1
|
Zelenka L, Jarek M, Pägelow D, Geffers R, van Vorst K, Fulde M. Crosstalk of Highly Purified Microglia and Astrocytes in the Frame of Toll-like Receptor (TLR)2/1 Activation. Neuroscience 2023; 526:256-266. [PMID: 37391121 DOI: 10.1016/j.neuroscience.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 07/02/2023]
Abstract
The major immune cells of the central nervous systems (CNS) are microglia and astrocytes, subsets of the glial cell population. The crosstalk between glia via soluble signaling molecules plays an indispensable role for neuropathologies, brain development as well as homeostasis. However, the investigation of the microglia-astrocyte crosstalk has been hampered due to the lack of suitable glial isolation methods. In this study, we investigated for the first time the crosstalk between highly purified Toll-like receptor (TLR)2-knock out (TLR2-KO) and wild-type (WT) microglia and astrocytes. We examined the crosstalk of TLR2-KO microglia and astrocytes in the presence of WT supernatants of the respective other glial cell type. Interestingly, we observed a significant TNF release by TLR2-KO astrocytes, which were activated with Pam3CSK4-stimulated WT microglial supernatants, strongly indicating a crosstalk between microglia and astrocytes after TLR2/1 activation. Furthermore, transcriptome analysis using RNA-seq revealed a wide range of significant up- and down-regulated genes such as Cd300, Tnfrsf9 or Lcn2, which might be involved in the molecular conversation between microglia and astrocytes. Finally, co-culturing microglia and astrocytes confirmed the prior results by demonstrating a significant TNF release by WT microglia co-cultured with TLR2-KO astrocytes. Our findings suggest a molecular TLR2/1-dependent conversation between highly pure activated microglia and astrocytes via signaling molecules. Furthermore, we demonstrate the first crosstalk experiments using ∼100% pure microglia and astrocyte mono-/co-cultures derived from mice with different genotypes highlighting the urgent need of efficient glial isolation protocols, which particularly holds true for astrocytes.
Collapse
Affiliation(s)
- Laura Zelenka
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Michael Jarek
- Helmholtz Centre for Infection Research, Research Group Genome Analytics (GMAK), Braunschweig, Germany
| | - Dennis Pägelow
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Research Group Genome Analytics (GMAK), Braunschweig, Germany
| | - Kira van Vorst
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Hey YY, O'Neill TJ, O'Neill HC. A novel myeloid cell in murine spleen defined through gene profiling. J Cell Mol Med 2019; 23:5128-5143. [PMID: 31210415 PMCID: PMC6653018 DOI: 10.1111/jcmm.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
A novel myeloid antigen presenting cell can be generated through in vitro haematopoiesis in long‐term splenic stromal cocultures. The in vivo equivalent subset was recently identified as phenotypically and functionally distinct from the spleen subsets of macrophages, conventional (c) dendritic cells (DC), resident monocytes, inflammatory monocytes and eosinophils. This novel subset which is myeloid on the basis of cell surface phenotype, but dendritic‐like on the basis of cell surface marker expression and antigen presenting function, has been tentatively labelled “L‐DC.” Transcriptome analysis has now been employed to determine the lineage relationship of this cell type with known splenic cDC and monocyte subsets. Principal components analysis showed separation of “L‐DC” and monocytes from cDC subsets in the second principal component. Hierarchical clustering then indicated a close lineage relationship between this novel subset, resident monocytes and inflammatory monocytes. Resident monocytes were the most closely aligned, with no genes specifically expressed by the novel subset. This subset, however, showed upregulation of genes reflecting both dendritic and myeloid lineages, with strong upregulation of several genes, particularly CD300e. While resident monocytes were found to be dependent on Toll‐like receptor signalling for development and were reduced in number in Myd88‐/‐ and Trif‐/‐ mutant mice, both the novel subset and inflammatory monocytes were unaffected. Here, we describe a novel myeloid cell type closely aligned with resident monocytes in terms of lineage but distinct in terms of development and functional capacity.
Collapse
Affiliation(s)
- Ying-Ying Hey
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
| | | | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Vitallé J, Terrén I, Orrantia A, Zenarruzabeitia O, Borrego F. CD300 receptor family in viral infections. Eur J Immunol 2018; 49:364-374. [DOI: 10.1002/eji.201847951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/02/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joana Vitallé
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Iñigo Terrén
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Ane Orrantia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Olatz Zenarruzabeitia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Francisco Borrego
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
- IkerbasqueBasque Foundation for Science Bilbao Bizkaia Spain
- Basque Center for Transfusion and Human Tissues Galdakao Spain
| |
Collapse
|
4
|
Effect of Specific Mutations in Cd300 Complexes Formation; Potential Implication of Cd300f in Multiple Sclerosis. Sci Rep 2017; 7:13544. [PMID: 29051512 PMCID: PMC5648872 DOI: 10.1038/s41598-017-12881-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Herein, we have used bioinformatics tools to predict five clusters defining ligand-binding sites on the extracellular domain of human CD300b receptor, presumably involved in the formation of both homodimers and heterodimers with other CD300 family members. Site-directed mutagenesis revealed residues glutamic acid 28 and glutamine 29 in cluster 5 to be necessary for the formation of CD300b complexes. Surprisingly, the disruption of cluster 2 and 4 reconstituted the binding capability lost by the mutation of residues glutamic acid 28 to alanine, glutamine 29 to alanine (E28A-Q29G). We identified a missense mutation arginine 33 to glutamine (R33Q) in CD300f by direct sequencing of exon 2 in peripheral blood samples from 50 patients with multiple sclerosis (MS). Levels of expression of CD300f were almost undetectable on monocytes from the patient bearing the R33Q mutation compared with healthy individuals. Whereas R33Q mutation had no effect in the formation of CD300f complexes, the inhibition of protein synthesis with cycloheximide indicated that CD300f R33Q is less stable than native CD300f. Finally, we report that the levels of expression of CD300f on the surface of classical and intermediate monocytes from MS patients are significantly lower when compared to the same cell populations in healthy individuals.
Collapse
|
5
|
Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells. mBio 2017; 8:mBio.00031-17. [PMID: 28196955 PMCID: PMC5312078 DOI: 10.1128/mbio.00031-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1), was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO) cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin) were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.IMPORTANCE Vesiviruses, such as San Miguel sea lion virus and feline calicivirus, are typically associated with infection in animal hosts. Following the accidental infection of a laboratory worker with San Miguel sea lion virus, a related virus was isolated in cell culture and named Hom-1. In this study, we found that Hom-1 could be propagated in a number of human cell lines, making it the first calicivirus to replicate efficiently in cultured human cells. Screening of a library of human cell surface membrane proteins showed that the virus could utilize human junctional adhesion molecule 1 as a receptor to enter cells and initiate replication. The Hom-1 virus presents a new system for the study of calicivirus biology and species specificity.
Collapse
|
6
|
Abstract
Noroviruses are the leading cause of acute gastroenteritis around the world. An individual living in the United States is estimated to develop norovirus infection five times in his or her lifetime. Despite this, there is currently no antiviral or vaccine to combat the infection, in large part because of the historical lack of cell culture and small animal models. However, the last few years of norovirus research were marked by a number of ground-breaking advances that have overcome technical barriers and uncovered novel aspects of norovirus biology. Foremost among them was the development of two different
in vitro culture systems for human noroviruses. Underappreciated was the notion that noroviruses infect cells of the immune system as well as epithelial cells within the gastrointestinal tract and that human norovirus infection of enterocytes requires or is promoted by the presence of bile acids. Furthermore, two proteinaceous receptors are now recognized for murine norovirus, marking the first discovery of a functional receptor for any norovirus. Recent work further points to a role for certain bacteria, including those found in the gut microbiome, as potential modulators of norovirus infection in the host, emphasizing the importance of interactions with organisms from other kingdoms of life for viral pathogenesis. Lastly, we will highlight the adaptation of drop-based microfluidics to norovirus research, as this technology has the potential to reveal novel insights into virus evolution. This review aims to summarize these new findings while also including possible future directions.
Collapse
Affiliation(s)
- Eric Bartnicki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Juliana Bragazzi Cunha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
[Discovery of murine norovirus receptor]. Uirusu 2017; 67:111-120. [PMID: 30369535 DOI: 10.2222/jsv.67.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. Since the discovery of human norovirus (HuNoV), an efficient and reproducible norovirus replication system has not been established in cultured cells. Although limited amounts of virus particles can be produced when the HuNoV genome is directly transfected into cells, the HuNoV cycle of infection has not been successfully reproduced in any currently available cell-culture system. Those results imply that the identification of a functional cell-surface receptor for norovirus might be the key to establishing a norovirus culture system. Using a genome-wide CRISPR/Cas9 guide RNA library, we identified murine CD300lf and CD300ld as functional receptors for murine norovirus (MNV). The treatment of susceptible cells with polyclonal antibody against CD300lf significantly reduced the production of viral progeny. Additionally, ectopic CD300lf expression in nonsusceptible cell lines derived from other animal species enabled MNV infection and progeny production, suggesting that CD300lf has potential for dictating MNV host tropism. Furthermore, CD300ld, which has an amino acid sequence in the N-terminal region of its extracellular domain that is highly homologous to that of CD300lf, also functions as a receptor for MNV. Our results indicate that direct interaction of MNV with two cell-surface molecules, CD300lf and CD300ld, dictates permissive noroviral infection.
Collapse
|
8
|
Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc Natl Acad Sci U S A 2016; 113:E6248-E6255. [PMID: 27681626 DOI: 10.1073/pnas.1605575113] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. Since the discovery of human norovirus (HuNoV), an efficient and reproducible norovirus replication system has not been established in cultured cells. Although limited amounts of virus particles can be produced when the HuNoV genome is directly transfected into cells, the HuNoV cycle of infection has not been successfully reproduced in any currently available cell-culture system. Those results imply that the identification of a functional cell-surface receptor for norovirus might be the key to establishing a norovirus culture system. Using a genome-wide CRISPR/Cas9 guide RNA library, we identified murine CD300lf and CD300ld as functional receptors for murine norovirus (MNV). The treatment of susceptible cells with polyclonal antibody against CD300lf significantly reduced the production of viral progeny. Additionally, ectopic CD300lf expression in nonsusceptible cell lines derived from other animal species enabled MNV infection and progeny production, suggesting that CD300lf has potential for dictating MNV host tropism. Furthermore, CD300ld, which has an amino acid sequence in the N-terminal region of its extracellular domain that is highly homologous to that of CD300lf, also functions as a receptor for MNV. Our results indicate that direct interaction of MNV with two cell-surface molecules, CD300lf and CD300ld, dictates permissive noroviral infection.
Collapse
|
9
|
Hey YY, O’Neill HC. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen. PLoS One 2016; 11:e0162358. [PMID: 27654936 PMCID: PMC5031434 DOI: 10.1371/journal.pone.0162358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/22/2016] [Indexed: 12/02/2022] Open
Abstract
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named “L-DC” since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Collapse
Affiliation(s)
- Ying-ying Hey
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Helen C. O’Neill
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
10
|
Peluffo H, Solari-Saquieres P, Negro-Demontel ML, Francos-Quijorna I, Navarro X, López-Vales R, Sayós J, Lago N. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation 2015; 12:145. [PMID: 26259611 PMCID: PMC4531482 DOI: 10.1186/s12974-015-0364-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has recently become evident that activating/inhibitory cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). The immunoreceptor CD300f expressed on monocytes, neutrophils, and mast cells modulates inflammation, phagocytosis, and outcome in models of autoimmune demyelination, allergy, and systemic lupus erythematosus. On the other hand, a finely regulated inflammatory response is essential to induce regeneration after injury to peripheral nerves since hematogenous macrophages, together with resident macrophages and de-differentiated Schwann cells, phagocyte distal axonal and myelin debris in a well-orchestrated inflammatory response. The possible roles and expression of CD300f and its ligands have not been reported under these conditions. METHODS By using quantitative PCR (QPCR) and CD300f-IgG2a fusion protein, we show the expression of CD300f and its ligands in the normal and crush injured sciatic nerve. The putative role of CD300f in peripheral nerve regeneration was analyzed by blocking receptor-ligand interaction with the same CD300f-IgG2a soluble receptor fusion protein in sciatic nerves of Thy1-YFP-H mice injected at the time of injury. Macrophage M1/M2 polarization phenotype was also analyzed by CD206 and iNOS expression. RESULTS We found an upregulation of CD300f mRNA and protein expression after injury. Moreover, the ligands are present in restricted membrane patches of Schwann cells, which remain stable after the lesion. The lesioned sciatic nerves of Thy1-YFP-H mice injected with a single dose of CD300f-IgG2a show long lasting effects on nerve regeneration characterized by a lower number of YFP-positive fibres growing into the tibial nerve after 10 days post lesion (dpl) and a delayed functional recovery when compared to PBS- or IgG2a-administered control groups. Animals treated with CD300f-IgG2a show at 10 dpl higher numbers of macrophages and CD206-positive cells and lower levels of iNOS expression than both control groups. At later time points (28 dpl), increased numbers of macrophages and iNOS expression occur. CONCLUSIONS Taken together, these results show that the pair CD300f ligand is implicated in Wallerian degeneration and nerve regeneration by modulating both the influx and phenotype of macrophages.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay.
| | - Patricia Solari-Saquieres
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - Maria Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - Isaac Francos-Quijorna
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Ruben López-Vales
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
- Neurodegeneration Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay.
| |
Collapse
|
11
|
Niizuma K, Tahara-Hanaoka S, Noguchi E, Shibuya A. Identification and Characterization of CD300H, a New Member of the Human CD300 Immunoreceptor Family. J Biol Chem 2015. [PMID: 26221034 DOI: 10.1074/jbc.m115.643361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recruitment of circulating monocytes and neutrophils to infection sites is essential for host defense against infections. Here, we identified a previously unannotated gene that encodes an immunoglobulin-like receptor, designated CD300H, which is located in the CD300 gene cluster. CD300H has a short cytoplasmic tail and associates with the signaling adaptor proteins, DAP12 and DAP10. CD300H is expressed on CD16(+) monocytes and myeloid dendritic cells. Ligation of CD300H on CD16(+) monocytes and myeloid dendritic cells with anti-CD300H monoclonal antibody induced the production of neutrophil chemoattractants. Interestingly, CD300H expression varied among healthy subjects, who could be classified into two groups according to "positive" and "negative" expression. Genomic sequence analysis revealed a single-nucleotide substitution (rs905709 (G → A)) at a splice donor site on intron 1 on either one or both alleles. The International HapMap Project database has demonstrated that homozygosity for the A allele of single nucleotide polymorphism (SNP) rs905709 ("negative" expression) is highly frequent in Han Chinese in Beijing, Japanese in Tokyo, and Europeans (A/A genotype frequencies 0.349, 0.167, and 0.138, respectively) but extremely rare in Sub-Saharan African populations. Together, these results suggest that CD300H may play an important role in innate immunity, at least in populations that carry the G/G or G/A genotype of CD300H.
Collapse
Affiliation(s)
- Kouta Niizuma
- From the Departments of Immunology and the Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoko Tahara-Hanaoka
- From the Departments of Immunology and the Center for Tsukuba Advanced Research Alliance (TARA), the Japan Science and Technology Agency, CREST, and
| | - Emiko Noguchi
- Medical Genetics, Faculty of Medicine, the Japan Science and Technology Agency, CREST, and
| | - Akira Shibuya
- From the Departments of Immunology and the Center for Tsukuba Advanced Research Alliance (TARA), the Japan Science and Technology Agency, CREST, and
| |
Collapse
|
12
|
Simhadri VR, Mariano JL, Gil-Krzewska A, Zhou Q, Borrego F. CD300c is an activating receptor expressed on human monocytes. J Innate Immun 2013; 5:389-400. [PMID: 23571507 DOI: 10.1159/000350523] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/07/2013] [Indexed: 12/13/2022] Open
Abstract
Human CD300 molecules comprise a family of receptors that regulate many immune cell processes. They are mostly expressed on myeloid cells, although expression of two members, CD300a and CD300c, has also been described on lymphocytes. However, due to the lack of specific antibodies that distinguish between these two receptors, it has been difficult to determine the expression pattern and function of CD300a and CD300c in primary cells. Here, we have identified a specific monoclonal antibody, clone TX45, that recognizes only CD300c and show that within freshly isolated blood leukocytes, monocytes are the only cells that express CD300c on the cell surface. In vitro differentiation experiments revealed that CD300c is differentially expressed on different monocyte-derived cells, including macrophages and dendritic cells. Furthermore, TLR ligands LPS and flagellin dynamically regulate the expression of CD300c. Cross-linking of this receptor with clone TX45 monoclonal antibody induced calcium mobilization, upregulation of the costimulatory molecule CD86 and the production of inflammatory cytokines. Importantly, LPS-mediated production of inflammatory cytokines by monocytes was further enhanced if CD300c was simultaneously engaged by the agonist antibody. Altogether, our results show that human CD300c is an activating receptor expressed on monocytes and that it has a potential role in inflammatory responses.
Collapse
Affiliation(s)
- Venkateswara R Simhadri
- Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
13
|
Takahashi M, Izawa K, Kashiwakura JI, Yamanishi Y, Enomoto Y, Kaitani A, Maehara A, Isobe M, Ito S, Matsukawa T, Nakahara F, Oki T, Kajikawa M, Ra C, Okayama Y, Kitamura T, Kitaura J. Human CD300C delivers an Fc receptor-γ-dependent activating signal in mast cells and monocytes and differs from CD300A in ligand recognition. J Biol Chem 2013; 288:7662-7675. [PMID: 23372157 DOI: 10.1074/jbc.m112.434746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD300C is highly homologous with an inhibitory receptor CD300A in an immunoglobulin-like domain among the human CD300 family of paired immune receptors. To clarify the precise expression and function of CD300C, we generated antibodies discriminating between CD300A and CD300C, which recognized a unique epitope involving amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Notably, CD300C was highly expressed in human monocytes and mast cells. Cross-linking of CD300C by its specific antibody caused cytokine/chemokine production of human monocytes and mast cells. Fc receptor γ was indispensable for both efficient surface expression and activating functions of CD300C. To identify a ligand for CD300A or CD300C, we used reporter cell lines expressing a chimera receptor harboring extracellular CD300A or CD300C and intracellular CD3ζ, in which its unknown ligand induced GFP expression. Our results indicated that phosphatidylethanolamine (PE) among the lipids tested and apoptotic cells were possible ligands for both CD300C and CD300A. PE and apoptotic cells more strongly induced GFP expression in the reporter cells through binding to extracellular CD300A as compared with CD300C. Differential recognition of PE by extracellular CD300A and CD300C depended on different amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Interestingly, GFP expression induced by extracellular CD300C-PE binding in the reporter cells was dampened by co-expression of full-length CD300A, indicating the predominance of CD300A over CD300C in PE recognition/signaling. PE consistently failed to stimulate cytokine production in monocytes expressing CD300C with CD300A. In conclusion, specific engagement of CD300C led to Fc receptor γ-dependent activation of mast cells and monocytes.
Collapse
Affiliation(s)
- Mariko Takahashi
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kumi Izawa
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jun-Ichi Kashiwakura
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, Tokyo 173-8610, Japan; Research Unit for Allergy, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayako Kaitani
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akie Maehara
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masamichi Isobe
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinichi Ito
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Matsukawa
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masunori Kajikawa
- ACTGen Inc., 15-502, Akaho, Komagane-shi, Nagano-ken, 399-4117, Japan
| | - Chisei Ra
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, Tokyo 173-8610, Japan
| | - Yoshimichi Okayama
- Department of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, Tokyo 173-8610, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Jiro Kitaura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
14
|
Abstract
The CD300 family of molecules modulates a broad and diverse array of immune cell processes via their paired activating and inhibitory receptor functions. The description that CD300 molecules are able to recognize lipids, such as extracellular ceramide, phosphatidylserine, and phosphatidylethanolamine, that are exposed on the outer leaflet of the plasma membrane of dead and activated cells has opened a new field of research. Through their binding to lipids and other ligands, this family of receptors is poised to have a significant role in complex biological processes and in the host response to severe pathological conditions. Indeed, published data have demonstrated their participation in the pathogenesis of several disease states. Moreover, this family of receptors has great potential as targets for diagnosis and therapeutic purposes in infectious diseases, allergies, cancer, and other pathological situations. For instance, one member of the family, CD300a, has been studied as a possible biomarker. Here, a review is provided on the cellular distribution of the human and mouse families of receptors, the stimuli that regulate their expression, their ability to tune leukocyte function and immune responses, their signaling pathways, ligand recognition, and their clinical relevance.
Collapse
|
15
|
CD300 molecule regulation of human dendritic cell functions. Immunol Lett 2012; 149:93-100. [PMID: 23072861 DOI: 10.1016/j.imlet.2012.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/24/2022]
Abstract
Dendritic cells (DC) are a heterogeneous population of leucocytes which play a key role in initiating and modulating immune responses. The human CD300 family consists of six immunoregulatory leucocyte membrane molecules that regulate cellular activity including differentiation, viability, cytokine and chemokine secretion, phagocytosis and chemotaxis. Recent work has identified polar lipids as probable ligands for these molecules in keeping with the known evolutionary conservation of this family. CD300 molecules are all expressed by DC; CD300b, d, e and f are restricted to different subpopulations of the myeloid DC lineage. They have been shown to regulate DC function both in vitro and in vivo. In addition DC are able to regulate their CD300 expression in an autocrine manner. The potential to form different CD300 heterodimers adds further complexity to their role in fine tuning DC function. Expression of CD300 molecules is altered in a number of diseases including many where DC are implicated in the pathogenesis. CD300 antibodies have been demonstrated to have significant therapeutic effect in animal models. The mechanisms underlying the immunoregulatory effects of the CD300 family are complex. Deciphering their physiology will allow effective targeting of these molecules as novel therapies in a wide variety of inflammatory diseases.
Collapse
|
16
|
Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F. Novel identified receptors on mast cells. Front Immunol 2012; 3:238. [PMID: 22876248 PMCID: PMC3410575 DOI: 10.3389/fimmu.2012.00238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022] Open
Abstract
Mast cells (MC) are major participants in the allergic reaction. In addition they possess immunomodulatory roles in the innate and adaptive immune reactions. Their functions are modulated through a number of activating and inhibitory receptors expressed on their surface. This review deals with some of the most recently described receptors, their expression patterns, ligand(s), signal transduction mechanisms, possible cross-talk with other receptors and, last but not least, regulatory functions that the MC can perform based on their receptor expression in health or in disease. Where the receptor role on MC is still not clear, evidences from other hematopoietic cells expressing them is provided as a possible insight for their function on MC. Suggested strategies to modulate these receptors’ activity for the purpose of therapeutic intervention are also discussed.
Collapse
Affiliation(s)
- Helena Migalovich-Sheikhet
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | |
Collapse
|