1
|
Wang L, Deng R, Chen S, Tian R, Guo M, Chen Z, Zhang Y, Li H, Liu Q, Tang S, Zhu H. Carboxypeptidase A4 negatively regulates HGS-ETR1/2-induced pyroptosis by forming a positive feedback loop with the AKT signalling pathway. Cell Death Dis 2023; 14:793. [PMID: 38049405 PMCID: PMC10696061 DOI: 10.1038/s41419-023-06327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Pyroptosis, a mode of inflammatory cell death, has recently gained significant attention. However, the underlying mechanism remains poorly understood. HGS-ETR1/2 is a humanized monoclonal antibody that can bind to DR4/5 on the cell membrane and induce cell apoptosis by activating the death receptor signalling pathway. In this study, by using morphological observation, fluorescence double staining, LDH release and immunoblot detection, we confirmed for the first time that HGS-ETR1/2 can induce GSDME-mediated pyroptosis in hepatocellular carcinoma cells. Our study found that both inhibition of the AKT signalling pathway and silencing of CPA4 promote pyroptosis, while the overexpression of CPA4 inhibits it. Furthermore, we identified a positive regulatory feedback loop is formed between CPA4 and AKT phosphorylation. Specifically, CPA4 modulates AKT phosphorylation by regulating the expression of the AKT phosphatase PP2A, while inhibition of the AKT signalling pathway leads to a decreased transcription and translation levels of CPA4. Our study reveals a novel mechanism of pyroptosis induced by HGS-ETR1/2, which may provide a crucial foundation for future investigations into cancer immunotherapy.
Collapse
Affiliation(s)
- Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Shuishun Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Mengmeng Guo
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Zihao Chen
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yingdan Zhang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
2
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Bozin TN, Berdyshev IM, Chukhontseva KN, Karaseva MA, Konarev PV, Varizhuk AM, Lesovoy DM, Arseniev AS, Kostrov SV, Bocharov EV, Demidyuk IV. NMR structure of emfourin, a novel protein metalloprotease inhibitor: Insights into the mechanism of action. J Biol Chem 2023; 299:104585. [PMID: 36889586 PMCID: PMC10124921 DOI: 10.1016/j.jbc.2023.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Emfourin (M4in) is a protein metalloprotease inhibitor recently discovered in the bacterium Serratia proteamaculans and the prototype of a new family of protein protease inhibitors with an unknown mechanism of action. Protealysin-like proteases (PLPs) of the thermolysin family are natural targets of emfourin-like inhibitors widespread in bacteria and known in archaea. The available data indicate the involvement of PLPs in interbacterial interaction as well as bacterial interaction with other organisms and likely in pathogenesis. Arguably, emfourin-like inhibitors participate in the regulation of bacterial pathogenesis by controlling PLP activity. Here, we determined the 3D structure of M4in using solution NMR spectroscopy. The obtained structure demonstrated no significant similarity to known protein structures. This structure was used to model the M4in-enzyme complex and the complex model was verified by small-angle X-ray scattering. Based on the model analysis, we propose a molecular mechanism for the inhibitor, which was confirmed by site-directed mutagenesis. We show that two spatially close flexible loop regions are critical for the inhibitor-protease interaction. One region includes aspartic acid forming a coordination bond with catalytic Zn2+ of the enzyme and the second region carries hydrophobic amino acids interacting with protease substrate binding sites. Such an active site structure corresponds to the noncanonical inhibition mechanism. This is the first demonstration of such a mechanism for protein inhibitors of thermolysin family metalloproteases, which puts forward M4in as a new basis for the development of antibacterial agents relying on selective inhibition of prominent factors of bacterial pathogenesis belonging to this family.
Collapse
Affiliation(s)
- Timur N Bozin
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia; National Research Centre "Kurchatov Institute", Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor M Berdyshev
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Ksenia N Chukhontseva
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Maria A Karaseva
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr V Konarev
- Shubnikov Institute of Crystallography of the Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Anna M Varizhuk
- Moscow Institute of Physics and Technology, State University, Dolgoprudny, Russia
| | - Dmitry M Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Kostrov
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, State University, Dolgoprudny, Russia
| | - Ilya V Demidyuk
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
4
|
Isolation and Characterization of NpCI, a New Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita peloronta with Anti- Plasmodium falciparum Activity. Mar Drugs 2023; 21:md21020094. [PMID: 36827135 PMCID: PMC9966942 DOI: 10.3390/md21020094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 μmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.
Collapse
|
5
|
Rojas L, Cabrera-Muñoz A, Gil Pradas D, González JB, Alonso-Del-Rivero M, González-González Y. Arginine substitution by alanine at the P1 position increases the selectivity of CmPI-II, a non-classical Kazal inhibitor. Biochem Biophys Rep 2021; 26:101008. [PMID: 34027134 PMCID: PMC8131977 DOI: 10.1016/j.bbrep.2021.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
CmPI-II is a Kazal-type tight-binding inhibitor isolated from the Caribbean snail Cenchritis muricatus. This inhibitor has an unusual specificity in the Kazal family, as it can inhibit subtilisin A (SUBTA), elastases and trypsin. An alanine in CmPI-II P1 site could avoid trypsin inhibition while improving/maintaining SUBTA and elastases inhibition. Thus, an alanine mutant of this position (rCmPI-II R12A) was obtained by site-directed mutagenesis. The gene cmpiR12A was expressed in P. pastoris KM71H yeast. The recombinant protein (rCmPI-II R12A) was purified by the combination of two ionic exchange chromatography (1:cationic, 2 anionic) followed by and size exclusion chromatography. The N-terminal sequence obtained as well as the experimental molecular weight allowed verifying the identity of the recombinant protein, while the correct folding was confirmed by CD experiments. rCmPI-II R12A shows a slightly increase in potency against SUBTA and elastases. The alanine substitution at P1 site on CmPI-II abolishes the trypsin inhibition, confirming the relevance of an arginine residue at P1 site in CmPI-II for trypsin inhibition and leading to a molecule with more potentialities in biomedicine.
Collapse
Affiliation(s)
- Laritza Rojas
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Aymara Cabrera-Muñoz
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Dayrom Gil Pradas
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Jessica B González
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Maday Alonso-Del-Rivero
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| | - Yamile González-González
- Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25 # 455, Plaza de La Revolución, CP 10400, La Habana, Cuba
| |
Collapse
|
6
|
Reytor Gonzalez ML, Alonso Del Rivero Antigua M. Reviewing the experimental and mathematical factors involved in tight binding inhibitors K i values determination: The bi-functional protease inhibitor SmCI as a test model. Biochimie 2020; 181:86-95. [PMID: 33221375 DOI: 10.1016/j.biochi.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/25/2020] [Accepted: 11/14/2020] [Indexed: 10/23/2022]
Abstract
Different methodologies for determining the dissociation equilibrium constant (Ki) of protein tight binding inhibitors are frequently found in the scientific literature. Taking into account that the Ki value is the main parameter characterizing the inhibition strength, its determination often represents the first step during the characterization of a potential drug. The purpose of this review is to summarize the current information related to tight binding inhibitors Ki values determination and discuss about the importance of different factors as the enzyme concentration, the inhibitor concentration dilution series, the enzyme-inhibitor incubation time and the dose-response data mathematical fitting. For this aim, the bi-functional SmCI protease inhibitor is used as a tool for exemplifying the experimental and mathematical steps performed during tight binding inhibitors Ki values determination. In addition, the natural and the different recombinant forms of SmCI were used to go deeply into the comparison of some mathematic approaches that are frequently used in the literature. Finally, other biochemical techniques that could be potentially used for tight binding inhibitors Ki values determination are also commented.
Collapse
Affiliation(s)
- Mey Ling Reytor Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.Calle 25, #455, Vedado, Ciudad de La Habana, CP 104000
| | - Maday Alonso Del Rivero Antigua
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba.Calle 25, #455, Vedado, Ciudad de La Habana, CP 104000.
| |
Collapse
|
7
|
Shintre NA, Tamhane VA, Baig UI, Pund AS, Patwardhan RB, Deshpande NM. Diversity of Culturable Actinobacteria Producing Protease Inhibitors Isolated from the Intertidal Zones of Maharashtra, India. Curr Microbiol 2020; 77:3555-3564. [PMID: 32902705 DOI: 10.1007/s00284-020-02174-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
Phylogenetic diversity of culturable actinobacteria isolated from the intertidal regions of west coast of Maharashtra, India was studied using 16S rRNA gene sequencing. Total of 140 actinobacterial isolates were obtained, which belonged to 14 genera, 10 families and 65 putative species with Streptomyces being the most dominant (63%) genus followed by Nocardiopsis and Micromonospora. Isolates were screened for production of extracellular protease inhibitors (PI) against three pure proteases viz. chymotrypsin, trypsin, subtilisin and a crude extracellular protease from Pseudomonas aeruginosa. Eighty percent of the isolates showed PI activity against at least one of the four proteases, majority of these belonged to genus Streptomyces. Actinobacterial diversity from two sites Ade (17° 52' N, 73° 04' E) and Harnai (17° 48' N, 73° 05' E) with varying anthropological pressure showed that more putative species diversity was obtained from site with lower human intervention i.e. Ade (Shannon's H 3.45) than from Harnai (Shannon's H 2.83), a site with more human intervention. However, in Ade, percentage of isolates not showing PI activity against any of the proteases was close to 21% and that in Harnai was close to 9%. In other words, percentage of PI producers was lower at a site with lesser human intervention.
Collapse
Affiliation(s)
- Neha A Shintre
- Department of Microbiology, M.E.S. Abasaheb Garware College, Karve Road, Pune, Maharashtra, 411004, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Ulfat I Baig
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Anagha S Pund
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Rajashree B Patwardhan
- Department of Microbiology, Haribhai V. Desai College of Commerce, Arts and Science, Pune, Maharashtra, 411002, India
| | - Neelima M Deshpande
- Department of Microbiology, M.E.S. Abasaheb Garware College, Karve Road, Pune, Maharashtra, 411004, India.
| |
Collapse
|
8
|
Covaleda-Cortés G, Hernández M, Trejo SA, Mansur M, Rodríguez-Calado S, García-Pardo J, Lorenzo J, Vendrell J, Chávez MÁ, Alonso-Del-Rivero M, Avilés FX. Characterization, Recombinant Production and Structure-Function Analysis of NvCI, A Picomolar Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita versicolor. Mar Drugs 2019; 17:md17090511. [PMID: 31470614 PMCID: PMC6780499 DOI: 10.3390/md17090511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023] Open
Abstract
A very powerful proteinaceous inhibitor of metallocarboxypeptidases has been isolated from the marine snail Nerita versicolor and characterized in depth. The most abundant of four, very similar isoforms, NvCla, was taken as reference and N-terminally sequenced to obtain a 372-nucleotide band coding for the protein cDNA. The mature protein contains 53 residues and three disulphide bonds. NvCIa and the other isoforms show an exceptionally high inhibitory capacity of around 1.8 pM for human Carboxypeptidase A1 (hCPA1) and for other A-like members of the M14 CPA subfamily, whereas a twofold decrease in inhibitory potency is observed for carboxypeptidase B-like members as hCPB and hTAFIa. A recombinant form, rNvCI, was produced in high yield and HPLC, mass spectrometry and spectroscopic analyses by CD and NMR indicated its homogeneous, compact and thermally resistant nature. Using antibodies raised with rNvCI and histochemical analyses, a preferential distribution of the inhibitor in the surface regions of the animal body was observed, particularly nearby the open entrance of the shell and gut, suggesting its involvement in biological defense mechanisms. The properties of this strong, small and stable inhibitor of metallocarboxypeptidases envisage potentialities for its direct applicability, as well as leading or minimized forms, in biotechnological/biomedical uses.
Collapse
Affiliation(s)
- Giovanni Covaleda-Cortés
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Martha Hernández
- Faculty of Forestry Science, Biotechnology Center, Universidad de Concepción, Victoria 631, Barrio Universitario, 2407 Concepción, Chile
| | - Sebastián Alejandro Trejo
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Manuel Mansur
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Sergi Rodríguez-Calado
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Javier García-Pardo
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Julia Lorenzo
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Josep Vendrell
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - María Ángeles Chávez
- Center for Protein Research, Faculty of Biology, Universidad de la Habana, 10400 La Habana, Cuba
| | - Maday Alonso-Del-Rivero
- Center for Protein Research, Faculty of Biology, Universidad de la Habana, 10400 La Habana, Cuba.
| | - Francesc Xavier Avilés
- Institute of Biotechnology and Biomedicine and Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
9
|
Covaleda G, Gallego P, Vendrell J, Georgiadis D, Lorenzo J, Dive V, Aviles FX, Reverter D, Devel L. Synthesis and Structural/Functional Characterization of Selective M14 Metallocarboxypeptidase Inhibitors Based on Phosphinic Pseudopeptide Scaffold: Implications on the Design of Specific Optical Probes. J Med Chem 2019; 62:1917-1931. [PMID: 30688452 DOI: 10.1021/acs.jmedchem.8b01465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metallocarboxypeptidases (MCPs) of the M14 family are Zn2+-dependent exoproteases present in almost every tissue or fluid in mammals. These enzymes perform a large variety of physiological functions and are involved in several pathologies, such as pancreatic diseases, inflammation, fibrinolysis, and cancer. Here, we describe the synthesis and functional/structural characterization of a series of reversible tight-binding phosphinic pseudopeptide inhibitors that show high specificity and potency toward these proteases. Characterization of their inhibitory potential against a large variety of MCPs, combined with high-resolution crystal structures of three selected candidates in complex with human carboxypeptidase A (CPA)1, allowed to decipher the structural determinants governing selectivity for type-A of the M14A MCP family. Further, the phosphinic pseudopeptide framework was exploited to generate an optical probe selectively targeting human CPAs. The phosphinic pseudopeptides presented here constitute the first example of chemical probes useful to selectively report on type-A MCPs activity in complex media.
Collapse
Affiliation(s)
- Giovanni Covaleda
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Pablo Gallego
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Josep Vendrell
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Vincent Dive
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| | - Francesc Xavier Aviles
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain
| | - Laurent Devel
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO) , Université Paris-Saclay , Gif-sur-Yvette 91190 , France
| |
Collapse
|
10
|
Sabellastarte magnifica Carboxypeptidase Inhibitor: The first Kunitz inhibitor simultaneously interacting with carboxypeptidases and serine proteases. Biochimie 2018; 150:37-47. [PMID: 29730302 DOI: 10.1016/j.biochi.2018.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/29/2018] [Indexed: 01/14/2023]
Abstract
Multi-domain inhibitors capable to block the activity of different classes of proteases are not very common in nature. However, these kinds of molecules are attractive systems for biomedical or biotechnological applications, where two or more different targets need to be neutralized. SmCI, the Sabellastarte magnifica Carboxypeptidase Inhibitor, is a tri-domain BPTI-Kunitz inhibitor capable to inhibit serine proteases and A-like metallocarboxypeptidases. The BPTI-Kunitz family of proteins includes voltage gated channel blockers and inhibitors of serine proteases. SmCI is therefore, the only BPTI-Kunitz protein capable of inhibiting metallocarboxypeptidases. The X-ray structure of the SmCI-carboxypeptidase A complex previously obtained by us, revealed that this enzyme interacts with SmCI N-tail. In the complex, the reactive loops for serine protease inhibition remain fully exposed to the solvent in each domain, suggesting SmCI can simultaneously interact with multiple serine proteases. The twofold goals of this study were: i) to establish serine proteases-SmCI binding stoichiometry, given that the inhibitor is comprised of three potential binding domains; and ii) to determine whether or not SmCI can simultaneously bind both classes of enzymes, to which it binds individually. Our experimental approach included a variety of techniques for the study of protein-protein interactions, using as model enzymes pancreatic trypsin, elastase and carboxypeptidase A. In particular, we combined information obtained from gel filtration chromatography, denaturing electrophoresis, nuclear magnetic resonance spectroscopy and enzyme inhibition assays. Our results show that SmCI is able to bind three trypsin molecules under saturating conditions, but only one elastase interacts with the inhibitor. Additionally, we demonstrated that SmCI can bind serine proteases and carboxypeptidases at the same time (at least in the ratio 1:1:1), becoming the first protease inhibitor that simultaneously blocks these two mechanistic classes of enzymes.
Collapse
|
11
|
Crystal structure and mechanism of human carboxypeptidase O: Insights into its specific activity for acidic residues. Proc Natl Acad Sci U S A 2018; 115:E3932-E3939. [PMID: 29636417 DOI: 10.1073/pnas.1803685115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human metallocarboxypeptidase O (hCPO) is a recently discovered digestive enzyme localized to the apical membrane of intestinal epithelial cells. Unlike pancreatic metallocarboxypeptidases, hCPO is glycosylated and produced as an active enzyme with distinctive substrate specificity toward C-terminal (C-t) acidic residues. Here we present the crystal structure of hCPO at 1.85-Å resolution, both alone and in complex with a carboxypeptidase inhibitor (NvCI) from the marine snail Nerita versicolor The structure provides detailed information regarding determinants of enzyme specificity, in particular Arg275, placed at the bottom of the substrate-binding pocket. This residue, located at "canonical" position 255, where it is Ile in human pancreatic carboxypeptidases A1 (hCPA1) and A2 (hCPA2) and Asp in B (hCPB), plays a dominant role in determining the preference of hCPO for acidic C-t residues. Site-directed mutagenesis to Asp and Ala changes the specificity to C-t basic and hydrophobic residues, respectively. The single-site mutants thus faithfully mimic the enzymatic properties of CPB and CPA, respectively. hCPO also shows a preference for Glu over Asp, probably as a consequence of a tighter fitting of the Glu side chain in its S1' substrate-binding pocket. This unique preference of hCPO, together with hCPA1, hCPA2, and hCPB, completes the array of C-t cleavages enabling the digestion of the dietary proteins within the intestine. Finally, in addition to activity toward small synthetic substrates and peptides, hCPO can also trim C-t extensions of proteins, such as epidermal growth factor, suggesting a role in the maturation and degradation of growth factors and bioactive peptides.
Collapse
|
12
|
Cotabarren J, Tellechea ME, Avilés FX, Lorenzo Rivera J, Obregón WD. Biochemical characterization of the YBPCI miniprotein, the first carboxypeptidase inhibitor isolated from Yellow Bell Pepper ( Capsicum annuum L). A novel contribution to the knowledge of miniproteins stability. Protein Expr Purif 2018; 144:55-61. [DOI: 10.1016/j.pep.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
13
|
Cotabarren J, Tellechea ME, Tanco SM, Lorenzo J, Garcia-Pardo J, Avilés FX, Obregón WD. Biochemical and MALDI-TOF Mass Spectrometric Characterization of a Novel Native and Recombinant Cystine Knot Miniprotein from Solanum tuberosum subsp. andigenum cv. Churqueña. Int J Mol Sci 2018; 19:ijms19030678. [PMID: 29495576 PMCID: PMC5877539 DOI: 10.3390/ijms19030678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/03/2023] Open
Abstract
Cystine-knot miniproteins (CKMPs) are an intriguing group of cysteine-rich molecules that combine the characteristics of proteins and peptides. Typically, CKMPs are fewer than 50 residues in length and share a characteristic knotted scaffold characterized by the presence of three intramolecular disulfide bonds that form the singular knotted structure. The knot scaffold confers on these proteins remarkable chemical, thermal, and proteolytic stability. Recently, CKMPs have emerged as a novel class of natural molecules with interesting pharmacological properties. In the present work, a novel cystine-knot metallocarboxypeptidase inhibitor (chuPCI) was isolated from tubers of Solanum tuberosum, subsp. andigenum cv. Churqueña. Our results demonstrated that chuPCI is a member of the A/B-type family of metallocarboxypeptidases inhibitors. chuPCI was expressed and characterized by a combination of biochemical and mass spectrometric techniques. Direct comparison of the MALDI-TOF mass spectra for the native and recombinant molecules allowed us to confirm the presence of four different forms of chuPCI in the tubers. The majority of such forms have a molecular weight of 4309 Da and contain a cyclized Gln in the N-terminus. The other three forms are derived from N-terminal and/or C-terminal proteolytic cleavages. Taken together, our results contribute to increase the current repertoire of natural CKMPs.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900AVW, Argentina.
| | - Mariana Edith Tellechea
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900AVW, Argentina.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Sebastián Martín Tanco
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Javier Garcia-Pardo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900AVW, Argentina.
| |
Collapse
|
14
|
Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI). Sci Rep 2017; 7:5457. [PMID: 28710462 PMCID: PMC5511257 DOI: 10.1038/s41598-017-05657-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 12/28/2022] Open
Abstract
Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.
Collapse
|
15
|
Covaleda G, Trejo SA, Salas-Sarduy E, Del Rivero MA, Chavez MA, Aviles FX. Intensity fading MALDI-TOF mass spectrometry and functional proteomics assignments to identify protease inhibitors in marine invertebrates. J Proteomics 2017; 165:75-92. [PMID: 28602552 DOI: 10.1016/j.jprot.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/20/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Proteases and their inhibitors have become molecules of increasing fundamental and applicative value. Here we report an integrated strategy to identify and analyze such inhibitors from Caribbean marine invertebrates extracts by a fast and sensitive functional proteomics-like approach. The strategy works in three steps: i) multiplexed enzymatic inhibition kinetic assays, ii) Intensity Fading MALDI-TOF MS to establish a link between inhibitory molecules and the related MALDI signal(s) detected in the extract(s), and iii) ISD-CID-T3 MS fragmentation on the parent MALDI signals selected in the previous step, enabling the partial or total top-down sequencing of the molecules. The present study has allowed validation of the whole approach, identification of a substantial number of novel protein protease inhibitors, as well as full or partial sequencing of reference molecular species and of many unknown ones, respectively. Such inhibitors correspond to six protease subfamilies (metallocarboxypeptidases-A and -B, pepsin, papain, trypsin and subtilisin), are small (1-10KDa) disulfide-rich proteins, and have been found at diverse frequencies among the invertebrates (13 to 41%). The overall procedure could be tailored to other enzyme-inhibitor and protein interacting systems, analyzing samples at medium-throughput level and leading to the functional and structural characterization of proteinaceous ligands from complex biological extracts. SIGNIFICANCE Invertebrate animals, and marine ones among, display a remarkable diversity of species and contained biomolecules. Many of their proteins-peptides have high biological, biotechnological and biomedical potential interest but, because of the lack of sequenced genomes behind, their structural and functional characterization constitutes a great challenge. Here, looking at the small, disulfide-rich, proteinaceous inhibitors of proteases found in them, it is shown that such problem can be significatively facilitated by integrative multiplexed enzymatic assays, affinity-based Intensity-Fading (IF-) MALDI-TOF mass spectrometry (MS), and on-line MS fragmentation, in a fast and easy approach.
Collapse
Affiliation(s)
- Giovanni Covaleda
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sebastian A Trejo
- Servei de Proteomica i Biologia Estructural SePBioEs, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Emir Salas-Sarduy
- Centro de Estudio de Proteinas, Facultad de Biologia, Universidad de la Habana, Cuba
| | | | - Maria Angeles Chavez
- Centro de Estudio de Proteinas, Facultad de Biologia, Universidad de la Habana, Cuba.
| | - Francesc X Aviles
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
16
|
Identification of Tight-Binding Plasmepsin II and Falcipain 2 Inhibitors in Aqueous Extracts of Marine Invertebrates by the Combination of Enzymatic and Interaction-Based Assays. Mar Drugs 2017; 15:md15040123. [PMID: 28430158 PMCID: PMC5408269 DOI: 10.3390/md15040123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
Natural products from marine origin constitute a very promising and underexplored source of interesting compounds for modern biotechnological and pharmaceutical industries. However, their evaluation is quite challenging and requires specifically designed assays to reliably identify the compounds of interest in a highly heterogeneous and interfering context. In the present study, we describe a general strategy for the confident identification of tight-binding protease inhibitors in the aqueous extracts of 62 Cuban marine invertebrates, using Plasmodium falciparum hemoglobinases Plasmepsin II and Falcipain 2 as model enzymes. To this end, we first developed a screening strategy that combined enzymatic with interaction-based assays and then validated screening conditions using five reference extracts. Interferences were evaluated and minimized. The results from the massive screening of such extracts, the validation of several hits by a variety of interaction-based assays and the purification and functional characterization of PhPI, a multifunctional and reversible tight-binding inhibitor for Plasmepsin II and Falcipain 2 from the gorgonian Plexaura homomalla, are presented.
Collapse
|
17
|
Cabrera-Muñoz A, Rojas L, Gil DF, González-González Y, Mansur M, Camejo A, Pires JR, Alonso-Del-Rivero Antigua M. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization. Protein Expr Purif 2016; 126:127-136. [PMID: 27353494 DOI: 10.1016/j.pep.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.
Collapse
Affiliation(s)
- Aymara Cabrera-Muñoz
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Laritza Rojas
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Dayrom F Gil
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Yamile González-González
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Manuel Mansur
- Institut de Biotecnología i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| | - Ayamey Camejo
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - José R Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, Sala 10, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Maday Alonso-Del-Rivero Antigua
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Ciudad de La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| |
Collapse
|
18
|
Tellechea M, Garcia-Pardo J, Cotabarren J, Lufrano D, Bakas L, Avilés F, Obregon W, Lorenzo J, Tanco S. Microplate Assay to Study Carboxypeptidase A Inhibition in Andean Potatoes. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
19
|
Kim HS, Im HN, An DR, Yoon JY, Jang JY, Mobashery S, Hesek D, Lee M, Yoo J, Cui M, Choi S, Kim C, Lee NK, Kim SJ, Kim JY, Bang G, Han BW, Lee BI, Yoon HJ, Suh SW. The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of L,D-Carboxypeptidase. J Biol Chem 2015; 290:25103-17. [PMID: 26306031 PMCID: PMC4599014 DOI: 10.1074/jbc.m115.658781] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.
Collapse
Affiliation(s)
- Hyoun Sook Kim
- From the Departments of Chemistry and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ha Na Im
- Biophysics and Chemical Biology, College of Natural Sciences, and
| | - Doo Ri An
- Biophysics and Chemical Biology, College of Natural Sciences, and
| | - Ji Young Yoon
- Biophysics and Chemical Biology, College of Natural Sciences, and
| | | | - Shahriar Mobashery
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Dusan Hesek
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Mijoon Lee
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jakyung Yoo
- the National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minghua Cui
- the National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun Choi
- the National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Cheolhee Kim
- the Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Nam Ki Lee
- the Department of Physics, POSTECH, Pohang 790-784, Republic of Korea
| | - Soon-Jong Kim
- the Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Jin Young Kim
- the Division of Mass Spectrometry, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea, and
| | - Geul Bang
- the Division of Mass Spectrometry, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea, and
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byung Il Lee
- the Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Gyeonggi 410-769, Republic of Korea
| | | | - Se Won Suh
- From the Departments of Chemistry and Biophysics and Chemical Biology, College of Natural Sciences, and
| |
Collapse
|
20
|
Fraga H, Graña-Montes R, Illa R, Covaleda G, Ventura S. Association between foldability and aggregation propensity in small disulfide-rich proteins. Antioxid Redox Signal 2014; 21:368-83. [PMID: 24635049 PMCID: PMC4076991 DOI: 10.1089/ars.2013.5543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Disulfide-rich domains (DRDs) are small proteins whose native structure is stabilized by the presence of covalent disulfide bonds. These domains are versatile and can perform a wide range of functions. Many of these domains readily unfold on disulfide bond reduction, suggesting that in the absence of covalent bonding they might display significant disorder. RESULTS Here, we analyzed the degree of disorder in 97 domains representative of the different DRDs families and demonstrate that, in terms of sequence, many of them can be classified as intrinsically disordered proteins (IDPs) or contain predicted disordered regions. The analysis of the aggregation propensity of these domains indicates that, similar to IDPs, their sequences are more soluble and have less aggregating regions than those of other globular domains, suggesting that they might have evolved to avoid aggregation after protein synthesis and before they can attain its compact and covalently linked native structure. INNOVATION AND CONCLUSION DRDs, which resemble IDPs in the reduced state and become globular when their disulfide bonds are formed, illustrate the link between protein folding and aggregation propensities and how these two properties cannot be easily dissociated, determining the main traits of the folding routes followed by these small proteins to attain their native oxidized states.
Collapse
Affiliation(s)
- Hugo Fraga
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
Salas-Sarduy E, Cabrera-Muñoz A, Cauerhff A, González-González Y, Trejo SA, Chidichimo A, Chávez-Planes MDLA, Cazzulo JJ. Antiparasitic effect of a fraction enriched in tight-binding protease inhibitors isolated from the Caribbean coral Plexaura homomalla. Exp Parasitol 2013; 135:611-22. [DOI: 10.1016/j.exppara.2013.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
|
22
|
A Noncanonical Mechanism of Carboxypeptidase Inhibition Revealed by the Crystal Structure of the Tri-Kunitz SmCI in Complex with Human CPA4. Structure 2013; 21:1118-26. [DOI: 10.1016/j.str.2013.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 11/19/2022]
|