1
|
Fei Y, Yan C, Yu Y, Gao L, Ye T, Zhang Q, Gao H, Zhou X, Shao Y. Fluorescently probing site-specific and self-catalyzed DNA depurination. Analyst 2019; 144:5842-5847. [PMID: 31482933 DOI: 10.1039/c9an01412h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depurination occurs via hydrolysis of the purine-deoxyribose glycosyl bond and causes nucleic acid damage. In particular, the DNA sequences that can undergo a self-catalyzed depurination (SCD) will cause a great uncertainty in duplicating, separating, purifying, and storing the DNA samples. Therefore, there is a great demand to develop a rapid detection method for SCD events. Herein, the use of a convenient fluorescence method to follow the site-specific SCD was demonstrated. We found that the resultant apurine site (AP site) from depurination can be selectively recognized by a fluorescent probe of palmatine (PAL) with a turn-on fluorescence response. The dependence of SCD on the bases of the depurination site, pH, metal ions, and time shows that our method can be used to rapidly evaluate the depurination process. Furthermore, the depurination process can be photo-switched using a photoacid as an external initiator. Our work will find wide applications in preliminarily identifying the DNA depurination.
Collapse
Affiliation(s)
- Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
2
|
Gold MP, Fresco JR. A Role for the Mutagenic DNA Self-Catalyzed Depurination Mechanism in the Evolution of 7SL-Derived RNAs. J Mol Evol 2017; 85:84-98. [PMID: 29103173 DOI: 10.1007/s00239-017-9811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
The Alu element, the most prevalent SINE (short interspersed element) in the human genome, is one of the many RNA-encoding genes that evolved from the 7SL RNA gene. During analysis of the evolution of 7SL-derived RNAs, two distinct evolutionary intermediates capable of self-catalyzed DNA depurination (SDP) were identified. These SDP sequences spontaneously create apurinic sites that can result in increased mutagenesis due to their error-prone repair. This DNA self-depurination mechanism has been shown both in vitro and in vivo to lead to substitution and short frameshift mutations at a frequency that far exceeds their occurrence due to random errors in DNA replication. In both evolutionary intermediates, the same self-depurination sequence overlaps motifs necessary for successful transcription and SRP9/14 (signal recognition particle) binding; hence, mutations in this region could disrupt RNA activity. Yet, the 7SL-derived RNAs that arose from the elements capable of SDP show significant diversity in this region, and every new sequence retains the transcription and SRP9/14-binding motifs, even as it has lost the SDP sequence. While some (but not all) of the mutagenesis can be alternatively attributed to CpG decay, the very fact that the self-depurinating sequences are selectively discarded in all cases suggests that this was evolutionarily motivated to prevent further destructive mutagenesis by the SDP mechanism.
Collapse
Affiliation(s)
- Maxwell P Gold
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jacques R Fresco
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
3
|
Fresco JR, Amosova O. Site-Specific Self-Catalyzed DNA Depurination: A Biological Mechanism That Leads to Mutations and Creates Sequence Diversity. Annu Rev Biochem 2017; 86:461-484. [PMID: 28654322 DOI: 10.1146/annurev-biochem-070611-095951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.
Collapse
Affiliation(s)
- Jacques R Fresco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; ,
| | - Olga Amosova
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; ,
| |
Collapse
|
4
|
TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA. PLoS One 2016; 11:e0156098. [PMID: 27214207 PMCID: PMC4877046 DOI: 10.1371/journal.pone.0156098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/08/2016] [Indexed: 12/12/2022] Open
Abstract
In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption) and the single-stranded (after disruption) DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.
Collapse
|
5
|
Amosova O, Alvarez-Dominguez JR, Fresco JR. Why the DNA self-depurination mechanism operates in HB-β but not in β-globin paralogs HB-δ, HB-ɛ1, HB-γ1 and HB-γ2. Mutat Res 2015; 778:11-7. [PMID: 26042536 DOI: 10.1016/j.mrfmmm.2015.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/07/2015] [Indexed: 02/02/2023]
Abstract
The human β-globin, δ-globin and ɛ-globin genes contain almost identical coding strand sequences centered about codon 6 having potential to form a stem-loop with a 5'GAGG loop. Provided with a sufficiently stable stem, such a structure can self-catalyze depurination of the loop 5'G residue, leading to a potential mutation hotspot. Previously, we showed that such a hotspot exists about codon 6 of β-globin, with by far the highest incidence of mutations across the gene, including those responsible for 6 anemias (notably Sickle Cell Anemia) and β-thalassemias. In contrast, we show here that despite identical loop sequences, there is no mutational hotspot in the δ- or ɛ1-globin potential self-depurination sites, which differ by only one or two base pairs in the stem region from that of the β-globin gene. These differences result in either one or two additional mismatches in the potential 7-base pair-forming stem region, thereby weakening its stability, so that either DNA cruciform extrusion from the duplex is rendered ineffective or the lifetime of the stem-loop becomes too short to permit self-catalysis to occur. Having that same loop sequence, paralogs HB-γ1 and HB-γ2 totally lack stem-forming potential. Hence the absence in δ- and ɛ1-globin genes of a mutational hotspot in what must now be viewed as non-functional homologs of the self-depurination site in β-globin. Such stem-destabilizing variants appeared early among vertebrates and remained conserved among mammals and primates. Thus, this study has revealed conserved sequence determinants of self-catalytic DNA depurination associated with variability of mutation incidence among human β-globin paralogs.
Collapse
Affiliation(s)
- Olga Amosova
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | - Jacques R Fresco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Song M, Zeng L, Hong X, Meng Z, Yin J, Wang H, Liang Y, Jiang G. Polyvinyl pyrrolidone promotes DNA cleavage by a ROS-independent and depurination mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2886-2891. [PMID: 23425130 DOI: 10.1021/es3046229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polyvinyl pyrrolidone polymer (PVP) has been widely applied in biological and medical fields. A few in vitro studies indicated that PVP might cause toxicity. However, the underlying mechanism is poorly understood. In this work, we found that PVP directly induced strand breakages of various DNA molecules, implicating a cleavage activity. Moreover, reactive oxygen species (ROS) scavenging analysis shows that DNA cleavage activity of PVP is not related to ROS-induced oxidation. As revealed by gel electrophoresis and liquid chromatography/mass spectrometry analysis, the major cleavage products of DNA were identified as two purine bases, guanine and adenine, suggesting that PVPs have a novel depurination activity. The selective depurination and DNA cleavage activity of PVPs were further confirmed by studying the interaction of PVP with four nucleosides and four well-designed oligodeoxynucleotides probes containing specific nucleotides. This study may provide insights into PVP-DNA interactions and resultant genotoxicity and may also open a new way for DNA study.
Collapse
Affiliation(s)
- Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Alvarez-Dominguez JR, Amosova O, Fresco JR. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias. J Biol Chem 2013; 288:11581-9. [PMID: 23457306 DOI: 10.1074/jbc.m113.454744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease.
Collapse
|
8
|
Amosova O, Smith A, Fresco JR. The consensus sequence for self-catalyzed site-specific G residue depurination in DNA. J Biol Chem 2011; 286:36316-21. [PMID: 21868376 DOI: 10.1074/jbc.m111.272047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sequence variation tolerated within the stem-loop-forming genomic consensus sequence for self-catalyzed site-specific depurination of G residues is explored. The variation in self-depurination kinetics with sequence changes in the loop residues and stem base pairs, as well as with pH, provides insights into the self-catalytic mechanism. The observations suggest that self-catalyzed depurination of the 5' G residue of the loop consensus sequence 5'-G(T/A)GG-3' probably involves formation of some intraloop hydrogen-bonded base pair with the 3'-terminal G residue; although the electronic structure of both these G residues is retained, their 2-amino substituents are not critical for that interaction. The strong dependence of the self-depurination kinetics on stem stability suggests that the lifetime of some strained form of the loop is controlled by the integrity of the stem. In addition to the effects of length and base pair sequence on stem stability, there is a base pair requirement at the base of the loop: self-depurination is suppressed by 5'-C·G-3', 5'-A·T-3', or a mismatch but is most favored by 5'T·A3' and less so by 5'-G·C-3'. The occurrence in T and G of a similarly located carbonyl capable of hydrogen-bonding to the water molecule required for glycosyl bond hydrolysis may explain this sequence requirement. In toto, the more complete definition of the consensus sequence provided by this investigation enables a more accurate estimation of their number in the human genome and their distribution among different genes.
Collapse
Affiliation(s)
- Olga Amosova
- Department of Molecular Biology Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|