagner K, Kunz K, Piller T, Tascher G, Hölper S, Stehmeier P, Keiten-Schmitz J, Schick M, Keller U, Müller S. The SUMO Isopeptidase SENP6 Functions as a Rheostat of Chromatin Residency in Genome Maintenance and Chromosome Dynamics. Cell Rep 2019; 29:480-494.e5. [PMID: 31597105 DOI: 10.1016/j.celrep.2019.08.106] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/21/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
Signaling by the ubiquitin-related SUMO pathway relies on coordinated conjugation and deconjugation events. SUMO-specific deconjugating enzymes counterbalance SUMOylation, but comprehensive insight into their substrate specificity and regulation is missing. By characterizing SENP6, we define an N-terminal multi-SIM domain as a critical determinant in targeting SENP6 to SUMO chains. Proteomic profiling reveals a network of SENP6 functions at the crossroads of chromatin organization and DNA damage response (DDR). SENP6 acts as a SUMO eraser at telomeric and centromeric chromatin domains and determines the SUMOylation status and chromatin association of the cohesin complex. Importantly, SENP6 is part of the hPSO4/PRP19 complex that drives ATR-Chk1 activation. SENP6 deficiency impairs chromatin association of the ATR cofactor ATRIP, thereby compromising the activation of Chk1 signaling in response to aphidicolin-induced replicative stress and sensitizing cells to DNA damage. We propose a general role of SENP6 in orchestrating chromatin dynamics and genome stability networks by balancing chromatin residency of protein complexes.
Collapse
Affiliation(s)
- Kristina Wagner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kathrin Kunz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Per Stehmeier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jan Keiten-Schmitz
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Markus Schick
- Internal Medicine III, School of Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ulrich Keller
- Internal Medicine III, School of Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
15
|
Castro PH, Santos MÂ, Freitas S, Cana-Quijada P, Lourenço T, Rodrigues MAA, Fonseca F, Ruiz-Albert J, Azevedo JE, Tavares RM, Castillo AG, Bejarano ER, Azevedo H. Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4633-4649. [PMID: 30053161 PMCID: PMC6117582 DOI: 10.1093/jxb/ery265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
- CIBIO, InBIO—Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Miguel Ângelo Santos
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sara Freitas
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
- CIBIO, InBIO—Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Pepe Cana-Quijada
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Tiago Lourenço
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Mafalda A A Rodrigues
- PRPlants Lab, GPlantS Unit, Instituto de Tecnologia Química e Biológica—Universidade Nova de Lisboa, Estação Agronómica Nacional, Oeiras, Portugal
| | - Fátima Fonseca
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Javier Ruiz-Albert
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rui Manuel Tavares
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Araceli G Castillo
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Eduardo R Bejarano
- Area de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos, Málaga, Spain
| | - Herlander Azevedo
- CIBIO, InBIO—Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Kunz K, Piller T, Müller S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci 2018; 131:131/6/jcs211904. [DOI: 10.1242/jcs.211904] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
The ubiquitin-related SUMO system controls many cellular signaling networks. In mammalian cells, three SUMO forms (SUMO1, SUMO2 and SUMO3) act as covalent modifiers of up to thousands of cellular proteins. SUMO conjugation affects cell function mainly by regulating the plasticity of protein networks. Importantly, the modification is reversible and highly dynamic. Cysteine proteases of the sentrin-specific protease (SENP) family reverse SUMO conjugation in mammalian cells. In this Cell Science at a Glance article and the accompanying poster, we will summarize how the six members of the mammalian SENP family orchestrate multifaceted deconjugation events to coordinate cell processes, such as gene expression, the DNA damage response and inflammation.
Collapse
Affiliation(s)
- Kathrin Kunz
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
17
|
Peek J, Harvey C, Gray D, Rosenberg D, Kolla L, Levy-Myers R, Yin R, McMurry JL, Kerscher O. SUMO targeting of a stress-tolerant Ulp1 SUMO protease. PLoS One 2018; 13:e0191391. [PMID: 29351565 PMCID: PMC5774762 DOI: 10.1371/journal.pone.0191391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SUMO proteases during stress. To this end we have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxianus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and KmUlp1 show a high degree of sequence conservation, complement a ulp1Δ mutant in vivo, and process a SUMO precursor in vitro. Next, to compare the SUMO-trapping features of both SUMO proteases we produced catalytically inactive recombinant fragments of the UD domains of ScUlp1 and KmUlp1, termed ScUTAG and KmUTAG respectively. Both ScUTAG and KmUTAG were able to efficiently bind a variety of purified SUMO isoforms and bound immobilized SUMO1 with nanomolar affinity. However, KmUTAG showed a greatly enhanced ability to bind SUMO and SUMO-modified proteins in the presence of oxidative, temperature and other stressors that induce protein misfolding. We also investigated whether a SUMO-interacting motif (SIM) in the UD domain of KmULP1 that is not conserved in ScUlp1 may contribute to the SUMO-binding properties of KmUTAG. In summary, our data reveal important details about how SUMO proteases target and bind their sumoylated substrates, especially under stress conditions. We also show that the robust pan-SUMO binding features of KmUTAG can be exploited to detect and study SUMO-modified proteins in cell culture systems.
Collapse
Affiliation(s)
- Jennifer Peek
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Catherine Harvey
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Dreux Gray
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Danny Rosenberg
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Likhitha Kolla
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Reuben Levy-Myers
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Rui Yin
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Jonathan L. McMurry
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Oliver Kerscher
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Surana P, Gowda CM, Tripathi V, Broday L, Das R. Structural and functional analysis of SMO-1, the SUMO homolog in Caenorhabditis elegans. PLoS One 2017; 12:e0186622. [PMID: 29045470 PMCID: PMC5646861 DOI: 10.1371/journal.pone.0186622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
SUMO proteins are important post-translational modifiers involved in multiple cellular pathways in eukaryotes, especially during the different developmental stages in multicellular organisms. The nematode C. elegans is a well known model system for studying metazoan development and has a single SUMO homolog, SMO-1. Interestingly, SMO-1 modification is linked to embryogenesis and development in the nematode. However, high-resolution information about SMO-1 and the mechanism of its conjugation is lacking. In this work, we report the high-resolution three dimensional structure of SMO-1 solved by NMR spectroscopy. SMO-1 has flexible N-terminal and C-terminal tails on either side of a rigid beta-grasp folded core. While the sequence of SMO-1 is more similar to SUMO1, the electrostatic surface features of SMO-1 resemble more with SUMO2/3. SMO-1 can bind to typical SUMO Interacting Motifs (SIMs). SMO-1 can also conjugate to a typical SUMOylation consensus site as well as to its natural substrate HMR-1. Poly-SMO-1 chains were observed in-vitro even though SMO-1 lacks any consensus SUMOylation site. Typical deSUMOylation enzymes like Senp2 can cleave the poly-SMO-1 chains. Despite being a single gene, the SMO-1 structure allows it to function in a large repertoire of signaling pathways involving SUMO in C. elegans. Structural and functional features of SMO-1 studies described here will be useful to understand its role in development.
Collapse
Affiliation(s)
- Parag Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Chandrakala M. Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- * E-mail:
| |
Collapse
|
19
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
20
|
Tosti E, Katakowski JA, Schaetzlein S, Kim HS, Ryan CJ, Shales M, Roguev A, Krogan NJ, Palliser D, Keogh MC, Edelmann W. Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells. Genome Med 2014; 6:68. [PMID: 25302077 PMCID: PMC4189729 DOI: 10.1186/s13073-014-0068-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Background The evolutionarily conserved DNA mismatch repair (MMR) system corrects base-substitution and insertion-deletion mutations generated during erroneous replication. The mutation or inactivation of many MMR factors strongly predisposes to cancer, where the resulting tumors often display resistance to standard chemotherapeutics. A new direction to develop targeted therapies is the harnessing of synthetic genetic interactions, where the simultaneous loss of two otherwise non-essential factors leads to reduced cell fitness or death. High-throughput screening in human cells to directly identify such interactors for disease-relevant genes is now widespread, but often requires extensive case-by-case optimization. Here we asked if conserved genetic interactors (CGIs) with MMR genes from two evolutionary distant yeast species (Saccharomyces cerevisiae and Schizosaccharomyzes pombe) can predict orthologous genetic relationships in higher eukaryotes. Methods High-throughput screening was used to identify genetic interaction profiles for the MutSα and MutSβ heterodimer subunits (msh2Δ, msh3Δ, msh6Δ) of fission yeast. Selected negative interactors with MutSβ (msh2Δ/msh3Δ) were directly analyzed in budding yeast, and the CGI with SUMO-protease Ulp2 further examined after RNA interference/drug treatment in MSH2-deficient and -proficient human cells. Results This study identified distinct genetic profiles for MutSα and MutSβ, and supports a role for the latter in recombinatorial DNA repair. Approximately 28% of orthologous genetic interactions with msh2Δ/msh3Δ are conserved in both yeasts, a degree consistent with global trends across these species. Further, the CGI between budding/fission yeast msh2 and SUMO-protease Ulp2 is maintained in human cells (MSH2/SENP6), and enhanced by Olaparib, a PARP inhibitor that induces the accumulation of single-strand DNA breaks. This identifies SENP6 as a promising new target for the treatment of MMR-deficient cancers. Conclusion Our findings demonstrate the utility of employing evolutionary distance in tractable lower eukaryotes to predict orthologous genetic relationships in higher eukaryotes. Moreover, we provide novel insights into the genome maintenance functions of a critical DNA repair complex and propose a promising targeted treatment for MMR deficient tumors. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0068-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Joseph A Katakowski
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
| | - Sonja Schaetzlein
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| | - Colm J Ryan
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA ; California Institute for Quantitative Biosciences, San Francisco, USA ; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Michael Shales
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
| | - Assen Roguev
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, UCSF, San Francisco, USA ; California Institute for Quantitative Biosciences, San Francisco, USA ; J. David Gladstone Institutes, San Francisco, USA
| | - Deborah Palliser
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, USA
| | | | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
21
|
Alegre KO, Reverter D. Structural insights into the SENP6 Loop1 structure in complex with SUMO2. Protein Sci 2014; 23:433-41. [PMID: 24424631 PMCID: PMC3970894 DOI: 10.1002/pro.2425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/10/2022]
Abstract
The SENP proteases regulate the SUMO conjugates in the cell by cleaving SUMO from target proteins. SENP6 and SENP7 are the most divergent members of the SENP/ULP protease family in humans by the presence of insertions in their catalytic domains. Loop1 insertion is determinant for the SUMO2/3 activity and specificity on SENP6 and SENP7. To gain structural insights into the role of Loop1, we have designed a chimeric SENP2 with the insertion of Loop1 into its sequence. The structure of SENP2-Loop1 in complex with SUMO2 was solved at 2.15 Å resolution, and reveals the details of an interface exclusive to SENP6/7 and the formation of unique contacts between both proteins. Interestingly, functional data with SUMO substrates showed an increase of the proteolytic activity in the SENP2-Loop1 chimera for diSUMO2 and polySUMO2 substrates.
Collapse
Affiliation(s)
- Kamela O Alegre
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona08193, Bellaterra, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona08193, Bellaterra, Spain
| |
Collapse
|
22
|
Guo C, Henley JM. Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life 2014; 66:71-7. [PMID: 24470405 DOI: 10.1002/iub.1244] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
How cell fate is determined following extreme stress is a core question in cell biology. This is particularly important in the brain where neuronal death following ischemic stroke is a major cause of disability. Over the last few years it has emerged that the SUMOylation status of an increasing number of substrate proteins plays a crucial role in cellular responses to environmental and metabolic stress. SUMOylation is a post-translational modification in which the 97-residue protein, SUMO (Small Ubiquitin-related MOdifier) is covalently attached to specific lysine residues in a target protein. Despite being covalent, it is a highly transient modification because of the actions of deSUMOylation enzymes, so SUMO conjugation acts as a rapidly reversible switch that can promote or inhibit protein interactions with the substrate protein. Overall, it appears that increased SUMOylation represents a cellular protective response. Here we discuss recent progress toward understanding the mechanisms, pathways, and roles of SUMOylation during and after severe metabolic stress.
Collapse
Affiliation(s)
- Chun Guo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
23
|
Abstract
Posttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.
Collapse
Affiliation(s)
- Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH, Heidelberg D-69120, Germany.
| | | |
Collapse
|
24
|
Garvin AJ, Densham RM, Blair-Reid SA, Pratt KM, Stone HR, Weekes D, Lawrence KJ, Morris JR. The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair. EMBO Rep 2013; 14:975-83. [PMID: 24018422 DOI: 10.1038/embor.2013.141] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022] Open
Abstract
SUMO conjugation is known to occur in response to double-stranded DNA breaks in mammalian cells, but whether SUMO deconjugation has a role remains unclear. Here, we show that the SUMO/Sentrin/Smt3-specific peptidase, SENP7, interacts with the chromatin repressive KRAB-associated protein 1 (KAP1) through heterochromatin protein 1 alpha (HP1α). SENP7 promotes the removal of SUMO2/3 from KAP1 and regulates the interaction of the chromatin remodeler CHD3 with chromatin. Consequently, in the presence of CHD3, SENP7 is required for chromatin relaxation in response to DNA damage, for homologous recombination repair and for cellular resistance to DNA-damaging agents. Thus, deSUMOylation by SENP7 is required to promote a permissive chromatin environment for DNA repair.
Collapse
Affiliation(s)
- Alexander J Garvin
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 2013; 13:755-66. [PMID: 23175280 DOI: 10.1038/nrm3478] [Citation(s) in RCA: 503] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins is highly dynamic, and both SUMO-protein conjugation and cleavage can be regulated. Protein desumoylation is carried out by SUMO proteases, which control cellular mechanisms ranging from transcription and cell division to ribosome biogenesis. Recent advances include the discovery of two novel classes of SUMO proteases, insights regarding SUMO protease specificity, and revelations of previously unappreciated SUMO protease functions in several key cellular pathways. These developments, together with new connections between SUMO proteases and the recently discovered SUMO-targeted ubiquitin ligases (STUbLs), make this an exciting period to study these enzymes.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
26
|
Pilla E, Möller U, Sauer G, Mattiroli F, Melchior F, Geiss-Friedlander R. A novel SUMO1-specific interacting motif in dipeptidyl peptidase 9 (DPP9) that is important for enzymatic regulation. J Biol Chem 2012; 287:44320-9. [PMID: 23152501 DOI: 10.1074/jbc.m112.397224] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sumoylation affects many cellular processes by regulating the interactions of modified targets with downstream effectors. Here we identified the cytosolic dipeptidyl peptidase 9 (DPP9) as a SUMO1 interacting protein. Surprisingly, DPP9 binds to SUMO1 independent of the well known SUMO interacting motif, but instead interacts with a loop involving Glu(67) of SUMO1. Intriguingly, DPP9 selectively associates with SUMO1 and not SUMO2, due to a more positive charge in the SUMO1-loop. We mapped the SUMO-binding site of DPP9 to an extended arm structure, predicted to directly flank the substrate entry site. Importantly, whereas mutants in the SUMO1-binding arm are less active compared with wild-type DPP9, SUMO1 stimulates DPP9 activity. Consistent with this, silencing of SUMO1 leads to a reduced cytosolic prolyl-peptidase activity. Taken together, these results suggest that SUMO1, or more likely, a sumoylated protein, acts as an allosteric regulator of DPP9.
Collapse
Affiliation(s)
- Esther Pilla
- Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Goettingen, Humboldtallee 23, 37073 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2012; 109:17466-71. [PMID: 23045645 DOI: 10.1073/pnas.1209378109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) variants are naturally expressed in breast epithelia. Breast cancer (BCa) onset down-regulates the short SENP7 splice variant (SENP7S) and enhances the long transcript (SENP7L). Here, we show that SENP7L induction promotes gene expression profiles that favor aberrant proliferation and initiate epithelial-mesenchymal transition (EMT). SENP7L exhibits an interaction domain for the epigenetic remodeler heterochromatin protein 1 α (HP1α) and isopeptidase activity against SUMO-modified HP1α. Loss of this interaction domain, as observed with SENP7S, favors HP1α SUMOylation. SUMOylated HP1α is enriched at E2F-responsive and mesenchymal gene promoters, silences transcription of these genes, and promotes cellular senescence. Elevated SENP7L renders HP1α hypo-SUMOylated, which relieves transcriptional repression of the same genes and concurrently decreases transcription of epithelial-promoting genes via an HP1α-independent mechanism. Consequently, SENP7L levels correlate with EMT, motility, and invasiveness of BCa cells. Stable knockdown of elevated SENP7L levels lessens the dissemination of highly metastatic BCa cells to the lungs from primary implantation sites in in vivo studies. Thus, differential splicing of the SENP7 regulates either tumor suppression or progression.
Collapse
|
28
|
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2011; 316:113-25. [PMID: 22138131 DOI: 10.1016/j.canlet.2011.10.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
SUMOylation is a post-translational modification characterized by covalent and reversible binding of small ubiquitin-like modifier (SUMO) to a target protein. In mammals, four different isoforms, termed SUMO-1, -2, -3 and -4 have been identified so far. SUMO proteins are critically involved in the modulation of nuclear organization and cell viability. Their expression is significantly increased in processes associated with carcinogenesis such as cell growth, differentiation, senescence, oxidative stress and apoptosis. Little is known about the role of SUMOylation in cancer development. Therefore the present review focuses on possible implications of SUMOylation in carcinogenesis highlighting its impact as an important regulatory cell cycle protein. Moreover, novel opportunities for therapeutic approaches are discussed. The differential expression levels, the target protein preferences and the function of the SUMO pathway in different cancer subtypes raises unexpected issues questioning our understanding of the implication of SUMO in carcinogenesis.
Collapse
|