1
|
Li Z, Ma B, Gong M, Guo L, Wang L, Xu H, Xie J. Sensitive Detection and Differentiation of Biologically Active Ricin and Abrin in Complex Matrices via Specific Neutralizing Antibody-Based Cytotoxicity Assay. Toxins (Basel) 2024; 16:237. [PMID: 38922132 PMCID: PMC11209497 DOI: 10.3390/toxins16060237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Ricin and abrin are highly potent plant-derived toxins, categorized as type II ribosome-inactivating proteins. High toxicity, accessibility, and the lack of effective countermeasures make them potential agents in bioterrorism and biowarfare, posing significant threats to public safety. Despite the existence of many effective analytical strategies for detecting these two lethal toxins, current methods are often hindered by limitations such as insufficient sensitivity, complex sample preparation, and most importantly, the inability to distinguish between biologically active and inactive toxin. In this study, a cytotoxicity assay was developed to detect active ricin and abrin based on their potent cell-killing capability. Among nine human cell lines derived from various organs, HeLa cells exhibited exceptional sensitivity, with limits of detection reaching 0.3 ng/mL and 0.03 ng/mL for ricin and abrin, respectively. Subsequently, toxin-specific neutralizing monoclonal antibodies MIL50 and 10D8 were used to facilitate the precise identification and differentiation of ricin and abrin. The method provides straightforward and sensitive detection in complex matrices including milk, plasma, coffee, orange juice, and tea via a simple serial-dilution procedure without any complex purification and enrichment steps. Furthermore, this assay was successfully applied in the unambiguous identification of active ricin and abrin in samples from OPCW biotoxin exercises.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Xu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
2
|
Guyette JL, Serrano A, Huhn III GR, Taylor M, Malkòm P, Curtis D, Teter K. Reduction is sufficient for the disassembly of ricin and Shiga toxin 1 but not Escherichia coli heat-labile enterotoxin. Infect Immun 2023; 91:e0033223. [PMID: 37877711 PMCID: PMC10652930 DOI: 10.1128/iai.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.
Collapse
Affiliation(s)
- Jessica L. Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - G. Robb Huhn III
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Pat Malkòm
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - David Curtis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
3
|
Yu H, Wu M, Zhao N, Dong M, Wang Y, Yu K, Sun C, Xu N, Ge L, Liu W. Anti-Ricin toxin human neutralizing antibodies and DMAbs protection against ricin toxin poisoning. Toxicol Lett 2023:S0378-4274(23)00209-6. [PMID: 37390852 DOI: 10.1016/j.toxlet.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
DNA-encoded monoclonal antibodies (DMAbs) and in vivo expression of antibody therapeutics presents an innovative alternative to conventional delivery methods. Therefore, in order to prevent the lethal dose of ricin toxin (RT) and to avoid human anti-mouse antibody (HAMA) reaction, we developed the human neutralizing antibody 4-4E against RT and constructed DMAb-4-4E. The human neutralizing antibody 4-4E could neutralize RT in vitro and in vivo, while the mice in RT group all died. Using intramuscular electroporation (IM EP), antibodies were rapidly expressed in vivo within 7 days and were enriched in intestine and gastrocnemius muscle mostly. Besides, we found that DMAbs have shown a broad protective efficacy of RT poisoning prophylaxis. Driven by plasmids for IgG expression, mice were survived and the blood glucose level of mice in DMAb-IgG group returned to normal at 72h post RT challenge, and the RT group died within 48h. Furthermore, hindrance of protein disulfide isomerase (PDI) and accumulation of RT in endosomes were found in IgG-protected cells, revealing the possible mechanism of neutralization details. These data support the further study of RT-neutralizing monoclonal antibodies (mAbs) in the development.
Collapse
Affiliation(s)
- Haotian Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Na Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, 130122, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Kaikai Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China.
| |
Collapse
|
4
|
Matsuo Y. Introducing Thioredoxin-Related Transmembrane Proteins: Emerging Roles of Human TMX and Clinical Implications. Antioxid Redox Signal 2022; 36:984-1000. [PMID: 34465218 PMCID: PMC9127828 DOI: 10.1089/ars.2021.0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The presence of a large number of thioredoxin superfamily members suggests a complex mechanism of redox-based regulation in mammalian cells. However, whether these members are functionally redundant or play separate and distinct roles in each cellular compartment remains to be elucidated. Recent Advances: In the mammalian endoplasmic reticulum (ER), ∼20 thioredoxin-like proteins have been identified. Most ER oxidoreductases are soluble proteins located in the luminal compartment, whereas a small family of five thioredoxin-related transmembrane proteins (TMX) also reside in the ER membrane and play crucial roles with specialized functions. Critical Issues: In addition to the predicted function of ER protein quality control, several independent studies have suggested the diverse roles of TMX family proteins in the regulation of cellular processes, including calcium homeostasis, bioenergetics, and thiol-disulfide exchange in the extracellular space. Moreover, recent studies have provided evidence of their involvement in the pathogenesis of various diseases. Future Directions: Extensive research is required to unravel the physiological roles of TMX family proteins. Given that membrane-associated proteins are prime targets for drug discovery in a variety of human diseases, expanding our knowledge on the mechanistic details of TMX action on the cell membrane will provide the molecular basis for developing novel diagnostic and therapeutic approaches as a potent molecular target in a clinical setting. Antioxid. Redox Signal. 36, 984-1000.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
5
|
Thioredoxin-Related Transmembrane Proteins: TMX1 and Little Brothers TMX2, TMX3, TMX4 and TMX5. Cells 2020; 9:cells9092000. [PMID: 32878123 PMCID: PMC7563315 DOI: 10.3390/cells9092000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is site of synthesis and maturation of membrane and secretory proteins in eukaryotic cells. The ER contains more than 20 members of the Protein Disulfide Isomerase (PDI) family. These enzymes regulate formation, isomerization and disassembly of covalent bonds between cysteine residues. As such, PDIs ensure protein folding, which is required to attain functional and transport-competent structure, and protein unfolding, which facilitates dislocation of defective gene products across the ER membrane for ER-associated degradation (ERAD). The PDI family includes over a dozen of soluble members and few membrane-bound ones. Among these latter, there are five PDIs grouped in the thioredoxin-related transmembrane (TMX) protein family. In this review, we summarize the current knowledge on TMX1, TMX2, TMX3, TMX4 and TMX5, their structural features, regulation and roles in biogenesis and control of the mammalian cell’s proteome.
Collapse
|
6
|
Wong JH, Bao H, Ng TB, Chan HHL, Ng CCW, Man GCW, Wang H, Guan S, Zhao S, Fang EF, Rolka K, Liu Q, Li C, Sha O, Xia L. New ribosome-inactivating proteins and other proteins with protein synthesis-inhibiting activities. Appl Microbiol Biotechnol 2020; 104:4211-4226. [PMID: 32193575 DOI: 10.1007/s00253-020-10457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| | - Hui Bao
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | - Gene Chi Wai Man
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- Department of Microbiology, China Agricultural University, Beijing, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, and Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, China
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, Poland
| | - Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunman Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins (Basel) 2019; 11:toxins11060350. [PMID: 31216687 PMCID: PMC6628406 DOI: 10.3390/toxins11060350] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Ricin can be isolated from the seeds of the castor bean plant (Ricinus communis). It belongs to the ribosome-inactivating protein (RIP) family of toxins classified as a bio-threat agent due to its high toxicity, stability and availability. Ricin is a typical A-B toxin consisting of a single enzymatic A subunit (RTA) and a binding B subunit (RTB) joined by a single disulfide bond. RTA possesses an RNA N-glycosidase activity; it cleaves ribosomal RNA leading to the inhibition of protein synthesis. However, the mechanism of ricin-mediated cell death is quite complex, as a growing number of studies demonstrate that the inhibition of protein synthesis is not always correlated with long term ricin toxicity. To exert its cytotoxic effect, ricin A-chain has to be transported to the cytosol of the host cell. This translocation is preceded by endocytic uptake of the toxin and retrograde traffic through the trans-Golgi network (TGN) and the endoplasmic reticulum (ER). In this article, we describe intracellular trafficking of ricin with particular emphasis on host cell factors that facilitate this transport and contribute to ricin cytotoxicity in mammalian and yeast cells. The current understanding of the mechanisms of ricin-mediated cell death is discussed as well. We also comment on recent reports presenting medical applications for ricin and progress associated with the development of vaccines against this toxin.
Collapse
|
8
|
Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Int J Mol Sci 2019; 20:E1307. [PMID: 30875878 PMCID: PMC6471375 DOI: 10.3390/ijms20061307] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.
Collapse
Affiliation(s)
- Jowita Nowakowska-Gołacka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Hanna Sominka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Natalia Sowa-Rogozińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Monika Słomińska-Wojewódzka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
9
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
10
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
11
|
Authier F, Djavaheri-Mergny M, Lorin S, Frénoy JP, Desbuquois B. Fate and action of ricin in rat liverin vivo: translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain. Cell Microbiol 2016; 18:1800-1814. [DOI: 10.1111/cmi.12621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- François Authier
- Service information scientifique et technique (IST) de l'Inserm; Paris France
| | | | - Séverine Lorin
- Inserm UMR-S-1193; Université Paris-Saclay; 92296 Châtenay-Malabry France
| | - Jean-Pierre Frénoy
- CNRS UMR 8601, Centre Universitaire des Saints-Pères; Université Paris-Descartes; Paris France
| | - Bernard Desbuquois
- Inserm U 1016 and CNRS UMR 8104; Université Paris-Descartes, Institut Cochin; Paris France
| |
Collapse
|
12
|
Pisoni GB, Ruddock LW, Bulleid N, Molinari M. Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides. Mol Biol Cell 2015; 26:3390-400. [PMID: 26246604 PMCID: PMC4591685 DOI: 10.1091/mbc.e15-05-0321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/18/2023] Open
Abstract
The mammalian ER contains 23 members of the PDI superfamily. Their substrate specificity is largely unknown. TMX1 shows a preference for membrane-bound, cysteine-containing polypeptides. The endoplasmic reticulum (ER) is the site of maturation for secretory and membrane proteins in eukaryotic cells. The lumen of the mammalian ER contains >20 members of the protein disulfide isomerase (PDI) superfamily, which ensure formation of the correct set of intramolecular and intermolecular disulfide bonds as crucial, rate-limiting reactions of the protein folding process. Components of the PDI superfamily may also facilitate dislocation of misfolded polypeptides across the ER membrane for ER-associated degradation (ERAD). The reasons for the high redundancy of PDI family members and the substrate features required for preferential engagement of one or the other are poorly understood. Here we show that TMX1, one of the few transmembrane members of the family, forms functional complexes with the ER lectin calnexin and preferentially intervenes during maturation of cysteine-containing, membrane-associated proteins while ignoring the same cysteine-containing ectodomains if not anchored at the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst in living cells.
Collapse
Affiliation(s)
- Giorgia Brambilla Pisoni
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Neil Bulleid
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Maurizio Molinari
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Abstract
The heterodimeric plant toxin ricin binds exposed galactosyls at the cell surface of target mammalian cells, and, following endocytosis, is transported in vesicular carriers to the endoplasmic reticulum (ER). Subsequently, the cell-binding B chain (RTB) and the catalytic A chain (RTA) are separated reductively, RTA embeds in the ER membrane and then retrotranslocates (or dislocates) across this membrane. The protein conducting channels used by RTA are usually regarded as part of the ER-associated protein degradation system (ERAD) that removes misfolded proteins from the ER for destruction by the cytosolic proteasomes. However, unlike ERAD substrates, cytosolic RTA avoids destruction and folds into a catalytic conformation that inactivates its target ribosomes. Protein synthesis ceases, and subsequently the cells die apoptotically. This raises questions about how this protein avoids the pathways that are normally sanctioned for ER-dislocating substrates. In this review we focus on the molecular events that occur with non-tagged ricin and its isolated subunits at the ER–cytosol interface. This focus reveals that intra-membrane interactions of RTA may control its fate, an area that warrants further investigation.
Collapse
Affiliation(s)
- Robert A Spooner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - J Michael Lord
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
14
|
Teter K. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol. Biomolecules 2013; 3:997-1029. [PMID: 24970201 PMCID: PMC4030972 DOI: 10.3390/biom3040997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Collapse
Affiliation(s)
- Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
15
|
O'Hara JM, Mantis NJ. Neutralizing monoclonal antibodies against ricin's enzymatic subunit interfere with protein disulfide isomerase-mediated reduction of ricin holotoxin in vitro. J Immunol Methods 2013; 395:71-8. [PMID: 23774033 DOI: 10.1016/j.jim.2013.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/26/2013] [Accepted: 06/06/2013] [Indexed: 11/15/2022]
Abstract
The penultimate event in the intoxication of mammalian cells by ricin toxin is the reduction, in the endoplasmic reticulum (ER), of the intermolecular disulfide bond that links ricin's enzymatic (RTA) and binding (RTB) subunits. In this report we adapted an in vitro protein disulfide isomerase (PDI)-mediated reduction assay to test the hypothesis that the RTA-specific neutralizing monoclonal antibody (mAb) IB2 interferes with the liberation of RTA from RTB. IB2 recognizes an epitope located near the interface between RTA and RTB and, like a number of other RTA-specific neutralizing mAbs, is proposed to neutralize ricin intracellularly. In this study, we found that IB2 virtually eliminated the reduction of ricin holotoxin into RTA and RTB in vitro. Surprisingly, three other neutralizing mAbs (GD12, R70 and SyH7) that bind epitopes at considerable distance from ricin's disulfide bond were as effective (or nearly as effective) as IB2 in interfering with PDI-mediated liberation of RTA from RTB. By contrast, two non-neutralizing RTA-specific mAbs, FGA12 and SB1, did not affect PDI-mediated reduction of ricin. These data reveal a possible mechanism by which RTA-specific antibodies may neutralize ricin intracellularly, provided they are capable of trafficking in association with ricin from the cell surface to the ER.
Collapse
Affiliation(s)
- Joanne M O'Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | | |
Collapse
|
16
|
Merulla J, Fasana E, Soldà T, Molinari M. Specificity and Regulation of the Endoplasmic Reticulum-Associated Degradation Machinery. Traffic 2013; 14:767-77. [DOI: 10.1111/tra.12068] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/18/2013] [Accepted: 03/23/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Elisa Fasana
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | - Tatiana Soldà
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | | |
Collapse
|
17
|
Zhou C, Bian M, Liao H, Mao Q, Li R, Zhou J, Wang X, Li S, Liang C, Li X, Huang Y, Yu X. Identification and immunological characterization of thioredoxin transmembrane-related protein from Clonorchis sinensis. Parasitol Res 2013; 112:1729-36. [PMID: 23403994 DOI: 10.1007/s00436-013-3331-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/29/2013] [Indexed: 01/23/2023]
Abstract
Thioredoxin transmembrane related protein (TMX), a member of thioredoxin superfamily, is localized to the endoplasmic reticulum and possesses a thioredoxin-like domain that plays an important role as an oxidoreductase. The functions of TMX in Clonorchis sinensis remain to be elucidated. In this study, we cloned and characterized a novel TMX of C. sinensis (CsTMX). The CsTMX cDNA sequence contained a 414-nucleotide open-reading frame encoding a protein of 137 amino acids. A thioredoxin domain was found in the position of aa21-117 and contained the putative active-site motif Cys-Pro-Ala-Cys. BLASTx analysis showed that CsTMX shared 39-57% amino acid identities with TMX of other organisms. Quantitative RT-PCR analysis demonstrated that CsTMX was differentially transcribed, with the highest level of expression in the adult worm stage and the lowest expression in egg stage. In addition, immunofluorescence assay showed CsTMX was localized in the tegument, vitelline gland, intestine, and intrauterine eggs of adult worm. Besides, immunoblot assay revealed that the recombinant CsTMX (rCsTMX) could be recognized by the sera from rats infected with C. sinensis and the sera from rats immunized by excretory-secretory products. Furthermore, analysis of the antibody isotype profile revealed that rats subcutaneously immunized with rCsTMX developed rCsTMX-specific antibody, which is dominance of IgG2a in sera. Meanwhile, production of IFN-γ was elevated strongly in the supernatants of spleen cell. The results collectively indicated that CsTMX might play an important role in the host-parasite interaction, as well as CsTMX probably involved in immunoregulation of host by inducing Th1-type dominated immune response in rats.
Collapse
Affiliation(s)
- Chenhui Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|