1
|
Li Z, Wang Y, Zhao X, Meng Q, Ma G, Xie L, Jiang X, Liu Y, Huang D. Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions. Biotechnol Adv 2025; 79:108514. [PMID: 39755221 DOI: 10.1016/j.biotechadv.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.
Collapse
Affiliation(s)
- Ziyu Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Yujie Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Xiaojing Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Qing Meng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Guozhen Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lijie Xie
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China.
| |
Collapse
|
2
|
Bao Z, Gao Y, Song Y, Ding N, Li W, Wu Q, Zhang X, Zheng Y, Li J, Hu X. Construction of an Escherichia coli chassis for efficient biosynthesis of human-like N-linked glycoproteins. Front Bioeng Biotechnol 2024; 12:1370685. [PMID: 38572355 PMCID: PMC10987854 DOI: 10.3389/fbioe.2024.1370685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-β-1,4-GlcNAc-β-1,3-Gal-β-1,3-GlcNAc-, containing the human glycoform Gal-β-1,4-GlcNAc-β-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal α-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (α-2,3/α-2,6/α-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.
Collapse
Affiliation(s)
- Zixin Bao
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yuting Gao
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yitong Song
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Ning Ding
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| | - Wei Li
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Qiong Wu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Xiaomei Zhang
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yang Zheng
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Junming Li
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Xuejun Hu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
- Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian, China
| |
Collapse
|
3
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
4
|
Aquino AK, Manzer ZA, Daniel S, DeLisa MP. Glycosylation-on-a-Chip: A Flow-Based Microfluidic System for Cell-Free Glycoprotein Biosynthesis. Front Mol Biosci 2022; 8:782905. [PMID: 35004852 PMCID: PMC8733600 DOI: 10.3389/fmolb.2021.782905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, cell-free synthetic glycobiology technologies have emerged that enable production and remodeling of glycoproteins outside the confines of the cell. However, many of these systems combine multiple synthesis steps into one pot where there can be competing reactions and side products that ultimately lead to low yield of the desired product. In this work, we describe a microfluidic platform that integrates cell-free protein synthesis, glycosylation, and purification of a model glycoprotein in separate compartments where each step can be individually optimized. Microfluidics offer advantages such as reaction compartmentalization, tunable residence time, the ability to tether enzymes for reuse, and the potential for continuous manufacturing. Moreover, it affords an opportunity for spatiotemporal control of glycosylation reactions that is difficult to achieve with existing cell-based and cell-free glycosylation systems. In this work, we demonstrate a flow-based glycoprotein synthesis system that promotes enhanced cell-free protein synthesis, efficient protein glycosylation with an immobilized oligosaccharyltransferase, and enrichment of the protein product from cell-free lysate. Overall, this work represents a first-in-kind glycosylation-on-a-chip prototype that could find use as a laboratory tool for mechanistic dissection of the protein glycosylation process as well as a biomanufacturing platform for small batch, decentralized glycoprotein production.
Collapse
Affiliation(s)
- Alicia K Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Zachary A Manzer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States.,Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Hershewe J, Kightlinger W, Jewett MC. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J Ind Microbiol Biotechnol 2020; 47:977-991. [PMID: 33090335 PMCID: PMC7578589 DOI: 10.1007/s10295-020-02321-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar moieties, plays critical roles in cellular function, human health, and biotechnology. However, studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein synthesis systems, in which protein synthesis and glycosylation are performed in crude cell extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems with natural and synthetic N-linked glycosylation pathways. We discuss existing challenges and future opportunities in the use of cell-free systems for the design, manufacture, and study of glycoprotein biomedicines.
Collapse
Affiliation(s)
- Jasmine Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, IL, 60611-3068, USA. .,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL, 60611-2875, USA.
| |
Collapse
|
6
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Zhu J, Ruan Y, Fu X, Zhang L, Ge G, Wall JG, Zou T, Zheng Y, Ding N, Hu X. An Engineered Pathway for Production of Terminally Sialylated N-glycoproteins in the Periplasm of Escherichia coli. Front Bioeng Biotechnol 2020; 8:313. [PMID: 32351949 PMCID: PMC7174548 DOI: 10.3389/fbioe.2020.00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Terminally sialylated N-glycoproteins are of great interest in therapeutic applications. Due to the inability of prokaryotes to carry out this post-translational modification, they are currently predominantly produced in eukaryotic host cells. In this study, we report a synthetic pathway to produce a terminally sialylated N-glycoprotein in the periplasm of Escherichia coli, mimicking the sialylated moiety (Neu5Ac-α-2,6-Gal-β-1,4-GlcNAc-) of human glycans. A sialylated pentasaccharide, Neu5Ac-α-2,6-Gal-β-1,4-GlcNAc-β-1,3-Gal-β-1,3-GlcNAc-, was synthesized through the activity of co-expressed glycosyltransferases LsgCDEF from Haemophilus influenzae, Campylobacter jejuni NeuBCA enzymes, and Photobacterium leiognathi α-2,6-sialyltransferase in an engineered E. coli strain which produces CMP-Neu5Ac. C. jejuni oligosaccharyltransferase PglB was used to transfer the terminally sialylated glycan onto a glyco-recognition sequence in the tenth type III cell adhesion module of human fibronectin. Sialylation of the target protein was confirmed by lectin blotting and mass spectrometry. This proof-of-concept study demonstrates the successful production of terminally sialylated, homogeneous N-glycoproteins with α-2,6-linkages in the periplasm of E. coli and will facilitate the construction of E. coli strains capable of producing terminally sialylated N-glycoproteins in high yield.
Collapse
Affiliation(s)
- Jing Zhu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yao Ruan
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Xin Fu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Lichao Zhang
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Gaoshun Ge
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - J Gerard Wall
- Centre for Research in Medical Devices (CÚRAM) and Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Teng Zou
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Yang Zheng
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Ning Ding
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| | - Xuejun Hu
- Academic Centre for Medical Research, Medical College, Dalian University, Dalian, China
| |
Collapse
|
8
|
Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 2020; 29:519-529. [PMID: 30989179 DOI: 10.1093/glycob/cwz031] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The first, general glycosylation pathway in bacteria, the N-linked glycosylation system of Campylobacter jejuni, was discovered two decades ago. Since then, many diverse prokaryotic glycosylation systems have been characterized, including O-linked glycosylation systems that have no homologous counterparts in eukaryotic organisms. Shortly after these discoveries, glycosylation pathways were recombinantly introduced into E. coli creating the field of bacterial glycoengineering. Bacterial glycoengineering is an emerging biotechnological tool that harnesses prokaryotic glycosylation systems for the generation of recombinantly glycosylated proteins using E. coli as a host. Over the last decade, as our understanding of prokaryotic glycosylation systems has advanced, so too has the glycoengineering toolbox. Currently, glycoengineering utilizes two broad approaches to recombinantly glycosylate proteins, both of which can generate N- or O-linkages: oligosaccharyltransferase (OTase)-dependent and OTase-independent. This review discusses the applications of these bacterial glycoengineering techniques as they relate to the development of glycoconjugate vaccines, therapeutic proteins, and diagnostics.
Collapse
Affiliation(s)
| | - Mario F Feldman
- VaxNewMo, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat Commun 2019; 10:5404. [PMID: 31776339 PMCID: PMC6881289 DOI: 10.1038/s41467-019-12024-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022] Open
Abstract
Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer precise glycan structures on proteins remains a bottleneck. Here, we report a modular, versatile cell-free platform for glycosylation pathway assembly by rapid in vitro mixing and expression (GlycoPRIME). In GlycoPRIME, glycosylation pathways are assembled by mixing-and-matching cell-free synthesized glycosyltransferases that can elaborate a glucose primer installed onto protein targets by an N-glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs, 18 of which have not yet been synthesized on proteins. We use selected pathways to synthesize a protein vaccine candidate with an α-galactose adjuvant motif in a one-pot cell-free system and human antibody constant regions with minimal sialic acid motifs in glycoengineered Escherichia coli. We anticipate that these methods and pathways will facilitate glycoscience and make possible new glycoengineering applications. Constructing biosynthetic pathways to study and engineer glycoprotein structures is difficult. Here, the authors use GlycoPRIME, a cell-free workflow for mixing-and-matching glycosylation enzymes, to evaluate 37 putative glycosylation pathways and discover routes to 18 new glycoprotein structures
Collapse
|
10
|
Improving production of N-glycosylated recombinant proteins by leaky Escherichia coli. 3 Biotech 2019; 9:302. [PMID: 31355111 DOI: 10.1007/s13205-019-1830-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli has been considered as a promising host for the production of N-glycosylated therapeutic proteins and glycoconjugate vaccines. In this study, we developed a simple and efficient strategy for improving the production of N-glycosylated recombinant proteins by combining auto-induction with the use of a leaky E. coli strain. A leaky E. coli strain, designated as CLM37-Δlpp, was engineered by deleting the Braun's lipoprotein (lpp) gene of E. coli strain CLM37. Three distinct acceptor model N-glycosylated proteins, glyco-tagged human tenth fibronectin type III domain (FN3-Gly), enhanced green fluorescent protein (eGFP-Gly), and scFv of vascular endothelial growth factor receptor 3 (scFv-VEGFR3-Gly) were then expressed in CLM37-Δlpp, which carried an N-glycosylation machinery from Campylobacter jejuni for the investigation of glycoprotein production. As much as 75%, 65%, and 60% of the glycosylated FN3-Gly, eGFP-Gly, and scFv-VEGFR3-Gly, respectively, were found in the culture medium. The yields of glycosylated FN3-Gly, eGFP-Gly, and scFv-VEGFR3-Gly were 106 ± 7.4 mg/L, 65 ± 2.5 mg/L, and 62 ± 4.3 mg/L, respectively, which were more than three folds the corresponding yields obtained when these proteins were expressed in CLM37, the unmodified strain. The results suggested that this simplified approach could improve the production of N-glycosylated proteins with E. coli to facilitate large-scale production.
Collapse
|
11
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
12
|
Metabolic engineering of glycoprotein biosynthesis in bacteria. Emerg Top Life Sci 2018; 2:419-432. [PMID: 33525794 DOI: 10.1042/etls20180004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The demonstration more than a decade ago that glycoproteins could be produced in Escherichia coli cells equipped with the N-linked protein glycosylation machinery from Campylobacter jejuni opened the door to using simple bacteria for the expression and engineering of complex glycoproteins. Since that time, metabolic engineering has played an increasingly important role in developing and optimizing microbial cell glyco-factories for the production of diverse glycoproteins and other glycoconjugates. It is becoming clear that future progress in creating efficient glycoprotein expression platforms in bacteria will depend on the adoption of advanced strain engineering strategies such as rational design and assembly of orthogonal glycosylation pathways, genome-wide identification of metabolic engineering targets, and evolutionary engineering of pathway performance. Here, we highlight recent advances in the deployment of metabolic engineering tools and strategies to develop microbial cell glyco-factories for the production of high-value glycoprotein targets with applications in research and medicine.
Collapse
|
13
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
14
|
Yates LE, Mills DC, DeLisa MP. Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:167-200. [PMID: 30099598 DOI: 10.1007/10_2018_72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacteria have garnered increased interest in recent years as a platform for the biosynthesis of a variety of glycomolecules such as soluble oligosaccharides, surface-exposed carbohydrates, and glycoproteins. The ability to engineer commonly used laboratory species such as Escherichia coli to efficiently synthesize non-native sugar structures by recombinant expression of enzymes from various carbohydrate biosynthesis pathways has allowed for the facile generation of important products such as conjugate vaccines, glycosylated outer membrane vesicles, and a variety of other research reagents for studying and understanding the role of glycans in living systems. This chapter highlights some of the key discoveries and technologies for equipping bacteria with the requisite biosynthetic machinery to generate such products. As the bacterial glyco-toolbox continues to grow, these technologies are expected to expand the range of glycomolecules produced recombinantly in bacterial systems, thereby opening up this platform to an even larger number of applications.
Collapse
Affiliation(s)
- Laura E Yates
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Dominic C Mills
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Hamilton BS, Wilson JD, Shumakovich MA, Fisher AC, Brooks JC, Pontes A, Naran R, Heiss C, Gao C, Kardish R, Heimburg-Molinaro J, Azadi P, Cummings RD, Merritt JH, DeLisa MP. A library of chemically defined human N-glycans synthesized from microbial oligosaccharide precursors. Sci Rep 2017; 7:15907. [PMID: 29162910 PMCID: PMC5698433 DOI: 10.1038/s41598-017-15891-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Synthesis of homogenous glycans in quantitative yields represents a major bottleneck to the production of molecular tools for glycoscience, such as glycan microarrays, affinity resins, and reference standards. Here, we describe a combined biological/enzymatic synthesis that is capable of efficiently converting microbially-derived precursor oligosaccharides into structurally uniform human-type N-glycans. Unlike starting material obtained by chemical synthesis or direct isolation from natural sources, which can be time consuming and costly to generate, our approach involves precursors derived from renewable sources including wild-type Saccharomyces cerevisiae glycoproteins and lipid-linked oligosaccharides from glycoengineered Escherichia coli. Following deglycosylation of these biosynthetic precursors, the resulting microbial oligosaccharides are subjected to a greatly simplified purification scheme followed by structural remodeling using commercially available and recombinantly produced glycosyltransferases including key N-acetylglucosaminyltransferases (e.g., GnTI, GnTII, and GnTIV) involved in early remodeling of glycans in the mammalian glycosylation pathway. Using this approach, preparative quantities of hybrid and complex-type N-glycans including asymmetric multi-antennary structures were generated and subsequently used to develop a glycan microarray for high-throughput, fluorescence-based screening of glycan-binding proteins. Taken together, these results confirm our combined synthesis strategy as a new, user-friendly route for supplying chemically defined human glycans simply by combining biosynthetically-derived precursors with enzymatic remodeling.
Collapse
Affiliation(s)
- Brian S Hamilton
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Joshua D Wilson
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | | | - Adam C Fisher
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - James C Brooks
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Alyssa Pontes
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Radnaa Naran
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Judith H Merritt
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
17
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
18
|
Increased glycosylation efficiency of recombinant proteins in Escherichia coli by auto-induction. Biochem Biophys Res Commun 2017; 485:138-143. [DOI: 10.1016/j.bbrc.2017.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 01/30/2023]
|
19
|
Li H, Debowski AW, Liao T, Tang H, Nilsson HO, Marshall BJ, Stubbs KA, Benghezal M. Understanding protein glycosylation pathways in bacteria. Future Microbiol 2016; 12:59-72. [PMID: 27689684 DOI: 10.2217/fmb-2016-0166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Through advances in analytical methods to detect glycoproteins and to determine glycan structures, there have been increasing reports of protein glycosylation in bacteria. In this review, we summarize the known pathways for bacterial protein glycosylation: lipid carrier-mediated 'en bloc' glycosylation; and cytoplasmic stepwise protein glycosylation. The exploitation of bacterial protein glycosylation systems, especially the 'mix and match' of three independent but similar pathways (oligosaccharyltransferase-mediated protein glycosylation, lipopolysaccharide and peptidoglycan biosynthesis) in Gram-negative bacteria for glycoengineering recombinant glycoproteins is also discussed.
Collapse
Affiliation(s)
- Hong Li
- West China Marshall Research Centre for Infectious Diseases, Centre of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.,Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Aleksandra W Debowski
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia.,School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Tingting Liao
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Hong Tang
- West China Marshall Research Centre for Infectious Diseases, Centre of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hans-Olof Nilsson
- Ondek Pty Ltd, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Barry J Marshall
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Keith A Stubbs
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mohammed Benghezal
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia.,Swiss Vitamin Institute, Route de la Corniche 1, CH-1066 Epalinges, Switzerland
| |
Collapse
|
20
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
21
|
Chen R. The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Fact 2015; 14:197. [PMID: 26655367 PMCID: PMC4674990 DOI: 10.1186/s12934-015-0389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the first science review on the then nascent Metabolic Engineering field in 1991, Dr. James E. Bailey described how improving erythropoietin (EPO) glycosylation can be achieved via metabolic engineering of Chinese hamster ovary (CHO) cells. In the intervening decades, metabolic engineering has brought sweet successes in glycoprotein engineering, including antibodies, vaccines, and other human therapeutics. Today, not only eukaryotes (CHO, plant, insect, yeast) are being used for manufacturing protein therapeutics with human-like glycosylation, newly elucidated bacterial glycosylation systems are enthusiastically embraced as potential breakthrough to revolutionize the biopharmaceutical industry. Notwithstanding these excitement in glycoprotein, the sweet metabolic engineering reaches far beyond glycoproteins. Many different types of oligo- and poly-saccharides are synthesized with metabolically engineered cells. For example, several recombinant hyaluronan bioprocesses are now in commercial production, and the titer of 2′-fucosyllactose, the most abundant fucosylated trisaccharide in human milk, reaches over 20 g/L with engineered E. coli cells. These successes represent only the first low hanging fruits, which have been appreciated scientifically, medically and fortunately, commercially as well. As one of the four building blocks of life, sugar molecules permeate almost all aspects of life. They are also unique in being intimately associated with all major types of biopolymers (including DNA/RNA, proteins, lipids) meanwhile they stand alone as bioactive polysaccharides, or free soluble oligosaccharides. As such, all sugar moieties in biological components, small or big and free or bound, are important targets for metabolic engineering. Opportunities abound at the interface of glycosciences and metabolic engineering. Continued investment and successes in this branch of metabolic engineering will make vastly diverse sugar-containing molecules (a.k.a. glycoconjugates) available for biomedical applications, sustainable technology development, and as invaluable tools for basic scientific research. This short review focuses on the most recent development in the field, with emphasis on the synthesis technology for glycoprotein, polysaccharide, and oligosaccharide.
Collapse
Affiliation(s)
- Rachel Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332-0100, USA.
| |
Collapse
|
22
|
Lukose V, Whitworth G, Guan Z, Imperiali B. Chemoenzymatic Assembly of Bacterial Glycoconjugates for Site-Specific Orthogonal Labeling. J Am Chem Soc 2015; 137:12446-9. [PMID: 26352466 PMCID: PMC4599313 DOI: 10.1021/jacs.5b07146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
cell surfaces of bacteria are replete with diverse glycoconjugates
that play pivotal roles in determining how bacteria interact with
the environment and the hosts that they colonize. Studies to advance
our understanding of these interactions rely on the availability of
chemically defined glycoconjugates that can be selectively modified
under orthogonal reaction conditions to serve as discrete ligands
to probe biological interactions, in displayed arrays and as imaging
agents. Herein, enzymes in the N-linked protein glycosylation
(Pgl) pathway of Campylobacter jejuni are evaluated
for their tolerance for azide-modified UDP-sugar substrates, including
derivatives of 2,4-diacetamidobacillosamine and N-acetylgalactosamine. In vitro analyses reveal that
chemoenzymatic approaches are useful for the preparation of undecaprenol
diphosphate-linked glycans and glycopeptides with site-specific introduction
of azide functionality for orthogonal labeling at three specific sites
in the heptasaccharide glycan. The uniquely modified glycoconjugates
represent valuable tools for investigating the roles of C.
jejuni cell surface glycoconjugates in host pathogen interactions.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Garrett Whitworth
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Vozza NF, Feldman MF. Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli. Methods Mol Biol 2015; 1321:57-70. [PMID: 26082215 DOI: 10.1007/978-1-4939-2760-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biotechnological relevance of protein glycosylation has exponentially grown in recent years. With the advances in protein glycosylation research, new possibilities for glyco-engineering have arisen, and a wide array of glycans can be designed and potentially transferred to target proteins in the biotechnologically relevant host Escherichia coli. Here we provide insight on how to select the best strains and plasmids. We also describe methods for determination of glycan expression and assembly, protein glycosylation using western blot, and preparation of samples for mass spectrometry.
Collapse
Affiliation(s)
- Nicolas F Vozza
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
24
|
Cuccui J, Wren B. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins. ACTA ACUST UNITED AC 2014; 67:338-50. [PMID: 25244672 DOI: 10.1111/jphp.12321] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/10/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Glycosylation or the modification of a cellular component with a carbohydrate moiety has been demonstrated in all three domains of life as a basic post-translational process important in a range of biological processes. This review will focus on the latest studies attempting to exploit bacterial N-linked protein glycosylation for glycobiotechnological applications including glycoconjugate vaccine and humanised glycoprotein production. The challenges that remain for these approaches to reach full biotechnological maturity will be discussed. KEY FINDINGS Oligosaccharyltransferase-dependent N-linked glycosylation can be exploited to make glycoconjugate vaccines against bacterial pathogens. Few technical limitations remain, but it is likely that the technologies developed will soon be considered a cost-effective and flexible alternative to current chemical-based methods of vaccine production. Some highlights from current glycoconjugate vaccines developed using this in-vivo production system include a vaccine against Shigella dysenteriae O1 that has passed phase 1 clinical trials, a vaccine against the tier 1 pathogen Francisella tularensis that has shown efficacy in mice and a vaccine against Staphylococcus aureus serotypes 5 and 8. Generation of humanised glycoproteins within bacteria was considered impossible due to the distinct nature of glycan modification in eukaryotes and prokaryotes. We describe the method used to overcome this conundrum to allow engineering of a eukaryotic pentasaccharide core sugar modification within Escherichia coli. This core was assembled by combining the function of the initiating transferase WecA, several Alg genes from Saccharomyces cerevisiae and the oligosaccharyltransferase function of the Campylobacter jejuni PglB. Further exploitation of a cytoplasmic N-linked glycosylation system found in Actinobacillus pleuropneumoniae where the central enzyme is known as N-linking glycosyltransferase has overcome some of the limitations demonstrated by the oligosaccharyltransferase-dependent system. SUMMARY Characterisation of the first bacterial N-linked glycosylation system in the human enteropathogen Campylobacter jejuni has led to substantial biotechnological applications. Alternative methods for glycoconjugate vaccine production have been developed using this N-linked system. Vaccines against both Gram-negative and Gram-positive organisms have been developed, and efficacy testing has thus far demonstrated that the vaccines are safe and that robust immune responses are being detected. These are likely to complement and reduce the cost of current technologies thus opening new avenues for glycoconjugate vaccines. These new markets could potentially include glycoconjugate vaccines tailored specifically for animal vaccination, which has until today thought to be non-viable due to the cost of current in-vitro chemical conjugation methods. Utilisation of N-linked glycosylation to generate humanised glycoproteins is also close to becoming reality. This 'bottom up' assembly mechanism removes the heterogeneity seen in current humanised products. The majority of developments reported in this review exploit a single N-linked glycosylation system from Campylobacter jejuni; however, alternative N-linked glycosylation systems have been discovered which should help to overcome current technical limitations and perhaps more systems remain to be discovered. The likelihood is that further glycosylation systems exist and are waiting to be exploited.
Collapse
Affiliation(s)
- Jon Cuccui
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
25
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
26
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
27
|
Rubin EJ, Trent MS. Colonize, evade, flourish: how glyco-conjugates promote virulence of Helicobacter pylori. Gut Microbes 2013; 4:439-53. [PMID: 23859890 PMCID: PMC3928157 DOI: 10.4161/gmic.25721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori is an adapted gastric pathogen that colonizes the human stomach, causing severe gastritis and gastric cancer. A hallmark of infection is the ability of this organism to evade detection by the human immune system. H. pylori has evolved a number of features to achieve this, many of which involve glyco-conjugates including the lipopolysaccharide, peptidoglycan layer, glycoproteins, and glucosylated cholesterol. These major bacterial components possess unique features from those of other gram-negative organisms, including differences in structure, assembly, and modification. These defining characteristics of H. pylori glycobiology help the pathogen establish a long-lived infection by providing camouflage, modulating the host immune response, and promoting virulence mechanisms. In this way, glyco-conjugates are essential for H. pylori pathogenicity and survival, allowing it to carve out a niche in the formidable environment of the human stomach.
Collapse
Affiliation(s)
- Erica J Rubin
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin, TX USA
| | - M Stephen Trent
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin, TX USA,Department of Molecular Biosciences; The University of Texas at Austin; Austin, TX USA,Correspondence to: M Stephen Trent,
| |
Collapse
|
28
|
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 2013; 45:592-601. [PMID: 23644491 DOI: 10.1038/ng.2628] [Citation(s) in RCA: 1071] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
Abstract
Subunits of mammalian SWI/SNF (mSWI/SNF or BAF) complexes have recently been implicated as tumor suppressors in human malignancies. To understand the full extent of their involvement, we conducted a proteomic analysis of endogenous mSWI/SNF complexes, which identified several new dedicated, stable subunits not found in yeast SWI/SNF complexes, including BCL7A, BCL7B and BCL7C, BCL11A and BCL11B, BRD9 and SS18. Incorporating these new members, we determined mSWI/SNF subunit mutation frequency in exome and whole-genome sequencing studies of primary human tumors. Notably, mSWI/SNF subunits are mutated in 19.6% of all human tumors reported in 44 studies. Our analysis suggests that specific subunits protect against cancer in specific tissues. In addition, mutations affecting more than one subunit, defined here as compound heterozygosity, are prevalent in certain cancers. Our studies demonstrate that mSWI/SNF is the most frequently mutated chromatin-regulatory complex (CRC) in human cancer, exhibiting a broad mutation pattern, similar to that of TP53. Thus, proper functioning of polymorphic BAF complexes may constitute a major mechanism of tumor suppression.
Collapse
Affiliation(s)
- Cigall Kadoch
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Baker JL, Çelik E, DeLisa MP. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 2013; 31:313-23. [PMID: 23582719 DOI: 10.1016/j.tibtech.2013.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 01/05/2023]
Abstract
Glycosylation is the most prevalent post-translational modification found on proteins, occurring in all domains of life. Ever since the discovery of asparagine-linked (N-linked) protein glycosylation pathways in bacteria, major efforts have been made to harness these systems for the creation of novel therapeutics, vaccines, and diagnostics. Recent advances such as the ability to produce designer glycans in bacteria, some containing unnatural sugars, and techniques for evolving glycosylation enzymes have spawned an entirely new discipline known as bacterial glycoengineering. In addition to their biotechnological and therapeutic potential, bacteria equipped with recombinant N-linked glycosylation pathways are improving our understanding of the N-glycosylation process. This review discusses the key role played by microorganisms in glycosciences, particularly in the context of N-linked glycosylation.
Collapse
Affiliation(s)
- Jenny L Baker
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
30
|
Merritt JH, Ollis AA, Fisher AC, DeLisa MP. Glycans-by-design: Engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol Bioeng 2013; 110:1550-64. [DOI: 10.1002/bit.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 02/04/2023]
|
31
|
Nothaft H, Szymanski CM. Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 2013; 288:6912-20. [PMID: 23329827 DOI: 10.1074/jbc.r112.417857] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein glycosylation is widespread throughout all three domains of life. Bacterial protein N-glycosylation and its application to engineering recombinant glycoproteins continue to be actively studied. Here, we focus on advances made in the last 2 years, including the characterization of novel bacterial N-glycosylation pathways, examination of pathway enzymes and evolution, biological roles of protein modification in the native host, and exploitation of the N-glycosylation pathways to create novel vaccines and diagnostics.
Collapse
Affiliation(s)
- Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | |
Collapse
|
32
|
Mally M, Fontana C, Leibundgut-Landmann S, Laacisse L, Fan YY, Widmalm G, Aebi M. Glycoengineering of host mimicking type-2 LacNAc polymers and Lewis X antigens on bacterial cell surfaces. Mol Microbiol 2012; 87:112-31. [PMID: 23163552 DOI: 10.1111/mmi.12086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 01/27/2023]
Abstract
Bacterial carbohydrate structures play a central role in mediating a variety of host-pathogen interactions. Glycans can either elicit protective immune response or lead to escape of immune surveillance by mimicking host structures. Lipopolysaccharide (LPS), a major component on the surface of Gram-negative bacteria, is composed of a lipid A-core and the O-antigen polysaccharide. Pathogens like Neisseria meningitidis expose a lipooligosaccharide (LOS), which outermost glycans mimick mammalian epitopes to avoid immune recognition. Lewis X (Galβ1-4(Fucα1-3)GlcNAc) antigens of Helicobacter pylori or of the helminth Schistosoma mansoni modulate the immune response by interacting with receptors on human dendritic cells. In a glycoengineering approach we generate human carbohydrate structures on the surface of recombinant Gram-negative bacteria, such as Escherichia coli and Salmonella enterica sv. Typhimurium that lack O-antigen. A ubiquitous building block in mammalian N-linked protein glycans is Galβ1-4GlcNAc, referred to as a type-2 N-acetyllactosamine, LacNAc, sequence. Strains displaying polymeric LacNAc were generated by introducing a combination of glycosyltransferases that act on modified lipid A-cores, resulting in efficient expression of the carbohydrate epitope on bacterial cell surfaces. The poly-LacNAc scaffold was used as an acceptor for fucosylation leading to polymers of Lewis X antigens. We analysed the distribution of the carbohydrate epitopes by FACS, microscopy and ELISA and confirmed engineered LOS containing LacNAc and Lewis X repeats by MALDI-TOF and NMR analysis. Glycoengineered LOS induced pro-inflammatory response in murine dendritic cells. These bacterial strains can thus serve as tools to analyse the role of defined carbohydrate structures in different biological processes.
Collapse
Affiliation(s)
- Manuela Mally
- ETH Zurich, Institute of Microbiology, Wolfgang-Pauli-Str. 10, HCI F 406, CH- 8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang Z, Bennett EP, Jørgensen B, Drew DP, Arigi E, Mandel U, Ulvskov P, Levery SB, Clausen H, Petersen BL. Toward stable genetic engineering of human O-glycosylation in plants. PLANT PHYSIOLOGY 2012; 160:450-63. [PMID: 22791304 PMCID: PMC3440218 DOI: 10.1104/pp.112.198200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/11/2012] [Indexed: 05/18/2023]
Abstract
Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating GalNAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O-glycoproteins was obtained, but a high degree of proline hydroxylation and hydroxyproline-linked arabinosides, on a mucin (MUC1)-derived substrate, was also observed. Addition of the prolyl 4-hydroxylase inhibitor 2,2-dipyridyl, however, effectively suppressed proline hydroxylation and arabinosylation of MUC1 in Bright Yellow-2 cells. In summary, stably engineered mammalian type O-glycosylation was established in transgenic plants, demonstrating that plants may serve as host cells for the production of recombinant O-glycoproteins. However, the present stable implementation further strengthens the notion that elimination of endogenous posttranslational modifications may be needed for the production of protein therapeutics.
Collapse
Affiliation(s)
- Zhang Yang
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Eric P. Bennett
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Bodil Jørgensen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | | | - Emma Arigi
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Ulla Mandel
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Peter Ulvskov
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Steven B. Levery
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Henrik Clausen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Bent L. Petersen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| |
Collapse
|