1
|
McAllister CT, Ronk AM, Stenzel MJ, Kirby JR, Bretl DJ. The NmpRSTU multi-component signaling system of Myxococcus xanthus regulates expression of an oxygen utilization regulon. J Bacteriol 2025; 207:e0028024. [PMID: 39868781 PMCID: PMC11841059 DOI: 10.1128/jb.00280-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/28/2025] Open
Abstract
Myxococcus xanthus has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in M. xanthus social motility. NmpRSTU was discovered through a screen that identified mutations in nmp genes that restored Type-IV pili-dependent motility to a nonmotile strain. The Nmp pathway begins with the SK NmpU, which is predicted to be active in the presence of oxygen. NmpU phosphorylates another SK, NmpS, a hybrid kinase containing an RR domain and a HisKA-CA domain. These two kinases work in a reciprocal fashion: when NmpU is active, NmpS is inactive, and vice versa. Finally, the phosphorelay culminates in NmpS phosphorylating the NtrC-like RR NmpR. To better understand the role of NmpRSTU in M. xanthus physiology, we determined the NmpR regulon by combining in silico predictions of the NmpR consensus binding sequence with in vitro electromobility shift assays (EMSAs) and in vivo transcriptional reporters. We identified several NmpR-dependent, upregulated genes likely to be important in oxygen utilization. Additionally, we demonstrate NmpRSTU plays a role in fruiting body development, suggesting a role for oxygen sensing in this behavior. We propose that NmpRSTU senses oxygen-limiting conditions, and NmpR upregulates genes associated with optimal utilization of that oxygen. This may be necessary for M. xanthus physiology and behaviors in the highly dynamic soil where oxygen concentrations vary dramatically. IMPORTANCE Bacteria use two-component signaling systems (TCSs) to respond to a multitude of environmental signals and subsequently regulate complex cellular physiology and behaviors. Myxococcus xanthus is a ubiquitous soil bacterium that encodes numerous two-component systems to respond to the conditions of its soil environment and coordinate multicellular behaviors such as coordinated motility, microbial predation, fruiting body development, and sporulation. To better understand how this bacterium uses a two-component system that has been linked to the sensing of oxygen concentrations, NmpRSTU, we determined the gene regulatory network of this system. We identified several genes regulated by NmpR that are likely important in oxygen utilization and for the M. xanthus response to varied oxygen concentrations in the dynamic soil environment.
Collapse
Affiliation(s)
- Colin T. McAllister
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison M. Ronk
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Mason J. Stenzel
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel J. Bretl
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
2
|
Hoque NJ, Rivera S, Young PG, Weinert EE, Liu Y. Heme pocket hydrogen bonding residue interactions within the Pectobacterium Diguanylate cyclase-containing globin coupled sensor: A resonance Raman study. J Inorg Biochem 2024; 260:112686. [PMID: 39106644 DOI: 10.1016/j.jinorgbio.2024.112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Heme-based sensor proteins are used by organisms to control signaling and physiological effects in response to their gaseous environment. Globin-coupled sensors (GCS) are oxygen-sensing proteins that are widely distributed in bacteria. These proteins consist of a heme globin domain linked by a middle domain to various output domains, including diguanylate cyclase domains, which are responsible for synthesizing c-di-GMP, a bacterial second messenger crucial for regulating biofilm formation. To understand the roles of heme pocket residues in controlling activity of the diguanylate cyclase domain, variants of the Pectobacterium carotovorum GCS (PccGCS) were characterized by enzyme kinetics and resonance Raman (rR) spectroscopy. Results of these studies have identified roles for hydrogen bonding and heme edge residues in modulating heme pocket conformation and flexibility. Better understanding of the ligand-dependent GCS signaling mechanism and the residues involved may allow for future development of methods to control O2-dependent c-di-GMP production.
Collapse
Affiliation(s)
- Nushrat J Hoque
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Shannon Rivera
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Paul G Young
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Emily E Weinert
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yilin Liu
- Department of Chemistry, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
3
|
Schuelke-Sanchez A, Yennawar NH, Weinert EE. Oxygen-selective regulation of cyclic di-GMP synthesis by a globin coupled sensor with a shortened linking domain modulates Shewanella sp. ANA-3 biofilm. J Inorg Biochem 2024; 252:112482. [PMID: 38218138 PMCID: PMC11616453 DOI: 10.1016/j.jinorgbio.2024.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.
Collapse
Affiliation(s)
- Ariel Schuelke-Sanchez
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Kitanishi K, Aoyama N, Shimonaka M. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen Vibrio fluvialis. Biochemistry 2024; 63:523-532. [PMID: 38264987 PMCID: PMC10882959 DOI: 10.1021/acs.biochem.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Kenichi Kitanishi
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Nao Aoyama
- Department
of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Motoyuki Shimonaka
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
5
|
Abstract
To investigate gasocrine signaling, there is a critical need to identify gasoreceptors for the essential gasotransmitters like O2. Based on existing scientific literature, I propose that heme-based O2 sensors, featuring diverse signaling domains across genera, should be explicitly designated as O2 gasoreceptors. Acknowledging that O2 gasoreceptors are likely to belong to multiple protein classes with diverse signaling domains and pathways will facilitate a comprehensive search for O2 gasoreceptors in all organisms and across every cell type. This approach will broaden the investigation beyond specialized tissues or cells, encompassing a systemic exploration.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Vávra J, Sergunin A, Shimizu T, Martínková M. Monitoring the Kinase Activity of Heme-Based Oxygen Sensors and Its Dependence on O 2 and Other Ligands Using Phos-Tag Electrophoresis. Methods Mol Biol 2023; 2648:63-73. [PMID: 37039985 DOI: 10.1007/978-1-0716-3080-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The nonradioactive method, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the presence of Phos-tag (Phos-tag electrophoresis), is used to evaluate a kinase autophosphorylation and/or phosphotransfer reaction from a kinase/ATP to its protein substrate. This method outperforms radioisotope methods using [32P]ATP for detecting trace amounts of phosphorylated protein in fresh protein preparations. Phos-tag electrophoresis has been used to perform detailed analyses of the kinase activity of a heme-based oxygen sensor-specifically, a globin-coupled histidine kinase from the soil bacterium Anaeromyxobacter sp. Fw109-5 (AfGcHK).
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic.
| |
Collapse
|
7
|
Vávra J, Sergunin A, Stráňava M, Kádek A, Shimizu T, Man P, Martínková M. Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins. Methods Mol Biol 2023; 2648:99-122. [PMID: 37039988 DOI: 10.1007/978-1-0716-3080-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein's functional domain.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Stráňava
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alan Kádek
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic.
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
8
|
Vávra J, Sergunin A, Jeřábek P, Shimizu T, Martínková M. Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase ( AfGcHK) and a diguanylate cyclase (YddV or EcDosC). Biol Chem 2022; 403:1031-1042. [PMID: 36165459 DOI: 10.1515/hsz-2022-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Heme is a vital cofactor of proteins with roles in oxygen transport (e.g. hemoglobin), storage (e.g. myoglobin), and activation (e.g. P450) as well as electron transfer (e.g. cytochromes) and many other functions. However, its structural and functional role in oxygen sensing proteins differs markedly from that in most other enzymes, where it serves as a catalytic or functional center. This minireview discusses the mechanism of signal transduction in two heme-based oxygen sensors: the histidine kinase AfGcHK and the diguanylate cyclase YddV (EcDosC), both of which feature a heme-binding domain containing a globin fold resembling that of hemoglobin and myoglobin.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Petr Jeřábek
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| |
Collapse
|
9
|
Kitanishi K, Shimonaka M, Unno M. Characterization of a Cobalt-Substituted Globin-Coupled Oxygen Sensor Histidine Kinase from Anaeromyxobacter sp. Fw109-5: Insights into Catalytic Regulation by Its Heme Coordination Structure. ACS OMEGA 2021; 6:34912-34919. [PMID: 34963974 PMCID: PMC8697598 DOI: 10.1021/acsomega.1c05564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 05/09/2023]
Abstract
Heme-based gas sensors are an emerging class of heme proteins. AfGcHK, a globin-coupled histidine kinase from Anaeromyxobacter sp. Fw109-5, is an oxygen sensor enzyme in which oxygen binding to Fe(II) heme in the globin sensor domain substantially enhances its autophosphorylation activity. Here, we reconstituted AfGcHK with cobalt protoporphyrin IX (Co-AfGcHK) in place of heme (Fe-AfGcHK) and characterized the spectral and catalytic properties of the full-length proteins. Spectroscopic analyses indicated that Co(III) and Co(II)-O2 complexes were in a 6-coordinated low-spin state in Co-AfGcHK, like Fe(III) and Fe(II)-O2 complexes of Fe-AfGcHK. Although both Fe(II) and Co(II) complexes were in a 5-coordinated state, Fe(II) and Co(II) complexes were in high-spin and low-spin states, respectively. The autophosphorylation activity of Co(III) and Co(II)-O2 complexes of Co-AfGcHK was fully active, whereas that of the Co(II) complex was moderately active. This contrasts with Fe-AfGcHK, where Fe(III) and Fe(II)-O2 complexes were fully active and the Fe(II) complex was inactive. Collectively, activity data and coordination structures of Fe-AfGcHK and Co-AfGcHK indicate that all fully active forms were in a 6-coordinated low-spin state, whereas the inactive form was in a 5-coordinated high-spin state. The 5-coordinated low-spin complex was moderately active-a novel finding of this study. These results suggest that the catalytic activity of AfGcHK is regulated by its heme coordination structure, especially the spin state of its heme iron. Our study presents the first successful preparation and characterization of a cobalt-substituted globin-coupled oxygen sensor enzyme and may lead to a better understanding of the molecular mechanisms of catalytic regulation in this family.
Collapse
Affiliation(s)
- Kenichi Kitanishi
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- . Tel: +81-3-3260-4272 (ex. 5738)
| | - Motoyuki Shimonaka
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masaki Unno
- Graduate
School of Science and Engineering, Ibaraki
University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- Frontier
Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
10
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
12
|
Hammerschmid D, Germani F, Drusin SI, Fagnen C, Schuster CD, Hoogewijs D, Marti MA, Venien-Bryan C, Moens L, Van Doorslaer S, Sobott F, Dewilde S. Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens. Comput Struct Biotechnol J 2021; 19:1874-1888. [PMID: 33995893 PMCID: PMC8076648 DOI: 10.1016/j.csbj.2021.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function. The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily. In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely. Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e-/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction. Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.
Collapse
Key Words
- AfGcHK, Anaeromyxobacter sp. Fw109-5 GcHK
- AsFRMF, Ascaris suum FRMF-amide receptor
- AvGReg, Azotobacter vinilandii Greg
- BpGReg, Bordetella pertussis Greg
- BsHemAT, Bacillus subtilis HemAT
- CCS, collision cross section
- CIU, collision-induced unfolding
- CMC, critical micelle concentration
- CV, cyclic voltammetry
- CeGLB26, Caenorhabditis elegans globin 26
- CeGLB33, Caenorhabditis elegans globin 33
- CeGLB6, Caenorhabditis elegans globin 6
- DDM, n-dodecyl-β-d-maltoside
- DPV, differential pulse voltammetry
- EcDosC, Escherichia coli Dos with DGC activity
- FMRF, H-Phe-Met-Arg-Phe-NH2 neuropeptide
- GCS, globin-coupled sensor
- GD, globin domain
- GGDEF, Gly-Gly-Asp-Glu-Phe motive
- Gb, globin
- Geobacter sulfurreducens
- GintHb, hemoglobin from Gasterophilus intestinalis
- Globin-coupled sensor
- GsGCS, Geobacter sulfurreducens GCS
- GsGCS162, GD of GsGCS
- IM-MS, ion mobility-mass spectrometry
- LmHemAC, Leishmania major HemAC
- MaPgb, Methanosarcina acetivorans protoglobin
- MtTrHbO, Mycobacterium tuberculosis truncated hemoglobin O
- NH4OAc, ammonium acetate
- OG, n-octyl-β-d-glucopyranoside
- PDE, phosphodiesterase
- PcMb, Physether catodon myoglobin
- PccGCS, Pectobacterium carotivorum GCS
- PsiE, phosphate-starvation-inducible E
- RR, resonance Raman
- SCE, saturated calomel electrode
- SHE, standard hydrogen electrode
- SaktrHb, Streptomyces avermitilis truncated hemoglobin-antibiotic monooxygenase
- SwMb, myoglobin from sperm whale
- TD, Transmitter domain
- TmD, Transmembrane domain
- Transmembrane domain
- Transmembrane-coupled globins
- mNgb, mouse neuroglobin
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Francesca Germani
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Salvador I. Drusin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Charline Fagnen
- Sorbonne Université, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, 75005 Paris, France
| | - Claudio D. Schuster
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Switzerland
| | - Marcelo A. Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Catherine Venien-Bryan
- Sorbonne Université, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, 75005 Paris, France
| | - Luc Moens
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sabine Van Doorslaer
- Biophysics and Biomedical Physics, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Sylvia Dewilde
- Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
13
|
Kobayashi K, Kim J, Fukuda Y, Kozawa T, Inoue T. Fields, biochemistry fast autooxidation of a Bis-Histidyl-ligated globin from the anhydrobiotic tardigrade, ramazzottius varieornatus, by molecular oxygen. J Biochem 2021; 169:663-673. [PMID: 33479760 DOI: 10.1093/jb/mvab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/27/2020] [Indexed: 01/11/2023] Open
Abstract
Tardigrades, a phylum of meiofaunal organisms, exhibit extraordinary tolerance to various environmental conditions, including extreme temperatures (-272 to 151 °C) and exposure to ionizing radiation. Proteins from anhydrobiotic tardigrades with homology to known proteins from other organisms are new potential targets for structural genomics. Recently, we reported spectroscopic and structural characterization of a hexacoordinated hemoglobin (Kumaglobin [Kgb]) found in an anhydrobiotic tardigrade. In the absence of its exogenous ligand, Kgb displays hexacoordination with distal and proximal histidines. In this work, we analyzed binding of the molecular oxygen ligand following reduction of heme in Kgb using a pulse radiolysis technique. Radiolytically generated hydrated electrons (eaq-) reduced the heme iron of Kgb within 20 µs. Subsequently, ferrous heme reacted with O2 to form a ferrous-dioxygen intermediate with a second-order rate constant of 3.0 × 106 M-1 s-1. The intermediate was rapidly (within 0.1 s) autooxidized to the ferric form. Redox potential measurements revealed an E'0 of -400 mV (vs. SHE) in the ferric/ferrous couple. Our results suggest that Kgb may serve as a physiological generator of O2·- via redox signaling and/or electron transfer.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - JeeEun Kim
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Yohta Fukuda
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Shi Y, Zhang Y, Lin S, Wang C, Zhou J, Peng D, Xue Y. dbPSP 2.0, an updated database of protein phosphorylation sites in prokaryotes. Sci Data 2020; 7:164. [PMID: 32472030 PMCID: PMC7260176 DOI: 10.1038/s41597-020-0506-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
In prokaryotes, protein phosphorylation plays a critical role in regulating a broad spectrum of biological processes and occurs mainly on various amino acids, including serine (S), threonine (T), tyrosine (Y), arginine (R), aspartic acid (D), histidine (H) and cysteine (C) residues of protein substrates. Through literature curation and public database integration, here we reported an updated database of phosphorylation sites (p-sites) in prokaryotes (dbPSP 2.0) that contains 19,296 experimentally identified p-sites in 8,586 proteins from 200 prokaryotic organisms, which belong to 12 phyla of two kingdoms, bacteria and archaea. To carefully annotate these phosphoproteins and p-sites, we integrated the knowledge from 88 publicly available resources that covers 9 aspects, namely, taxonomy annotation, genome annotation, function annotation, transcriptional regulation, sequence and structure information, family and domain annotation, interaction, orthologous information and biological pathway. In contrast to version 1.0 (~30 MB), dbPSP 2.0 contains ~9 GB of data, with a 300-fold increased volume. We anticipate that dbPSP 2.0 can serve as a useful data resource for further investigating phosphorylation events in prokaryotes. dbPSP 2.0 is free for all users to access at: http://dbpsp.biocuckoo.cn.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiaqi Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
15
|
Germani F, Nardini M, De Schutter A, Cuypers B, Berghmans H, Van Hauwaert ML, Bruno S, Mozzarelli A, Moens L, Van Doorslaer S, Bolognesi M, Pesce A, Dewilde S. Structural and Functional Characterization of the Globin-Coupled Sensors of Azotobacter vinelandii and Bordetella pertussis. Antioxid Redox Signal 2020; 32:378-395. [PMID: 31559835 DOI: 10.1089/ars.2018.7690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Structural and functional characterization of the globin-coupled sensors (GCSs) from Azotobacter vinelandii (AvGReg) and Bordetella pertussis (BpeGReg). Results: Ultraviolet/visible and resonance Raman spectroscopies confirm the presence in AvGReg and BpeGReg of a globin domain capable of reversible gaseous ligand binding. In AvGReg, an influence of the transmitter domain on the heme proximal region of the globin domain can be seen, and k'CO is higher than for other GCSs. The O2 binding kinetics suggests the presence of an open and a closed conformation. As for BpeGReg, the fully oxygenated AvGReg show a very high diguanylate cyclase activity. The carbon monoxide rebinding to BpeGReg indicates that intra- and intermolecular interactions influence the ligand binding. The globin domains of both proteins (AvGReg globin domain and BpeGRegGb with cysteines (Cys16, 45, 114, 154) mutated to serines [BpeGReg-Gb*]) share the same GCS fold, a similar proximal but a different distal side structure. They homodimerize through a G-H helical bundle as in other GCSs. However, BpeGReg-Gb* shows also a second dimerization mode. Innovation: This article extends our knowledge on the GCS proteins and contributes to a better understanding of the GCSs role in the formation of bacterial biofilms. Conclusions:AvGReg and BpeGReg conform to the GCS family, share a similar overall structure, but they have different properties in terms of the ligand binding. In particular, AvGReg shows an open and a closed conformation that in the latter form will very tightly bind oxygen. BpeGReg has only one closed conformation. In both proteins, it is the fully oxygenated GCS form that catalyzes the production of the second messenger.
Collapse
Affiliation(s)
- Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Amy De Schutter
- Department of Physics, University of Antwerp, Wilrijk, Belgium
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Wilrijk, Belgium
| | - Herald Berghmans
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | | | - Stefano Bruno
- Department of Food and Drugs, University of Parma, Parma, Italy
| | | | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | | | | | | | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
16
|
Skalova T, Lengalova A, Dohnalek J, Harlos K, Mihalcin P, Kolenko P, Stranava M, Blaha J, Shimizu T, Martínková M. Disruption of the dimerization interface of the sensing domain in the dimeric heme-based oxygen sensor AfGcHK abolishes bacterial signal transduction. J Biol Chem 2020; 295:1587-1597. [PMID: 31914416 PMCID: PMC7008379 DOI: 10.1074/jbc.ra119.011574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
The heme-based oxygen sensor protein AfGcHK is a globin-coupled histidine kinase in the soil bacterium Anaeromyxobacter sp. Fw109-5. Its C-terminal functional domain exhibits autophosphorylation activity induced by oxygen binding to the heme-Fe(II) complex located in the oxygen-sensing N-terminal globin domain. A detailed understanding of the signal transduction mechanisms in heme-containing sensor proteins remains elusive. Here, we investigated the role of the globin domain's dimerization interface in signal transduction in AfGcHK. We present a crystal structure of a monomeric imidazole-bound AfGcHK globin domain at 1.8 Å resolution, revealing that the helices of the WT globin dimer are under tension and suggesting that Tyr-15 plays a role in both this tension and the globin domain's dimerization. Biophysical experiments revealed that whereas the isolated WT globin domain is dimeric in solution, the Y15A and Y15G variants in which Tyr-15 is replaced with Ala or Gly, respectively, are monomeric. Additionally, we found that although the dimerization of the full-length protein is preserved via the kinase domain dimerization interface in all variants, full-length AfGcHK variants bearing the Y15A or Y15G substitutions lack enzymatic activity. The combined structural and biophysical results presented here indicate that Tyr-15 plays a key role in the dimerization of the globin domain of AfGcHK and that globin domain dimerization is essential for internal signal transduction and autophosphorylation in this protein. These findings provide critical insights into the signal transduction mechanism of the histidine kinase AfGcHK from Anaeromyxobacter.
Collapse
Affiliation(s)
- Tereza Skalova
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, Vestec, 252 50 Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Jan Dohnalek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, Vestec, 252 50 Czech Republic
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Peter Mihalcin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, Vestec, 252 50 Czech Republic; FNSPE, Czech Technical University in Prague, Brehova 7, Prague 1, 115 19 Czech Republic
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Jan Blaha
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic.
| |
Collapse
|
17
|
Kinoshita-Kikuta E, Kusamoto H, Ono S, Akayama K, Eguchi Y, Igarashi M, Okajima T, Utsumi R, Kinoshita E, Koike T. Quantitative monitoring of His and Asp phosphorylation in a bacterial signaling system by using Phos-tag Magenta/Cyan fluorescent dyes. Electrophoresis 2019; 40:3005-3013. [PMID: 31495938 DOI: 10.1002/elps.201900261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
Abstract
In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status. Here, we show that the Phos-tag dye technology is suitable for the fluorescent detection of His- and Asp-phosphorylated proteins separated by SDS-PAGE. The dynamics of the His-Asp phosphorelay of recombinant EnvZ-OmpR, a TCS derived from Escherichia coli, were examined by SDS-PAGE followed by simple rapid staining with Phos-tag Magenta fluorescent dye. The technique permitted not only the quantitative monitoring of the autophosphorylation reactions of EnvZ and OmpR in the presence of adenosine triphosphate (ATP) or acetyl phosphate, respectively, but also that of the phosphotransfer reaction from EnvZ to OmpR, which occurs within 1 min in the presence of ATP. Furthermore, we demonstrate profiling of waldiomycin, an HK inhibitor, by using the Phos-tag Cyan gel staining. We believe that the Phos-tag dye technology provides a simple and convenient fluorometric approach for screening of HK inhibitors that have potential as new antimicrobial agents.
Collapse
Affiliation(s)
- Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kusamoto
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Syogo Ono
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Akayama
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | | | - Toshihide Okajima
- Department of Biomolecular Science and Reaction, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryutaro Utsumi
- Department of Biomolecular Science and Reaction, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Rivera S, Young PG, Hoffer ED, Vansuch GE, Metzler CL, Dunham CM, Weinert EE. Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled Sensors. Inorg Chem 2018; 57:14386-14395. [PMID: 30378421 DOI: 10.1021/acs.inorgchem.8b02584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to respond to external stimuli, bacteria have evolved sensor proteins linking external signals to intracellular outputs that can then regulate downstream pathways and phenotypes. Globin coupled sensor proteins (GCSs) serve to link environmental O2 levels to cellular processes by coupling a heme-containing sensor globin domain to a catalytic output domain. However, the mechanism by which O2 binding activates these proteins is currently unknown. To provide insights into the signaling mechanism, two distinct dimeric complexes of the isolated globin domain of the GCS from Bordetella pertussis ( BpeGlobin) were solved via X-ray crystallography in which differences in ligand-bound states were observed. Both monomers of one dimer contain Fe(II)-O2 states, while the other dimer consists of the Fe(III)-H2O and Fe(II)-O2 states. These data provide the first molecular insights into the heme pocket conformation of the active Fe(II)-O2 form of these enzymes. In addition, heme distortion modes and heme-protein interactions were found to correlate with the ligation state of the globin, suggesting that these conformational changes play a role in O2-dependent signaling. Fourier transform infrared spectroscopy (FTIR) of the full-length GCS from B. pertussis ( BpeGReg) and the closely related GCS from Pectobacterium carotovorum ssp. carotovorum ( PccGCS) confirmed the importance of an ordered water within the heme pocket and two distal residues (Tyr43 and Ser68) as hydrogen-bond donors. Taken together, this work provides mechanistic insights into BpeGReg O2 sensing and the signaling mechanisms of diguanylate cyclase-containing GCS proteins.
Collapse
Affiliation(s)
- Shannon Rivera
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Paul G Young
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Eric D Hoffer
- Department of Biochemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Gregory E Vansuch
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Carmen L Metzler
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Christine M Dunham
- Department of Biochemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Emily E Weinert
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
19
|
Bretl DJ, Ladd KM, Atkinson SN, Müller S, Kirby JR. Suppressor mutations reveal an NtrC-like response regulator, NmpR, for modulation of Type-IV Pili-dependent motility in Myxococcus xanthus. PLoS Genet 2018; 14:e1007714. [PMID: 30346960 PMCID: PMC6211767 DOI: 10.1371/journal.pgen.1007714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/01/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
Two-component signaling systems (TCS) regulate bacterial responses to environmental signals through the process of protein phosphorylation. Specifically, sensor histidine kinases (SK) recognize signals and propagate the response via phosphorylation of a cognate response regulator (RR) that functions to initiate transcription of specific genes. Signaling within a single TCS is remarkably specific and cross-talk between TCS is limited. However, regulation of the flow of information through complex signaling networks that include closely related TCS remains largely unknown. Additionally, many bacteria utilize multi-component signaling networks which provide additional genetic and biochemical interactions that must be regulated for signaling fidelity, input and output specificity, and phosphorylation kinetics. Here we describe the characterization of an NtrC-like RR that participates in regulation of Type-IV pilus-dependent motility of Myxococcus xanthus and is thus named NmpR, NtrC Modulator of Pili Regulator. A complex multi-component signaling system including NmpR was revealed by suppressor mutations that restored motility to cells lacking PilR, an evolutionarily conserved RR required for expression of pilA encoding the major Type-IV pilus monomer found in many bacterial species. The system contains at least four signaling proteins: a SK with a protoglobin sensor domain (NmpU), a hybrid SK (NmpS), a phospho-sink protein (NmpT), and an NtrC-like RR (NmpR). We demonstrate that ΔpilR bypass suppressor mutations affect regulation of the NmpRSTU multi-component system, such that NmpR activation is capable of restoring expression of pilA in the absence of PilR. Our findings indicate that pilus gene expression in M. xanthus is regulated by an extended network of TCS which interact to refine control of pilus function.
Collapse
Affiliation(s)
- Daniel J. Bretl
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kayla M. Ladd
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Bioinformatics, University of Iowa, Iowa City, Iowa, United States of America
| | - Susanne Müller
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
20
|
Tsutsui Y, Kobayashi K, Takeuchi F, Tsubaki M, Kozawa T. Reaction Intermediates of Nitric Oxide Synthase from Deinococcus radiodurans as Revealed by Pulse Radiolysis: Evidence for Intramolecular Electron Transfer from Biopterin to Fe II-O 2 Complex. Biochemistry 2018; 57:1611-1619. [PMID: 29320163 DOI: 10.1021/acs.biochem.7b00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide synthase (NOS) is a cytochrome P450-type mono-oxygenase that catalyzes the oxidation of l-arginine (Arg) to nitric oxide (NO) through a reaction intermediate N-hydroxy-l-arginine (NHA). The mechanism underlying the reaction catalyzed by NOS from Deinococcus radiodurans was investigated using pulse radiolysis. Radiolytically generated hydrated electrons reduced the heme iron of NOS within 2 μs. Subsequently, ferrous heme reacted with O2 to form a ferrous-dioxygen intermediate with a second-order rate constant of 2.8 × 108 M-1 s-1. In the tetrahydrofolate (H4F)-bound enzyme, the ferrous-dioxygen intermediate was found to decay an another intermediate with a first-order rate constant of 2.2 × 103 s-1. The spectrum of the intermediate featured an absorption maximum at 440 nm and an absorption minimum at 390 nm. In the absence of H4F, this step did not proceed, suggesting that H4F was reduced with the ferrous-dioxygen intermediate to form a second intermediate. The intermediate further converted to the original ferric form with a first-order rate constant of 4 s-1. A similar intermediate could be detected after pulse radiolysis in the presence of NHA, although the intermediate decayed more slowly (0.5 s-1). These data suggested that a common catalytically active intermediate involved in the substrate oxidation of both Arg and NHA may be formed during catalysis. In addition, we investigated the solvent isotope effects on the kinetics of the intermediate after pulse radiolysis. Our experiments revealed dramatic kinetic solvent isotope effects on the conversion of the intermediate to the ferric form, of 10.5 and 2.5 for Arg and NHA, respectively, whereas the faster phases were not affected. These data suggest that the proton transfer in DrNOS is the rate-limiting reaction of the intermediate with the substrates.
Collapse
Affiliation(s)
- Yuko Tsutsui
- The Institute of Scientific and Industrial Research , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Fusako Takeuchi
- Institute for Promotion of Higher Education , Kobe University , 1-2-1 Tsurukabuto , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| | - Motonari Tsubaki
- Graduate School of Science, Department of Chemistry , Kobe University , 1-1 Rokkodai-cho , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| |
Collapse
|
21
|
Stranava M, Man P, Skálová T, Kolenko P, Blaha J, Fojtikova V, Martínek V, Dohnálek J, Lengalova A, Rosůlek M, Shimizu T, Martínková M. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction. J Biol Chem 2017; 292:20921-20935. [PMID: 29092908 DOI: 10.1074/jbc.m117.817023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
The heme-based oxygen sensor histidine kinase AfGcHK is part of a two-component signal transduction system in bacteria. O2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH- and -CN- complexes of AfGcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN- and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length AfGcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of AfGcHK. We conclude that AfGcHK functions as an ensemble of molecules sampling at least two conformational states.
Collapse
Affiliation(s)
- Martin Stranava
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Petr Man
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.,the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic
| | - Tereza Skálová
- the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and
| | - Petr Kolenko
- the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and.,the Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1, Czech Republic
| | - Jan Blaha
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Veronika Fojtikova
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Václav Martínek
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Jan Dohnálek
- the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and
| | - Alzbeta Lengalova
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Michal Rosůlek
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.,the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic
| | - Toru Shimizu
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic,
| |
Collapse
|
22
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
23
|
Wan X, Saito JA, Newhouse JS, Hou S, Alam M. The importance of conserved amino acids in heme-based globin-coupled diguanylate cyclases. PLoS One 2017; 12:e0182782. [PMID: 28792538 PMCID: PMC5549716 DOI: 10.1371/journal.pone.0182782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/05/2023] Open
Abstract
Globin-coupled diguanylate cyclases contain globin, middle, and diguanylate cyclase domains that sense O2 to synthesize c-di-GMP and regulate bacterial motility, biofilm formation, and virulence. However, relatively few studies have extensively examined the roles of individual residues and domains of globin-coupled diguanylate cyclases, which can shed light on their signaling mechanisms and provide drug targets. Here, we report the critical residues of two globin-coupled diguanylate cyclases, EcGReg from Escherichia coli and BpeGReg from Bordetella pertussis, and show that their diguanylate cyclase activity requires an intact globin domain. In the distal heme pocket of the globin domain, residues Phe42, Tyr43, Ala68 (EcGReg)/Ser68 (BpeGReg), and Met69 are required to maintain full diguanylate cyclase activity. The highly conserved amino acids His223/His225 and Lys224/Lys226 in the middle domain of EcGReg/BpeGReg are essential to diguanylate cyclase activity. We also identified sixteen important residues (Leu300, Arg306, Asp333, Phe337, Lys338, Asn341, Asp342, Asp350, Leu353, Asp368, Arg372, Gly374, Gly375, Asp376, Glu377, and Phe378) in the active site and inhibitory site of the diguanylate cyclase domain of EcGReg. Moreover, BpeGReg266 (residues 1-266) and BpeGReg296 (residues 1-296), which only contain the globin and middle domains, can inhibit bacterial motility. Our findings suggest that the distal residues of the globin domain affect diguanylate cyclase activity and that BpeGReg may interact with other c-di-GMP-metabolizing proteins to form mixed signaling teams.
Collapse
Affiliation(s)
- Xuehua Wan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Jennifer A. Saito
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - James S. Newhouse
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Shaobin Hou
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Maqsudul Alam
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii, United States of America
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, United States of America
| |
Collapse
|
24
|
Abstract
The discovery of the globin-coupled sensor (GCS) family of haem proteins has provided new insights into signalling proteins and pathways by which organisms sense and respond to changing oxygen levels. GCS proteins consist of a sensor globin domain linked to a variety of output domains, suggesting roles in controlling numerous cellular pathways, and behaviours in response to changing oxygen concentration. Members of this family of proteins have been identified in the genomes of numerous organisms and characterization of GCS with output domains, including methyl accepting chemotaxis proteins, kinases, and diguanylate cyclases, have yielded an understanding of the mechanism by which oxygen controls activity of GCS protein output domains, as well as downstream proteins and pathways regulated by GCS signalling. Future studies will expand our understanding of these proteins both in vitro and in vivo, likely demonstrating broad roles for GCS in controlling oxygen-dependent microbial physiology and phenotypes.
Collapse
|
25
|
Abstract
The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.
Collapse
|
26
|
Burns JL, Rivera S, Deer DD, Joynt SC, Dvorak D, Weinert EE. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry 2016; 55:6642-6651. [PMID: 27933792 DOI: 10.1021/acs.biochem.6b00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria sense their environment to alter phenotypes, including biofilm formation, to survive changing conditions. Heme proteins play important roles in sensing the bacterial gaseous environment and controlling the switch between motile and sessile (biofilm) states. Globin coupled sensors (GCS), a family of heme proteins consisting of a globin domain linked by a central domain to an output domain, are often found with diguanylate cyclase output domains that synthesize c-di-GMP, a major regulator of biofilm formation. Characterization of diguanylate cyclase-containing GCS proteins from Bordetella pertussis and Pectobacterium carotovorum demonstrated that cyclase activity is controlled by ligand binding to the heme within the globin domain. Both O2 binding to the heme within the globin domain and c-di-GMP binding to a product-binding inhibitory site (I-site) within the cyclase domain control oligomerization states of the enzymes. Changes in oligomerization state caused by c-di-GMP binding to the I-site also affect O2 kinetics within the globin domain, suggesting that shifting the oligomer equilibrium leads to broad rearrangements throughout the protein. In addition, mutations within the I-site that eliminate product inhibition result in changes to the accessible oligomerization states and decreased catalytic activity. These studies provide insight into the mechanism by which ligand binding to the heme and I-site controls activity of GCS proteins and suggests a role for oligomerization-dependent activity in vivo.
Collapse
Affiliation(s)
- Justin L Burns
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Shannon Rivera
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - D Douglas Deer
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Shawnna C Joynt
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - David Dvorak
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Emily E Weinert
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| |
Collapse
|
27
|
Rivera S, Burns JL, Vansuch GE, Chica B, Weinert EE. Globin domain interactions control heme pocket conformation and oligomerization of globin coupled sensors. J Inorg Biochem 2016; 164:70-76. [PMID: 27614715 DOI: 10.1016/j.jinorgbio.2016.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022]
Abstract
Globin coupled sensors (GCS) are O2-sensing proteins used by bacteria to monitor the surrounding gaseous environment. To investigate the biphasic O2 dissociation kinetics observed for full-length GCS proteins, isolated globin domains from Pectobacterium carotovorum ssp. carotovorum (PccGlobin), and Bordetella pertussis (BpeGlobin), have been characterized. PccGlobin is found to be dimeric, while BpeGlobin is monomeric, indicating key differences in the globin domain dimer interface. Through characterization of wild type globin domains and globin variants with mutations at the dimer interface and within the distal pocket, dimerization of the globin domain is demonstrated to correlate with biphasic dissociation kinetics. Furthermore, a distal pocket tyrosine is identified as the primary hydrogen bond donor, while a secondary hydrogen bond donor within the distal heme pocket is involved in conformation(s) that lead to the second O2 dissociation rate. These findings highlight the role of the globin dimer interface in controlling properties of both the heme pocket and full-length GCS proteins.
Collapse
Affiliation(s)
- Shannon Rivera
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Justin L Burns
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Gregory E Vansuch
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Bryant Chica
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Emily E Weinert
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA.
| |
Collapse
|
28
|
An O2-sensing stressosome from a Gram-negative bacterium. Nat Commun 2016; 7:12381. [PMID: 27488264 PMCID: PMC4976288 DOI: 10.1038/ncomms12381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species.
Collapse
|
29
|
Kobayashi K, Nakagaki M, Ishikawa H, Iwai K, O’Brian MR, Ishimori K. Redox-Dependent Dynamics in Heme-Bound Bacterial Iron Response Regulator (Irr) Protein. Biochemistry 2016; 55:4047-54. [DOI: 10.1021/acs.biochem.6b00512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuo Kobayashi
- The
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| | - Megumi Nakagaki
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Haruto Ishikawa
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiro Iwai
- Molecular
and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8561, Japan
| | - Mark R. O’Brian
- Department
of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York 14214, United States
| | - Koichiro Ishimori
- Department
of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
30
|
Fojtikova V, Bartosova M, Man P, Stranava M, Shimizu T, Martinkova M. Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK. Biometals 2016; 29:715-29. [PMID: 27395436 DOI: 10.1007/s10534-016-9947-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022]
Abstract
AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)-SH heme complex was quickly converted into Fe(II) and Fe(II)-O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)-SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)-OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.
Collapse
Affiliation(s)
- Veronika Fojtikova
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Martina Bartosova
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic.,Biotechnology and Biomedicine Centre (BioCeV), Institute of Microbiology of the Czech Academy of Science, v.v.i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic.
| |
Collapse
|
31
|
Stranava M, Martínek V, Man P, Fojtikova V, Kavan D, Vaněk O, Shimizu T, Martinkova M. Structural characterization of the heme-based oxygen sensor, AfGcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system. Proteins 2016; 84:1375-89. [PMID: 27273553 DOI: 10.1002/prot.25083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 01/11/2023]
Abstract
The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109-5 forms a two-component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N-terminal sensor domain causes the C-terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX-MS studies on the AfGcHK:RR complex also showed that the N-side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the β-strand B2 area of the RR protein's Rec1 domain, and that the C-side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and β-strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375-1389. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin Stranava
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.,Department of Chemical Education, Faculty of Science, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Petr Man
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.,Laboratory of Structure Biology and Cell Signalling, BioCeV - Institute of Microbiology, Czech Academy of Sciences, V.V.I, Prumyslova 595, Vestec, Czech Republic
| | - Veronika Fojtikova
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.,Laboratory of Structure Biology and Cell Signalling, BioCeV - Institute of Microbiology, Czech Academy of Sciences, V.V.I, Prumyslova 595, Vestec, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry, Charles University in Prague, Hlavova (Albertov) 2030-8, Prague 2, Czech Republic.
| |
Collapse
|
32
|
Li S, Ma Y, Wei D. Identification of an interaction between EI and a histidine kinase-response regulator hybrid protein in Gluconobacter oxydans. Biochem Biophys Res Commun 2016; 470:331-335. [DOI: 10.1016/j.bbrc.2016.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 11/26/2022]
|
33
|
Fojtikova V, Stranava M, Vos MH, Liebl U, Hranicek J, Kitanishi K, Shimizu T, Martinkova M. Kinetic Analysis of a Globin-Coupled Histidine Kinase, AfGcHK: Effects of the Heme Iron Complex, Response Regulator, and Metal Cations on Autophosphorylation Activity. Biochemistry 2015. [PMID: 26212354 DOI: 10.1021/acs.biochem.5b00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The globin-coupled histidine kinase, AfGcHK, is a part of the two-component signal transduction system from the soil bacterium Anaeromyxobacter sp. Fw109-5. Activation of its sensor domain significantly increases its autophosphorylation activity, which targets the His183 residue of its functional domain. The phosphate group of phosphorylated AfGcHK is then transferred to the cognate response regulator. We investigated the effects of selected variables on the autophosphorylation reaction's kinetics. The kcat values of the heme Fe(III)-OH(-), Fe(III)-cyanide, Fe(III)-imidazole, and Fe(II)-O2 bound active AfGcHK forms were 1.1-1.2 min(-1), and their Km(ATP) values were 18.9-35.4 μM. However, the active form bearing a CO-bound Fe(II) heme had a kcat of 1.0 min(-1) but a very high Km(ATP) value of 357 μM, suggesting that its active site structure differs strongly from the other active forms. The Fe(II) heme-bound inactive form had kcat and Km(ATP) values of 0.4 min(-1) and 78 μM, respectively, suggesting that its low activity reflects a low affinity for ATP relative to that of the Fe(III) form. The heme-free form exhibited low activity, with kcat and Km(ATP) values of 0.3 min(-1) and 33.6 μM, respectively, suggesting that the heme iron complex is essential for high catalytic activity. Overall, our results indicate that the coordination and oxidation state of the sensor domain heme iron profoundly affect the enzyme's catalytic activity because they modulate its ATP binding affinity and thus change its kcat/Km(ATP) value. The effects of the response regulator and different divalent metal cations on the autophosphorylation reaction are also discussed.
Collapse
Affiliation(s)
| | | | - Marten H Vos
- §Laboratoire d'Optique et Biosciences, INSERM U1182-CNRS UMR7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- §Laboratoire d'Optique et Biosciences, INSERM U1182-CNRS UMR7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
34
|
Yan F, Fojtikova V, Man P, Stranava M, Martínková M, Du Y, Huang D, Shimizu T. Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure. Biometals 2015; 28:637-52. [PMID: 25804428 DOI: 10.1007/s10534-015-9847-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/13/2015] [Indexed: 02/05/2023]
Abstract
EcDOS is a heme-based O2-sensing phosphodiesterase in which O2 binding to the heme iron complex in the N-terminal domain substantially enhances catalysis toward cyclic-di-GMP, which occurs in the C-terminal domain. Here, we found that hydrogen sulfide enhances the catalytic activity of full-length EcDOS, possibly owing to the admixture of 6-coordinated heme Fe(III)-SH(-) and Fe(II)-O2 complexes generated during the reaction. Alanine substitution at Met95, the axial ligand for the heme Fe(II) complex, converted the heme Fe(III) complex into the heme Fe(III)-SH(-) complex, but the addition of Na2S did not further reduce it to the heme Fe(II) complex of the Met95Ala mutant, and no subsequent formation of the heme Fe(II)-O2 complex was observed. In contrast, a Met95His mutant formed a stable heme Fe(II)-O2 complex in response to the same treatment. An Arg97Glu mutant, containing a glutamate substitution at the amino acid that interacts with O2 in the heme Fe(II)-O2 complex, formed a stable heme Fe(II) complex in response to Na2S, but this complex failed to bind O2. Interestingly, the addition of Na2S promoted formation of verdoheme (oxygen-incorporated, modified protoporphyrin IX) in an Arg97Ile mutant. Catalytic enhancement by Na2S was similar for Met95 mutants and the wild type, but significantly lower for the Arg97 mutants. Thus, this study shows the first isolation of spectrometrically separated, stable heme Fe(III)-SH(-), heme Fe(II) and heme Fe(II)-O2 complexes of full-length EcDOS with Na2S, and confirms that external-ligand-bound, 6-coordinated heme Fe(III)-SH(-) or heme Fe(II)-O2 complexes critically contribute to the Na2S-induced catalytic enhancement of EcDOS.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
36
|
Burns JL, Deer DD, Weinert EE. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors. MOLECULAR BIOSYSTEMS 2015; 10:2823-6. [PMID: 25174604 DOI: 10.1039/c4mb00366g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial biofilm formation is regulated by enzymes, such as diguanylate cyclases, that respond to environmental signals and alter c-di-GMP levels. Diguanylate cyclase activity of two globin coupled sensors is shown to be regulated by gaseous ligands, with cyclase activity and O2 dissociation affected by protein oligomeric state.
Collapse
Affiliation(s)
- Justin L Burns
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
37
|
Pavlou A, Martínková M, Shimizu T, Kitanishi K, Stranava M, Loullis A, Pinakoulaki E. Probing the ligand recognition and discrimination environment of the globin-coupled oxygen sensor protein YddV by FTIR and time-resolved step-scan FTIR spectroscopy. Phys Chem Chem Phys 2015; 17:17007-15. [DOI: 10.1039/c5cp01708d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present time-resolved step-scan FTIR evidence for the role of the distal Y43 and L65 residues in controlling the ligand dynamics in the signal transducer protein YddV.
Collapse
Affiliation(s)
- Andrea Pavlou
- Department of Chemistry
- University of Cyprus
- 1678 Nicosia
- Cyprus
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Kenichi Kitanishi
- Department of Biochemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Martin Stranava
- Department of Biochemistry
- Faculty of Science
- Charles University in Prague
- 128 43 Prague 2
- Czech Republic
| | - Andreas Loullis
- Department of Chemistry
- University of Cyprus
- 1678 Nicosia
- Cyprus
| | | |
Collapse
|
38
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
39
|
Roy J, Sen Santara S, Bose M, Mukherjee S, Saha R, Adak S. The ferrous–dioxy complex of Leishmania major globin coupled heme containing adenylate cyclase: The role of proximal histidine on its stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:615-22. [DOI: 10.1016/j.bbapap.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
40
|
Du Y, Liu G, Yan Y, Huang D, Luo W, Martinkova M, Man P, Shimizu T. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS). Biometals 2013; 26:839-52. [PMID: 23736976 DOI: 10.1007/s10534-013-9640-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/27/2013] [Indexed: 02/05/2023]
Abstract
The heme-based oxygen-sensor phosphodiesterase from Escherichia coli (Ec DOS), is composed of an N-terminal heme-bound oxygen sensing domain and a C-terminal catalytic domain. Oxygen (O2) binding to the heme Fe(II) complex in Ec DOS substantially enhances catalysis. Addition of hydrogen sulfide (H2S) to the heme Fe(III) complex in Ec DOS also remarkably stimulates catalysis in part due to the heme Fe(III)-SH and heme Fe(II)-O2 complexes formed by H2S. In this study, we examined the roles of the heme distal amino acids, M95 (the axial ligand of the heme Fe(II) complex) and R97 (the O2 binding site in the heme Fe(II)-O2 complex) of the isolated heme-binding domain of Ec DOS (Ec DOS-PAS) in the binding of H2S under aerobic conditions. Interestingly, R97A and R97I mutant proteins formed an oxygen-incorporated modified heme, verdoheme, following addition of H2S combined with H2O2 generated by the reactions. Time-dependent mass spectroscopic data corroborated the findings. In contrast, H2S did not interact with the heme Fe(III) complex of M95H and R97E mutants. Thus, M95 and/or R97 on the heme distal side in Ec DOS-PAS significantly contribute to the interaction of H2S with the Fe(III) heme complex and also to the modification of the heme Fe(III) complex with reactive oxygen species. Importantly, mutations of the O2 binding site of the heme protein converted its function from oxygen sensor to that of a heme oxygenase. This study establishes the novel role of H2S in modifying the heme iron complex to form verdoheme with the aid of reactive oxygen species.
Collapse
Affiliation(s)
- Yongming Du
- Department of Cell Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Martínková M, Kitanishi K, Shimizu T. Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis. J Biol Chem 2013; 288:27702-11. [PMID: 23928310 DOI: 10.1074/jbc.r113.473249] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An emerging class of novel heme-based oxygen sensors containing a globin fold binds and senses environmental O2 via a heme iron complex. Structure-function relationships of oxygen sensors containing a heme-bound globin fold are different from those containing heme-bound PAS and GAF folds. It is thus worth reconsidering from an evolutionary perspective how heme-bound proteins with a globin fold similar to that of hemoglobin and myoglobin could act as O2 sensors. Here, we summarize the molecular mechanisms of heme-based oxygen sensors containing a globin fold in an effort to shed light on the O2-sensing properties and O2-stimulated catalytic enhancement observed for these proteins.
Collapse
Affiliation(s)
- Markéta Martínková
- From the Department of Biochemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | | | | |
Collapse
|
42
|
Molitor B, Stassen M, Modi A, El-Mashtoly SF, Laurich C, Lubitz W, Dawson JH, Rother M, Frankenberg-Dinkel N. A heme-based redox sensor in the methanogenic archaeon Methanosarcina acetivorans. J Biol Chem 2013; 288:18458-72. [PMID: 23661702 PMCID: PMC3689988 DOI: 10.1074/jbc.m113.476267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/08/2013] [Indexed: 11/06/2022] Open
Abstract
Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor).
Collapse
Affiliation(s)
| | - Marc Stassen
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | - Anuja Modi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Samir F. El-Mashtoly
- Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | - Christoph Laurich
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Michael Rother
- Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
- Institute of Microbiology, Technical University Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | | |
Collapse
|
43
|
Shimizu T. The Heme-Based Oxygen-Sensor Phosphodiesterase Ec DOS (DosP): Structure-Function Relationships. BIOSENSORS 2013; 3:211-37. [PMID: 25586128 PMCID: PMC4263535 DOI: 10.3390/bios3020211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 02/05/2023]
Abstract
Escherichia coli Direct Oxygen Sensor (Ec DOS, also known as Ec DosP) is a heme-based O2-sensing phosphodiesterase from Escherichia coli that catalyzes the conversion of cyclic-di-GMP to linear di-GMP. Cyclic-di-GMP is an important second messenger in bacteria, highlighting the importance of understanding structure-function relationships of Ec DOS. Ec DOS is composed of an N-terminal heme-bound O2-sensing PAS domain and a C-terminal phosphodiesterase catalytic domain. Notably, its activity is markedly enhanced by O2 binding to the heme Fe(II) complex in the PAS sensor domain. X-ray crystal structures and spectroscopic and catalytic characterization of the wild-type and mutant proteins have provided important structural and functional clues to understanding the molecular mechanism of intramolecular catalytic regulation by O2 binding. This review summarizes the intriguing findings that have obtained for Ec DOS.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Cell Biology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|