1
|
Ahmed DM, Sanders DAR. Unraveling the unexpected aggregation behavior of Pyrazole-Based compounds Targeting Mycobacterium tuberculosis UDP-Galactopyranose mutase. Bioorg Med Chem 2023; 94:117466. [PMID: 37722298 DOI: 10.1016/j.bmc.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
A pyrazole-based compound, MS208, was previously identified as an inhibitor of UDP-Galactopyranose Mutase from Mycobacterium tuberculosis (MtUGM). Targeting this enzyme is a novel therapeutic strategy for the development of new antituberculosis agents because MtUGM is an essential enzyme for the bacterial cell wall synthesis and it is not present in human. It was proposed that MS208 targets an allosteric site in MtUGM as MS208 followed a mixed inhibition model. DA10, an MS208 analogue, showed competitive inhibition rather than mixed inhibition. In this paper, we have used an integrated biophysical approach, including thermal shift assays, dynamic light scattering and nuclear magnetic resonance experiments, to show that MS208 and many analogues displayed unexpected aggregation behavior against MtUGM.
Collapse
Affiliation(s)
- Dalia M Ahmed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada.
| |
Collapse
|
2
|
Schaff H, Dey P, Heiss C, Keiser G, Moro TR, Azadi P, Patel P, Free SJ. Characterization of the need for galactofuranose during the Neurospora crassa life cycle. Fungal Genet Biol 2023; 168:103826. [PMID: 37541569 DOI: 10.1016/j.fgb.2023.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456). Our results demonstrate that loss of galactofuranose synthesis or its translocation into the lumen of the secretory pathway affects the morphology and growth rate of the vegetative hyphae, the production of conidia (asexual spores), and dramatically affects the sexual stages of the life cycle. In mutants that are unable to make galactofuranose or transport it into the lumen of the Golgi apparatus, ascospore development is aborted soon after fertilization and perithecium maturation is aborted prior to the formation of the neck and ostiole. The Neurospora genome contains three genes encoding possible galactofuranosyltransferases from the GT31 family of glycosyltransferases (gfs-1/NCU05878, gfs-2/NCU07762, and gfs-3/NCU02213) which might be involved in generating galactofuranose-containing oligosaccharide structures. Analysis of triple KO mutants in GT31 glycosyltransferases shows that these mutants have normal morphology, suggesting that these genes do not encode vital galactofuranosyltransferases.
Collapse
Affiliation(s)
- Hayden Schaff
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Protyusha Dey
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Tatiana Rojo Moro
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Pavan Patel
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J Free
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
3
|
Du X, Chu X, Liu N, Jia X, Peng H, Xiao Y, Liu L, Yu H, Li F, He C. Structures of the NDP-pyranose mutase belonging to glycosyltransferase family 75 reveal residues important for Mn 2+ coordination and substrate binding. J Biol Chem 2023; 299:102903. [PMID: 36642179 PMCID: PMC9937993 DOI: 10.1016/j.jbc.2023.102903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Members of glycosyltransferase family 75 (GT75) not only reversibly catalyze the autoglycosylation of a conserved arginine residue with specific NDP-sugars but also exhibit NDP-pyranose mutase activity that reversibly converts specific NDP-pyranose to NDP-furanose. The latter activity provides valuable NDP-furanosyl donors for glycosyltransferases and requires a divalent cation as a cofactor instead of FAD used by UDP-D-galactopyranose mutase. However, details of the mechanism for NDP-pyranose mutase activity are not clear. Here we report the first crystal structures of GT75 family NDP-pyranose mutases. The novel structures of GT75 member MtdL in complex with Mn2+ and GDP, GDP-D-glucopyranose, GDP-L-fucopyranose, GDP-L-fucofuranose, respectively, combined with site-directed mutagenesis studies, reveal key residues involved in Mn2+ coordination, substrate binding, and catalytic reactions. We also provide a possible catalytic mechanism for this unique type of NDP-pyranose mutase. Taken together, our results highlight key elements of an enzyme family important for furanose biosynthesis.
Collapse
Affiliation(s)
- Xueqing Du
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xuan Chu
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Ning Liu
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaoyu Jia
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hui Peng
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yazhong Xiao
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Lin Liu
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Beaupre BA, Moran GR. N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position. Front Mol Biosci 2020; 7:598912. [PMID: 33195440 PMCID: PMC7662398 DOI: 10.3389/fmolb.2020.598912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
For three decades the C4a-position of reduced flavins was the known site for covalency within flavoenzymes. The reactivity of this position of the reduced isoalloxazine ring with the dioxygen ground-state triplet established the C4a as a site capable of one-electron chemistry. Within the last two decades new types of reduced flavin reactivity have been documented. These studies reveal that the N5 position is also a protean site of reactivity, that is capable of nucleophilic attack to form covalent bonds with substrates. In addition, though the precise mechanism of dioxygen reactivity is yet to be definitively demonstrated, it is clear that the N5 position is directly involved in substrate oxygenation in some enzymes. In this review we document the lineage of discoveries that identified five unique modes of N5 reactivity that collectively illustrate the versatility of this position of the reduced isoalloxazine ring.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Cossio-Pérez R, Pierdominici-Sottile G, Sobrado P, Palma J. Molecular Dynamics Simulations of Substrate Release from Trypanosoma cruzi UDP-Galactopyranose Mutase. J Chem Inf Model 2019; 59:809-817. [PMID: 30608160 DOI: 10.1021/acs.jcim.8b00675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enzyme UDP-galactopyranose mutase (UGM) represents a promising drug target for the treatment of infections with Trypanosoma cruzi. We have computed the Potential of Mean Force for the release of UDP-galactopyranose from UGM, using Umbrella Sampling simulations. The simulations revealed the conformational changes that both substrate and enzyme undergo during the process. It was determined that the galactopyranose portion of the substrate is highly mobile and that the opening/closing of the active site occurs in stages. Previously uncharacterized interactions with highly conserved residues were also identified. These findings provide new pieces of information that contribute to the rational design of drugs against T. cruzi.
Collapse
Affiliation(s)
- Rodrigo Cossio-Pérez
- Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , CONICET, Bernal , Buenos Aires B1876BXD , Argentina
| | - Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , CONICET, Bernal , Buenos Aires B1876BXD , Argentina
| | - Pablo Sobrado
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24060 , United States
| | - Juliana Palma
- Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , CONICET, Bernal , Buenos Aires B1876BXD , Argentina
| |
Collapse
|
6
|
Pierdominici-Sottile G, Cossio-Pérez R, Da Fonseca I, Kizjakina K, Tanner JJ, Sobrado P. Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase. Biochemistry 2018; 57:3713-3721. [PMID: 29757624 DOI: 10.1021/acs.biochem.8b00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Gal p), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Gal f). Gal f biosynthesis begins with the conversion of UDP-Gal p to UDP-Gal f catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Ara p), which differs from UDP-Gal p by lacking a -CH2-OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Ara p. This result implicated residues that contact the -CH2-OH of UDP-Gal p in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Ara p. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path.
Collapse
Affiliation(s)
| | - Rodrigo Cossio-Pérez
- Sci-prot. Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , Bernal B1876BXD , Argentina
| | - Isabel Da Fonseca
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Karina Kizjakina
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - John J Tanner
- Departments of Biochemistry and Chemistry , University of Missouri-Columbia , Columbia , Missouri 65211 , United States
| | - Pablo Sobrado
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
7
|
Wangkanont K, Winton VJ, Forest KT, Kiessling LL. Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 2017; 56:3983-3992. [PMID: 28608671 PMCID: PMC5739916 DOI: 10.1021/acs.biochem.7b00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UDP-galactopyranose mutase (Glf or UGM) catalyzes the formation of uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf) from UDP-galactopyranose (UDP-Galp). The enzyme is required for the production of Galf-containing glycans. UGM is absent in mammals, but members of the Corynebacterineae suborder require UGM for cell envelope biosynthesis. The need for UGM in some pathogens has prompted the search for inhibitors that could serve as antibiotic leads. Optimizing inhibitor potency, however, has been challenging. The UGM from Klebsiella pneumoniae (KpUGM), which is not required for viability, is more effectively impeded by small-molecule inhibitors than are essential UGMs from species such as Mycobacterium tuberculosis or Corynebacterium diphtheriae. Why KpUGM is more susceptible to inhibition than other orthologs is not clear. One potential source of difference is UGM ortholog conformation. We previously determined a structure of CdUGM bound to a triazolothiadiazine inhibitor in the open form, but it was unclear whether the small-molecule inhibitor bound this form or to the closed form. By varying the terminal tag (CdUGM-His6 and GSG-CdUGM), we crystallized CdUGM to capture the enzyme in different conformations. These structures reveal a pocket in the active site that can be exploited to augment inhibitor affinity. Moreover, they suggest the inhibitor binds the open form of most prokaryotic UGMs but can bind the closed form of KpUGM. This model and the structures suggest strategies for optimizing inhibitor potency by exploiting UGM conformational flexibility.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valerie J. Winton
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Bacteriology University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| |
Collapse
|
8
|
Galactofuranose antigens, a target for diagnosis of fungal infections in humans. Future Sci OA 2017; 3:FSO199. [PMID: 28883999 PMCID: PMC5583699 DOI: 10.4155/fsoa-2017-0030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/02/2022] Open
Abstract
The use of biomarkers for the detection of fungal infections is of interest to complement histopathological and culture methods. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. D-Galactofuranose (Galf) is the antigenic epitope in glycoconjugates of several pathogenic fungi. Since Galf is not biosynthesized by mammals, it is an attractive candidate for diagnosis of infection. A monoclonal antibody that recognizes Galf is commercialized for detection of aspergillosis. The linkage of Galf in the natural glycans and the chemical structures of the synthesized Galf-containing oligosaccharides are described in this paper. The oligosaccharides could be used for the synthesis of artificial carbohydrate-based antigens, not enough exploited for diagnosis. D-Galactofuranose (Galf) is the unit in polysaccharides and glycoconjugates of several pathogenic fungi that is recognized by the immune system. Since Galf is not synthesized by mammals, it is an attractive candidate for diagnosis of infection. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. An antibody that recognizes Galf is commercialized for the detection of aspergillosis. Chemically synthesized Galf-containing oligosaccharides, reviewed in this paper, could therefore be used for the synthesis of artificial carbohydrate-based antigens and in diagnosis.
Collapse
|
9
|
Misra S, Valicherla GR, Mohd Shahab, Gupta J, Gayen JR, Misra-Bhattacharya S. UDP-galactopyranose mutase, a potential drug target against human pathogenic nematodeBrugia malayi. Pathog Dis 2016; 74:ftw072. [DOI: 10.1093/femspd/ftw072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
|
10
|
Dugard CK, Mertz RA, Rayon C, Mercadante D, Hart C, Benatti MR, Olek AT, SanMiguel PJ, Cooper BR, Reiter WD, McCann MC, Carpita NC. The Cell Wall Arabinose-Deficient Arabidopsis thaliana Mutant murus5 Encodes a Defective Allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2. PLANT PHYSIOLOGY 2016; 171:1905-20. [PMID: 27217494 PMCID: PMC4936543 DOI: 10.1104/pp.15.01922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/19/2016] [Indexed: 05/23/2023]
Abstract
Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP.
Collapse
Affiliation(s)
- Christopher K Dugard
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Rachel A Mertz
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Catherine Rayon
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Davide Mercadante
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Christopher Hart
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Matheus R Benatti
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Anna T Olek
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Phillip J SanMiguel
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Bruce R Cooper
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Wolf-Dieter Reiter
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Maureen C McCann
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology (C.K.D., R.A.M., A.T.O., N.C.C.), Department of Biological Sciences (M.R.B., M.C.M., N.C.C.), Bindley Bioscience Center (B.R.C., M.C.M., N.C.C.), and Department of Horticulture and Landscape Architecture (P.J.S.), Purdue University, West Lafayette, Indiana 47907-2054;Université de Picardie Jules Verne, EA 3900-BIOPI, 80039 Amiens, France (C.R.);Heidelberg Institut für Theoretische Studien, Molecular Biomechanics, 69118 Heidelberg, Germany (D.M.); andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (C.H., W.-D.R.)
| |
Collapse
|
11
|
Oka T, Goto M. Biosynthesis of Galactofuranose-containing Glycans in Filamentous Fungi. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1428.1j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo, University
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
12
|
Oka T, Goto M. Biosynthesis of Galactofuranose-containing Glycans in Filamentous Fungi. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1428.1e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo, University
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
13
|
van Straaten KE, Kuttiyatveetil JRA, Sevrain CM, Villaume SA, Jiménez-Barbero J, Linclau B, Vincent SP, Sanders DAR. Structural basis of ligand binding to UDP-galactopyranose mutase from Mycobacterium tuberculosis using substrate and tetrafluorinated substrate analogues. J Am Chem Soc 2015; 137:1230-44. [PMID: 25562380 DOI: 10.1021/ja511204p] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UDP-Galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the reversible conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf) and plays a key role in the biosynthesis of the mycobacterial cell wall galactofuran. A soluble, active form of UGM from Mycobacterium tuberculosis (MtUGM) was obtained from a dual His6-MBP-tagged MtUGM construct. We present the first complex structures of MtUGM with bound substrate UDP-Galp (both oxidized flavin and reduced flavin). In addition, we have determined the complex structures of MtUGM with inhibitors (UDP and the dideoxy-tetrafluorinated analogues of both UDP-Galp (UDP-F4-Galp) and UDP-Galf (UDP-F4-Galf)), which represent the first complex structures of UGM with an analogue in the furanose form, as well as the first structures of dideoxy-tetrafluorinated sugar analogues bound to a protein. These structures provide detailed insight into ligand recognition by MtUGM and show an overall binding mode similar to those reported for other prokaryotic UGMs. The binding of the ligand induces conformational changes in the enzyme, allowing ligand binding and active-site closure. In addition, the complex structure of MtUGM with UDP-F4-Galf reveals the first detailed insight into how the furanose moiety binds to UGM. In particular, this study confirmed that the furanoside adopts a high-energy conformation ((4)E) within the catalytic pocket. Moreover, these investigations provide structural insights into the enhanced binding of the dideoxy-tetrafluorinated sugars compared to unmodified analogues. These results will help in the design of carbohydrate mimetics and drug development, and show the enormous possibilities for the use of polyfluorination in the design of carbohydrate mimetics.
Collapse
Affiliation(s)
- Karin E van Straaten
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon S7N 5C9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Da Fonseca I, Qureshi IA, Mehra-Chaudhary R, Kizjakina K, Tanner JJ, Sobrado P. Contributions of unique active site residues of eukaryotic UDP-galactopyranose mutases to substrate recognition and active site dynamics. Biochemistry 2014; 53:7794-804. [PMID: 25412209 PMCID: PMC4270374 DOI: 10.1021/bi501008z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
UDP-galactopyranose mutase (UGM)
catalyzes the interconversion
between UDP-galactopyranose and UDP-galactofuranose. Absent in humans,
galactofuranose is found in bacterial and fungal cell walls and is
a cell surface virulence factor in protozoan parasites. For these
reasons, UGMs are targets for drug discovery. Here, we report a mutagenesis
and structural study of the UGMs from Aspergillus fumigatus and Trypanosoma cruzi focused on
active site residues that are conserved in eukaryotic UGMs but are
absent or different in bacterial UGMs. Kinetic analysis of the variants
F66A, Y104A, Q107A, N207A, and Y317A (A. fumigatus numbering) show decreases in kcat/KM values of 200–1000-fold for the mutase
reaction. In contrast, none of the mutations significantly affect
the kinetics of enzyme activation by NADPH. These results indicate
that the targeted residues are important for promoting the transition
state conformation for UDP-galactofuranose formation. Crystal structures
of the A. fumigatus mutant enzymes
were determined in the presence and absence of UDP to understand the
structural consequences of the mutations. The structures suggest important
roles for Asn207 in stabilizing the closed active site, and Tyr317
in positioning of the uridine ring. Phe66 and the corresponding residue
in Mycobacterium tuberculosis UGM (His68)
play a role as the backstop, stabilizing the galactopyranose group
for nucleophilic attack. Together, these results provide insight into
the essentiality of the targeted residues for realizing maximal catalytic
activity and a proposal for how conformational changes that close
the active site are temporally related and coupled together.
Collapse
Affiliation(s)
- Isabel Da Fonseca
- Department of Biochemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | | | | | | | |
Collapse
|
15
|
Golden E, Karton A, Vrielink A. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization. ACTA ACUST UNITED AC 2014; 70:3155-66. [PMID: 25478834 DOI: 10.1107/s139900471402286x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023]
Abstract
Cholesterol oxidase (CO) is a flavoenzyme that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The reductive half reaction occurs via a hydride transfer from the substrate to the FAD cofactor. The structures of CO reduced with dithionite under aerobic conditions and in the presence of the substrate 2-propanol under both aerobic and anaerobic conditions are presented. The 1.32 Å resolution structure of the dithionite-reduced enzyme reveals a sulfite molecule covalently bound to the FAD cofactor. The isoalloxazine ring system displays a bent structure relative to that of the oxidized enzyme, and alternate conformations of a triad of aromatic residues near to the cofactor are evident. A 1.12 Å resolution anaerobically trapped reduced enzyme structure in the presence of 2-propanol does not show a similar bending of the flavin ring system, but does show alternate conformations of the aromatic triad. Additionally, a significant difference electron-density peak is observed within a covalent-bond distance of N5 of the flavin moiety, suggesting that a hydride-transfer event has occurred as a result of substrate oxidation trapping the flavin in the electron-rich reduced state. The hydride transfer generates a tetrahedral geometry about the flavin N5 atom. High-level density-functional theory calculations were performed to correlate the crystallographic findings with the energetics of this unusual arrangement of the flavin moiety. These calculations suggest that strong hydrogen-bond interactions between Gly120 and the flavin N5 centre may play an important role in these structural features.
Collapse
Affiliation(s)
- Emily Golden
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
16
|
Dumitrescu L, Eppe G, Tikad A, Pan W, El Bkassiny S, Gurcha SS, Ardá A, Jiménez-Barbero J, Besra GS, Vincent SP. Selectfluor and NFSI exo-glycal fluorination strategies applied to the enhancement of the binding affinity of galactofuranosyltransferase GlfT2 inhibitors. Chemistry 2014; 20:15208-15. [PMID: 25251918 DOI: 10.1002/chem.201404180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Two complementary methods for the synthesis of fluorinated exo-glycals have been developed, for which previously no general reaction had been available. First, a Selectfluor-mediated fluorination was optimized after detailed analysis of all the reaction parameters. A dramatic effect of molecular sieves on the course of the reaction was observed. The reaction was generalized with a set of biologically relevant furanosides and pyranosides. A second direct approach involving carbanionic chemistry and the use of N-fluorobenzenesulfonimide (NFSI) was performed and this method gave better diastereoselectivities. Assignment of the Z/E configuration of all the fluorinated exo-glycals was achieved based on the results of HOESY experiments. Furthermore, fluorinated exo-glycal analogues of UDP-galactofuranose were prepared and assayed against GlfT2, which is a key enzyme involved in the cell-wall biosynthesis of major pathogens. The fluorinated exo-glycals proved to be potent inhibitors as compared with a series of C-glycosidic analogues of UDP-Galf, thus demonstrating the double beneficial effect of the exocyclic enol ether functionality and the fluorine atom.
Collapse
Affiliation(s)
- Lidia Dumitrescu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61, B-5000 Namur (Belgium), Fax: (+32) 81-72-45-17
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fodje M, Grochulski P, Janzen K, Labiuk S, Gorin J, Berg R. 08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:633-637. [PMID: 24763655 DOI: 10.1107/s1600577514005578] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Beamline 08B1-1 is a recently commissioned bending-magnet beamline at the Canadian Light Source. The beamline is designed for automation and remote access. Together with the undulator-based beamline 08ID-1, they constitute the Canadian Macromolecular Crystallography Facility. This paper describes the design, specifications, hardware and software of beamline 08B1-1. A few scientific results using data obtained at the beamline will be highlighted.
Collapse
Affiliation(s)
- Michel Fodje
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N2V3
| | - Pawel Grochulski
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N2V3
| | - Kathryn Janzen
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N2V3
| | - Shaunivan Labiuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N2V3
| | - James Gorin
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N2V3
| | - Russ Berg
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N2V3
| |
Collapse
|
18
|
Tanner JJ, Boechi L, Andrew McCammon J, Sobrado P. Structure, mechanism, and dynamics of UDP-galactopyranose mutase. Arch Biochem Biophys 2014; 544:128-41. [PMID: 24096172 PMCID: PMC3946560 DOI: 10.1016/j.abb.2013.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/16/2022]
Abstract
The flavoenzyme UDP-galactopyranose mutase (UGM) is a key enzyme in galactofuranose biosynthesis. The enzyme catalyzes the 6-to-5 ring contraction of UDP-galactopyranose to UDP-galactofuranose. Galactofuranose is absent in humans yet is an essential component of bacterial and fungal cell walls and a cell surface virulence factor in protozoan parasites. Thus, inhibition of galactofuranose biosynthesis is a valid strategy for developing new antimicrobials. UGM is an excellent target in this effort because the product of the UGM reaction represents the first appearance of galactofuranose in the biosynthetic pathway. The UGM reaction is redox neutral, which is atypical for flavoenzymes, motivating intense examination of the chemical mechanism and structural features that tune the flavin for its unique role in catalysis. These studies show that the flavin functions as nucleophile, forming a flavin-sugar adduct that facilitates galactose-ring opening and contraction. The 3-dimensional fold is novel and conserved among all UGMs, however the larger eukaryotic enzymes have additional secondary structure elements that lead to significant differences in quaternary structure, substrate conformation, and conformational flexibility. Here we present a comprehensive review of UGM three-dimensional structure, provide an update on recent developments in understanding the mechanism of the enzyme, and summarize computational studies of active site flexibility.
Collapse
Affiliation(s)
- John J Tanner
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, MO, United States.
| | - Leonardo Boechi
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - J Andrew McCammon
- Departments of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States; Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
19
|
Alam MK, van Straaten KE, Sanders DAR, Kaminskyj SGW. Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants. PLoS One 2014; 9:e85735. [PMID: 24454924 PMCID: PMC3893270 DOI: 10.1371/journal.pone.0085735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/30/2013] [Indexed: 11/18/2022] Open
Abstract
Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA) strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK) substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63) was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.
Collapse
Affiliation(s)
- Md Kausar Alam
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Karin E. van Straaten
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
20
|
Kizjakina K, Tanner JJ, Sobrado P. Targeting UDP-galactopyranose mutases from eukaryotic human pathogens. Curr Pharm Des 2013; 19:2561-73. [PMID: 23116395 PMCID: PMC3624792 DOI: 10.2174/1381612811319140007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022]
Abstract
UDP-Galactopyranose mutase (UGM) is a unique flavin-dependent enzyme that catalyzes the conversion of UDP-galactopyranose(UDP-Galp) to UDP-galactofuranose (UDP-Galf). The product of this reaction is the precursor to Galf, a major component of the cell wall and of cell surface glycoproteins and glycolipids in many eukaryotic and prokaryotic human pathogens. The function of UGM is important in the virulence of fungi, parasites, and bacteria. Its role in virulence and its absence in humans suggest that UGM is an ideal drug target. Significant structural and mechanistic information has been accumulated on the prokaryotic UGMs; however, in the past few years the research interest has shifted to UGMs from eukaryotic human pathogens such as fungi and protozoan parasites. It has become clear that UGMs from prokaryotic and eukaryotic organisms have different structural and mechanistic features. The amino acid sequence identity between these two classes of enzymes is low, resulting in differences in oligomeric states, substrate binding, active site flexibility, and interaction with redox partners. However, the unique role of the flavin cofactor in catalysis is conserved among this enzyme family. In this review, recent findings on eukaryotic UGMs are discussed and presented in comparison with prokaryotic UGMs.
Collapse
Affiliation(s)
- Karina Kizjakina
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
21
|
Boechi L, de Oliveira CAF, Da Fonseca I, Kizjakina K, Sobrado P, Tanner JJ, McCammon JA. Substrate-dependent dynamics of UDP-galactopyranose mutase: Implications for drug design. Protein Sci 2013; 22:1490-501. [PMID: 23934860 DOI: 10.1002/pro.2332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that represents one of the major health challenges of the Latin American countries. Successful efforts were made during the last few decades to control the transmission of this disease, but there is still no treatment for the 10 million adults in the chronic phase of the disease. In T. cruzi, as well as in other pathogens, the flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, a precursor of the cell surface β-galactofuranose that is involved in the virulence of the pathogen. The fact that UGM is not present in humans makes inhibition of this enzyme a good approach in the design of new Chagas therapeutics. By performing a series of computer simulations of T. cruzi UGM in the presence or absence of an active site ligand, we address the molecular details of the mechanism that controls the uptake and retention of the substrate. The simulations suggest a modular mechanism in which each moiety of the substrate controls the flexibility of a different protein loop. Furthermore, the calculations indicate that interactions with the substrate diphosphate moiety are especially important for stabilizing the closed active site. This hypothesis is supported with kinetics measurements of site-directed mutants of T. cruzi UGM. Our results extend our knowledge of UGM dynamics and offer new alternatives for the prospective design of drugs.
Collapse
Affiliation(s)
- Leonardo Boechi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
22
|
Fonseca IO, Kizjakina K, Sobrado P. UDP-galactopyranose mutases from Leishmania species that cause visceral and cutaneous leishmaniasis. Arch Biochem Biophys 2013; 538:103-10. [PMID: 24012809 DOI: 10.1016/j.abb.2013.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
Leishmaniasis is a vector-borne, neglected tropical disease caused by parasites from the genus Leishmania. Galactofuranose (Galf) is found on the cell surface of Leishmania parasites and is important for virulence. The flavoenzyme that catalyzes the isomerization of UDP-galactopyranose to UDP-Galf, UDP-galactopyranose mutase (UGM), is a validated drug target in protozoan parasites. UGMs from L. mexicana and L. infantum were recombinantly expressed, purified, and characterized. The isolated enzymes contained tightly bound flavin cofactor and were active only in the reduced form. NADPH is the preferred redox partner for both enzymes. A kcat value of 6 ± 0.4s(-1) and a Km value of 252 ± 42 μM were determined for L. infantum UGM. For L. mexicana UGM, these values were ∼4-times lower. Binding of UDP-Galp is enhanced 10-20 fold in the reduced form of the enzymes. Changes in the spectra of the reduced flavin upon interaction with the substrate are consistent with formation of a flavin-iminium ion intermediate.
Collapse
Affiliation(s)
- Isabel O Fonseca
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | | | | |
Collapse
|
23
|
Abstract
Nematodes represent a diverse phylum of both free living and parasitic species. While the species Caenorhabditis elegans is a valuable model organism, parasitic nematodes or helminths pose a serious threat to human health. Indeed, helminths cause many neglected tropical diseases that afflict humans. Nematode glycoconjugates have been implicated in evasive immunomodulation, a hallmark of nematode infections. One monosaccharide residue present in the glycoconjugates of several human pathogens is galactofuranose (Galf). This five-membered ring isomer of galactose has not been detected in mammals, making Galf metabolic enzymes attractive therapeutic targets. The only known pathway for biosynthetic incorporation of Galf into glycoconjugates depends upon generation of the glycosyl donor UDP-Galf by the flavoenzyme uridine 5'-diphosphate (UDP) galactopyranose mutase (UGM or Glf). A putative UGM encoding gene (glf-1) was recently identified in C. elegans. We sought to assess the catalytic activity of the corresponding gene product (CeUGM). CeUGM catalyzes the isomerization of UDP-Galf and UDP-galactopyranose (UDP-Galp). In the presence of enzyme, substrate, and a hydride source, a galactose-N5-FAD adduct was isolated, suggesting the CeUGM flavin adenine dinucleotide (FAD) cofactor serves as a nucleophile in covalent catalysis. Homology modeling and protein variants indicate that CeUGM possesses an active site similar to that of prokaryotic enzymes, despite the low sequence identity (∼15%) between eukaryotic and prokaryotic UGM proteins. Even with the primary sequence differences, heterocyclic UGM inhibitors developed against prokaryotic proteins also inhibit CeUGM activity. We postulate that inhibitors of CeUGM can serve as chemical probes of Galf in nematodes and as anthelmintic leads. The available data suggest that CeUGM facilitates the biosynthetic incorporation of Galf into nematode glycoconjugates through generation of the glycosyl donor UDP-Galf.
Collapse
Affiliation(s)
- Darryl A. Wesener
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - John F. May
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - Elizabeth M. Huffman
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| | - Laura L. Kiessling
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| |
Collapse
|
24
|
Huang W, Gauld JW. Tautomerization in the UDP-galactopyranose mutase mechanism: a DFT-cluster and QM/MM investigation. J Phys Chem B 2012; 116:14040-50. [PMID: 23148701 DOI: 10.1021/jp310952c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-galactopyranose mutase (UGM) is a key flavoenzyme involved in cell wall biosynthesis of a variety of pathogenic bacteria and hence, integral to their survival. It catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); interconversion of the galactose moieties six- and five-membered ring forms. We have synergistically applied both density functional theory (DFT)-cluster and ONIOM quantum mechanics/molecular mechanics (QM/MM) hybrid calculations to elucidate the mechanism of this important enzyme and to provide insight into its uncommon mechanism. It is shown that the flavin must initially be in its fully reduced form. Furthermore, it requires an N5(FAD)-H proton, which, through a series of tautomerizations, is transferred onto the ring oxygen of the substrate's Galp moiety to facilitate ring-opening with concomitant Schiff base formation. Conversely, Galf formation is achieved via a series of tautomerizations involving proton transfer from the galactose's -O4(Gal)H group ultimately onto the flavin's N5(FAD) center. With the DFT-cluster model, the overall rate-limiting step with a barrier of 120.0 kJ mol(-1) is the interconversion of two Galf-flavin tautomers: one containing a C4(FAD)-OH group and the other a tetrahedral protonated-N5(FAD) center. In contrast, in the QM/MM model a considerably more extensive chemical model was used that included all of the residues surrounding the active site, and modeled both their steric and electrostatic effects. In this approach, the overall rate-limiting step with a barrier of 99.2 kJ mol(-1) occurs during conformational rearrangement of the Schiff base linear galactose-flavin complex. This appears due to the lack of suitable functional groups to facilitate the rearrangement.
Collapse
Affiliation(s)
- WenJuan Huang
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | | |
Collapse
|
25
|
Abstract
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
26
|
Dhatwalia R, Singh H, Solano LM, Oppenheimer M, Robinson RM, Ellerbrock JF, Sobrado P, Tanner JJ. Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase. J Am Chem Soc 2012; 134:18132-8. [PMID: 23036087 PMCID: PMC3493617 DOI: 10.1021/ja308188z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery.
Collapse
Affiliation(s)
- Richa Dhatwalia
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Luis M. Solano
- Department of Biology, Costa Rica Institute of Technology, Cartago, Costa Rica
| | | | | | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Ansiaux C, N'Go I, Vincent SP. Reversible and Efficient Inhibition of UDP-Galactopyranose Mutase by Electrophilic, Constrained and Unsaturated UDP-Galactitol Analogues. Chemistry 2012; 18:14860-6. [DOI: 10.1002/chem.201202302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 11/09/2022]
|
28
|
Dhatwalia R, Singh H, Oppenheimer M, Sobrado P, Tanner JJ. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation. Biochemistry 2012; 51:4968-79. [PMID: 22646091 PMCID: PMC3426654 DOI: 10.1021/bi300498c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.
Collapse
Affiliation(s)
- Richa Dhatwalia
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Harkewal Singh
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|