1
|
Thankachan S, Bhardwaj BK, Patel D, Kp K, Kabekkodu SP, Suresh PS. Clinicopathological correlation of PTPN3 expression in breast cancer and in silico drug screening against PTPN3 for therapeutics. Cancer Genet 2025; 294-295:111-122. [PMID: 40315635 DOI: 10.1016/j.cancergen.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
PTPN3 regulates cellular signaling and is dysregulated in cancer. There has been less research about the oncogenic impact of PTPN3 in breast cancer patients. This study analyzed PTPN3 mRNA levels and their prognostic significance in breast cancer using TCGA datasets. qRT-PCR was used to assess PTPN3 expression in formalin-fixed, paraffin-embedded Indian breast cancer patient samples (tumor-74, control-36). PTPN3 protein levels (ER-positive 15; ER-negative: 15; distant normal breast tissues: 20) were also immunohistochemically assessed using the H-score method. The biomarker potential was examined using a receiver operating characteristic (ROC) analysis. Docking and molecular dynamics (MD) simulations were used to find PTPN3 inhibitors (PDB ID: 2B49) from 892 FDA-approved natural chemicals in the ZINC database. PTPN3 mRNA and protein expression were significantly higher in breast cancers and associated with clinicopathological variables such as age, ER status, tumor stage, grade, Ki-67 index, menopause, and lymph node metastasis (p < 0.05). ROC analysis revealed an AUC of 0.7654, indicating PTPN3's biomarker potential. Docking yielded three high-affinity inhibitors: Cyclocort (ZINC000003977777), Toposar (ZINC000003938684), and Tetracycline (ZINC000084441937), with binding energies of -9.3, -8.73, and -8.66 kcal/mol, respectively. MD simulations confirmed stable connections via hydrogen bonds and hydrophobic interactions under minimal constraints. In conclusion, PTPN3 overexpression supports its role as a prognostic biomarker, and Cyclocort, Toposar, and Tetracycline need further confirmation as potential PTPN3 inhibitors.
Collapse
Affiliation(s)
- Sanu Thankachan
- Department of Bioscience and Engineering, National Institute of Technology, Calicut 673601, Kerala, India
| | - Boddapati Kalyani Bhardwaj
- Department of Bioscience and Engineering, National Institute of Technology, Calicut 673601, Kerala, India
| | - Dimple Patel
- Department of Bioscience and Engineering, National Institute of Technology, Calicut 673601, Kerala, India
| | - Kavitha Kp
- Department of Pathology, Aster Malabar Institute of Medical Sciences (MIMS), Calicut 673016, Kerala, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|
2
|
Qi X, Wang F, Thomas L, Ma S, Palen K, Lu Y, Sheinin Y, Gershan J, Fu L, Chen G. Protein tyrosine phosphatase PTPH1 potentiates receptor tyrosine kinase HER2 oncogenesis via a PDZ-coupled and phosphorylation-driven scaffold. Am J Cancer Res 2024; 14:5734-5751. [PMID: 39803648 PMCID: PMC11711543 DOI: 10.62347/jrhh6478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis. PTPH1 de-phosphorylates HER2 and reciprocally increases HER2 protein expression dependent on cellular content. PTPH1 itself can be phosphorylated at S459 by redundant kinases p38γ and/or PBK, thereby distinctively regulating expression and/or turnover of scaffold proteins. Moreover, PTPH1 and HER2 cooperate to increase PBK and Yap1 transcription thus acting as an additional mechanism to activate the scaffold. PTPH1 protein levels are higher in HER2+ breast cancer in which their phosphorylated forms are inversely correlated, indicating an integrated oncogenic activity through coordinated PTPH1 phosphorylation and HER2 de-phosphorylation. Combinational, but not individual, application of scaffold-kinases' inhibitors suppresses xenograft growth in mice. Thus, a PDZ-coupled and phosphorylation-driven scaffold can integrate proliferative signaling of enzymatically distinct proteins as a super-oncogene and as a target for combination therapy.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Fang Wang
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, China
| | - Linda Thomas
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Shao Ma
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Department of Breast Surgery, Qilu Hospital of Shandong UniversityJinan 250012, Shandong, China
| | - Katie Palen
- Division of Pediatric Hematology and Oncology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Yan Lu
- Zhejiang Provincial Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital and Institute of Translational Medicine, Zhejiang University of MedicineHangzhou 310006, Zhejiang, China
| | - Yuri Sheinin
- Department of Pathology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Jill Gershan
- Division of Pediatric Hematology and Oncology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
| | - Liwu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, Wisconsin 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical CenterMilwaukee, Wisconsin 53226, USA
| |
Collapse
|
3
|
Qi XM, Chen G. p38γ MAPK Inflammatory and Metabolic Signaling in Physiology and Disease. Cells 2023; 12:1674. [PMID: 37443708 PMCID: PMC10341180 DOI: 10.3390/cells12131674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.
Collapse
Affiliation(s)
- Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
4
|
Genera M, Colcombet-Cazenave B, Croitoru A, Raynal B, Mechaly A, Caillet J, Haouz A, Wolff N, Caillet-Saguy C. Interactions of the protein tyrosine phosphatase PTPN3 with viral and cellular partners through its PDZ domain: insights into structural determinants and phosphatase activity. Front Mol Biosci 2023; 10:1192621. [PMID: 37200868 PMCID: PMC10185773 DOI: 10.3389/fmolb.2023.1192621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a phosphatase containing a PDZ (PSD-95/Dlg/ZO-1) domain that has been found to play both tumor-suppressive and tumor-promoting roles in various cancers, despite limited knowledge of its cellular partners and signaling functions. Notably, the high-risk genital human papillomavirus (HPV) types 16 and 18 and the hepatitis B virus (HBV) target the PDZ domain of PTPN3 through PDZ-binding motifs (PBMs) in their E6 and HBc proteins respectively. This study focuses on the interactions between the PTPN3 PDZ domain (PTPN3-PDZ) and PBMs of viral and cellular protein partners. We solved the X-ray structures of complexes between PTPN3-PDZ and PBMs of E6 of HPV18 and the tumor necrosis factor-alpha converting enzyme (TACE). We provide new insights into key structural determinants of PBM recognition by PTPN3 by screening the selectivity of PTPN3-PDZ recognition of PBMs, and by comparing the PDZome binding profiles of PTPN3-recognized PBMs and the interactome of PTPN3-PDZ. The PDZ domain of PTPN3 was known to auto-inhibit the protein's phosphatase activity. We discovered that the linker connecting the PDZ and phosphatase domains is involved in this inhibition, and that the binding of PBMs does not impact this catalytic regulation. Overall, the study sheds light on the interactions and structural determinants of PTPN3 with its cellular and viral partners, as well as on the inhibitory role of its PDZ domain on its phosphatase activity.
Collapse
Affiliation(s)
- Mariano Genera
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Baptiste Colcombet-Cazenave
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Anastasia Croitoru
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform-C2RT, CNRS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ariel Mechaly
- Crystallography Platform-C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Joël Caillet
- CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Crystallography Platform-C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Wolff
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
| | - Célia Caillet-Saguy
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- *Correspondence: Célia Caillet-Saguy,
| |
Collapse
|
5
|
Huang W, Zhao Y, Xu Z, Wu X, Qiao M, Zhu Z, Zhao Z. The Regulatory Mechanism of miR-574-5p Expression in Cancer. Biomolecules 2022; 13:biom13010040. [PMID: 36671425 PMCID: PMC9855975 DOI: 10.3390/biom13010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small, single-stranded, non-coding RNAs approximately 22 nucleotides in length. The dysregulation of miRNAs has been widely investigated in various pathological processes, including tumorigenesis, providing a biomarker for cancer diagnosis and prognosis. As a member of the miRNA family, miR-574-5p is located on the human chromosome 4p14 and is highly correlated with a high incidence of human cancers. Functional pathways as well as underlying novel mechanisms upregulate or downregulate miR-574-5p, which plays an important regulatory role in tumorigenesis and progression. In this review, we systematically summarize the context-dependent implications of miR-574-5p and review differences in miR-574-5p expression in cancer. We also investigate the intricate functions exerted by miR-574-5p in diverse pathological processes and highlight regulatory pathways, networks, and other underlying novel mechanisms. The clinical applications of miR-574-5p as a diagnostic biomarker, prognostic biomarker, and therapeutic mechanism are also discussed in this paper. On this basis, we anticipate that miR-574-5p will be a promising and effective biomarker and therapeutic target.
Collapse
|
6
|
Lee HS, Yun HY, Lee EW, Shin HC, Kim SJ, Ku B. Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein. J Microbiol 2022; 60:395-401. [PMID: 35089587 DOI: 10.1007/s12275-022-1606-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other high-risk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
8
|
Wang F, Qi XM, Wertz R, Mortensen M, Hagen C, Evans J, Sheinin Y, James M, Liu P, Tsai S, Thomas J, Mackinnon A, Dwinell M, Myers CR, Bartrons Bach R, Fu L, Chen G. p38γ MAPK Is Essential for Aerobic Glycolysis and Pancreatic Tumorigenesis. Cancer Res 2020; 80:3251-3264. [PMID: 32580961 PMCID: PMC9358694 DOI: 10.1158/0008-5472.can-19-3281] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/20/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022]
Abstract
KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan Wertz
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew Mortensen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Catherine Hagen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John Evans
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael James
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Michael Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ramon Bartrons Bach
- Department de Ciencies Fisiologiques, Facultat de Medicina. Universitat de Barcelona, Spain
| | - Liwu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
9
|
MicroRNA-574-5p in gastric cancer cells promotes angiogenesis by targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3). Gene 2020; 733:144383. [PMID: 31972307 DOI: 10.1016/j.gene.2020.144383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
We elucidate in this study that up-regulation of miR-574-5p in gastric cancer cells under hypoxic conditions contributed to angiogenesis. We found that miR-574-5p and HIF-1α were up-regulated in gastric cancer cells cultured under 2% O2 or in medium containing CoCl2, and in muscle tissues of mice injected with NaNO2, indicating up-regulation of miR-574-5p in vitro or in vivo in response to hypoxic conditions. We hypothesized that up-regulation of miR-574-5p could promote angiogenesis. Transfection of gastric cancer cells with miR-574-5p mimics or inhibitor resulted in increase or decrease in the expression of VEGFA. Viability, migration, invasion and tube formation of HUVECs cultured with conditioned medium from SGC/574 cells transfected with miR-574-5p inhibitor were reduced. Tube formation of HUVECs cultured with conditioned medium from SGC-7901 cells transfected with miR-574-5p mimics was increased. An in vivo study demonstrated that inhibition of miR-574-5p in the tumor xenografts of mice reduced the expression of CD31 one of the endothelial cell markers. We identified PTPN3 a tyrosine phosphatase as a target of miR-574-5p that bound to the 3'UTR of PTPN3 mRNA to inhibit the expression of PTPN3. Furthermore, the data in this study demonstrated that inhibition of PTPN3 in gastric cancer cells enhanced phosphorylation of p44/42 MAPKs and promoted angiogenesis. We conclude that miR-574-5p in gastric cancer cells promoted angiogenesis via enhancing phosphorylation of p44/42 MAPKs by miR-574-5p inhibition of PTPN3 expression.
Collapse
|
10
|
The Protein Tyrosine Phosphatase H1 PTPH1 Supports Proliferation of Keratinocytes and is a Target of the Human Papillomavirus Type 8 E6 Oncogene. Cells 2019; 8:cells8030244. [PMID: 30875834 PMCID: PMC6468676 DOI: 10.3390/cells8030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) replicate their DNA in the suprabasal layer of the infected mucosa or skin. In order to create a suitable environment for vegetative viral DNA replication HPV delay differentiation and sustain keratinocyte proliferation that can lead to hyperplasia. The mechanism underlying cell growth stimulation is not well characterized. Here, we show that the E6 oncoprotein of the βHPV type 8 (HPV8), which infects the cutaneous skin and is associated with skin cancer in Epidermodysplasia verruciformis patients and immunosuppressed organ transplant recipients, binds to the protein tyrosine phosphatase H1 (PTPH1), which resulted in increased protein expression and phosphatase activity of PTPH1. Suppression of PTPH1 in immortalized keratinocytes reduced cell proliferation as well as the level of epidermal growth factor receptor (EGFR). Furthermore, we report that HPV8E6 expressing keratinocytes have increased level of active, GTP-bound Ras. This effect was independent of PTPH1. Therefore, HPV8E6-mediated targeting of PTPH1 might result in higher level of EGFR and enhanced keratinocyte proliferation. The HPV8E6-mediated stimulation of Ras may be an additional step to induce cell growth. Our results provide novel insights into the mechanism how βHPVE6 proteins support proliferation of infected keratinocytes, thus creating an environment with increased risk of development of skin cancer particularly upon UV-induced DNA mutations.
Collapse
|
11
|
Targeting an oncogenic kinase/phosphatase signaling network for cancer therapy. Acta Pharm Sin B 2018; 8:511-517. [PMID: 30109176 PMCID: PMC6089844 DOI: 10.1016/j.apsb.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023] Open
Abstract
Protein kinases and phosphatases signal by phosphorylation and dephosphorylation to precisely control the activities of their individual and common substrates for a coordinated cellular outcome. In many situations, a kinase/phosphatase complex signals dynamically in time and space through their reciprocal regulations and their cooperative actions on a substrate. This complex may be essential for malignant transformation and progression and can therefore be considered as a target for therapeutic intervention. p38γ is a unique MAPK family member that contains a PDZ motif at its C-terminus and interacts with a PDZ domain-containing protein tyrosine phosphatase PTPH1. This PDZ-coupled binding is required for both PTPH1 dephosphorylation and inactivation of p38γ and for p38γ phosphorylation and activation of PTPH1. Moreover, the p38γ/PTPH1 complex can further regulate their substrates phosphorylation and dephosphorylation, which impacts Ras transformation, malignant growth and progression, and therapeutic response. This review will use the p38γ/PTPH1 signaling network as an example to discuss the potential of targeting the kinase/phosphatase signaling complex for development of novel targeted cancer therapy.
Collapse
|
12
|
NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest. Oncogenesis 2018; 7:42. [PMID: 29795369 PMCID: PMC5968025 DOI: 10.1038/s41389-018-0051-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Notch dysregulation has been implicated in numerous tumors, including triple-negative breast cancer (TNBC), which is the breast cancer subtype with the worst clinical outcome. However, the importance of individual receptors in TNBC and their specific mechanism of action remain to be elucidated, even if recent findings suggested a specific role of activated-Notch3 in a subset of TNBCs. Epidermal growth factor receptor (EGFR) is overexpressed in TNBCs but the use of anti-EGFR agents (including tyrosine kinase inhibitors, TKIs) has not been approved for the treatment of these patients, as clinical trials have shown disappointing results. Resistance to EGFR blockers is commonly reported. Here we show that Notch3-specific inhibition increases TNBC sensitivity to the TKI-gefitinib in TNBC-resistant cells. Mechanistically, we demonstrate that Notch3 is able to regulate the activated EGFR membrane localization into lipid rafts microdomains, as Notch3 inhibition, such as rafts depletion, induces the EGFR internalization and its intracellular arrest, without involving receptor degradation. Interestingly, these events are associated with the EGFR tyrosine dephosphorylation at Y1173 residue (but not at Y1068) by the protein tyrosine phosphatase H1 (PTPH1), thus suggesting its possible involvement in the observed Notch3-dependent TNBC sensitivity response to gefitinib. Consistent with this notion, a nuclear localization defect of phospho-EGFR is observed after combined blockade of EGFR and Notch3, which results in a decreased TNBC cell survival. Notably, we observed a significant correlation between EGFR and NOTCH3 expression levels by in silico gene expression and immunohistochemical analysis of human TNBC primary samples. Our findings strongly suggest that combined therapies of TKI-gefitinib with Notch3-specific suppression may be exploited as a drug combination advantage in TNBC treatment.
Collapse
|
13
|
Yin N, Lepp A, Ji Y, Mortensen M, Hou S, Qi XM, Myers CR, Chen G. The K-Ras effector p38γ MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation. J Biol Chem 2017; 292:15070-15079. [PMID: 28739874 DOI: 10.1074/jbc.m117.779488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
Mutations in K-Ras and epidermal growth factor receptor (EGFR) are mutually exclusive, but it is not known how K-Ras activation inactivates EGFR, leading to resistance of cancer cells to anti-EGFR therapy. Here, we report that the K-Ras effector p38γ MAPK confers intrinsic resistance to small molecular tyrosine kinase inhibitors (TKIs) by concurrently stimulating EGFR gene transcription and protein dephosphorylation. We found that p38γ increases EGFR transcription by c-Jun-mediated promoter binding and stimulates EGFR dephosphorylation via activation of protein-tyrosine phosphatase H1 (PTPH1). Silencing the p38γ/c-Jun/PTPH1 signaling network increased sensitivities to TKIs in K-Ras mutant cells in which EGFR knockdown inhibited growth. Similar results were obtained with the p38γ-specific pharmacological inhibitor pirfenidone. These results indicate that in K-Ras mutant cancers, EGFR activity is regulated by the p38γ/c-Jun/PTPH1 signaling network, whose disruption may be a novel strategy to restore the sensitivity to TKIs.
Collapse
Affiliation(s)
- Ning Yin
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Adrienne Lepp
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Yongsheng Ji
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Matthew Mortensen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Songwang Hou
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Xiao-Mei Qi
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Charles R Myers
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Guan Chen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| |
Collapse
|
14
|
García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, Sánchez-Prieto R. p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story. Front Cell Dev Biol 2016; 4:69. [PMID: 27446920 PMCID: PMC4928511 DOI: 10.3389/fcell.2016.00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Olga Roche
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Diego M Fernández-Aroca
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| |
Collapse
|
15
|
Ma S, Yin N, Qi X, Pfister SL, Zhang MJ, Ma R, Chen G. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget 2016; 6:13320-33. [PMID: 26079946 PMCID: PMC4537017 DOI: 10.18632/oncotarget.3645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.
Collapse
Affiliation(s)
- Shao Ma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Ning Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mei-Jie Zhang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rong Ma
- Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Xie D, Ren Z, Fan J, Gao Q. Genetic profiling of intrahepatic cholangiocarcinoma and its clinical implication in targeted therapy. Am J Cancer Res 2016; 6:577-586. [PMID: 27152236 PMCID: PMC4851838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a treatment-refractory primary liver cancer with an increasing incidence and mortality worldwide in recent years. Lack of a stereotyped genetic signature and limited understanding of genomic landscape make the development of effective targeted therapies challenging. Recent application of advanced technologies such as next-generation sequencing (NGS) has broadened our understanding of genetic heterogeneity in iCCA and many potentially actionable genetic alterations have been identified. This review explores the recent advances in defining genetic alterations in iCCAs, which may present potent therapeutic targets. Chromatin remodeling genes and genes encoding isocitrate dehydrogenase and tyrosine kinase receptors as well as their downstream effectors are among the most frequently altered genes. Clinical trials testing the effect of new targeted agents on iCCA patients, especially those with the above genetic markers are under way. However, the complex interplay of environmental and evolutionary factors contributing to the genetic variability in iCCA calls for a more cautionary use of NGS in tailoring targeted regimen to the patients. Next-generation functional testing may complement NGS to execute precision medicine in future.
Collapse
Affiliation(s)
- Diyang Xie
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
- Institute of Biomedical Sciences, Fudan UniversityShanghai 200032, P. R. China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, P. R. China
| |
Collapse
|
17
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Qi X, Yin N, Ma S, Lepp A, Tang J, Jing W, Johnson B, Dwinell MB, Chitambar CR, Chen G. p38γ MAPK Is a Therapeutic Target for Triple-Negative Breast Cancer by Stimulation of Cancer Stem-Like Cell Expansion. Stem Cells 2015; 33:2738-47. [PMID: 26077647 DOI: 10.1002/stem.2068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly progressive and lacks established therapeutic targets. p38γ mitogen-activated protein kinase (MAPK) (gene name: MAPK12) is overexpressed in TNBC but how overexpressed p38γ contributes to TNBC remains unknown. Here, we show that p38γ activation promotes TNBC development and progression by stimulating cancer stem-like cell (CSC) expansion and may serve as a novel therapeutic target. p38γ silencing in TNBC cells reduces mammosphere formation and decreases expression levels of CSC drivers including Nanog, Oct3/4, and Sox2. Moreover, p38γ MAPK-forced expression alone is sufficient to stimulate CSC expansion and to induce epithelial cell transformation in vitro and in vivo. Furthermore, p38γ depends on its activity to stimulate CSC expansion and breast cancer progression, indicating a therapeutic opportunity by application of its pharmacological inhibitor. Indeed, the non-toxic p38γ specific pharmacological inhibitor pirfenidone selectively inhibits TNBC growth in vitro and/or in vivo and significantly decreases the CSC population. Mechanistically, p38γ stimulates Nanog transcription through c-Jun/AP-1 via a multi-protein complex formation. These results together demonstrate that p38γ can drive TNBC development and progression and may be a novel therapeutic target for TNBC by stimulating CSC expansion. Inhibiting p38γ activity with pirfenidone may be a novel strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ning Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shao Ma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Adrienne Lepp
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jun Tang
- Laboratory Medicine, Guangzhou Medical University KingMed College, China
| | - Weiqing Jing
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon Johnson
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Yin N, Qi X, Tsai S, Lu Y, Basir Z, Oshima K, Thomas JP, Myers CR, Stoner G, Chen G. p38γ MAPK is required for inflammation-associated colon tumorigenesis. Oncogene 2015; 35:1039-48. [PMID: 25961922 DOI: 10.1038/onc.2015.158] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022]
Abstract
Chronic inflammation has long been considered to causatively link to colon cancer development. However, signal transduction pathways involved remain largely unidentified. Here, we report that p38γ mitogen-activated protein kinase mediates inflammatory signaling to promote colon tumorigenesis. Inflammation activates p38γ in mouse colon tissues and intestinal epithelial cell-specific p38γ knockout (KO) attenuates colitis and inhibits pro-inflammatory cytokine expression. Significantly, p38γ KO inhibits tumorigenesis in a colitis-associated mouse model. The specific p38γ pharmacological inhibitor pirfenidone also suppresses pro-inflammatory cytokine expression and colon tumorigenesis. The tumor-promoting activity of epithelial p38γ was further demonstrated by xenograft studies. In addition, p38γ is required for β-catenin/Wnt activities and p38γ stimulates Wnt transcription by phosphorylating β-catenin at Ser605. These results show that p38γ activation links inflammation and colon tumorigenesis. Targeting p38γ may be a novel strategy for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- N Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - X Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - S Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, MI, USA
| | - Y Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - Z Basir
- Department of Pathology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - K Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - J P Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, MI, USA
| | - C R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - G Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, MI, USA
| | - G Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA.,Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, MI, USA
| |
Collapse
|
20
|
Qi X, Xie C, Hou S, Li G, Yin N, Dong L, Lepp A, Chesnik MA, Mirza SP, Szabo A, Tsai S, Basir Z, Wu S, Chen G. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget 2015; 5:4269-82. [PMID: 24962213 PMCID: PMC4147322 DOI: 10.18632/oncotarget.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A cancer phenotype is driven by several proteins and targeting a cluster of functionally interdependent molecules should be more effective for therapeutic intervention. This is specifically important for Ras-dependent cancer, as mutated (MT) Ras is non-druggable and targeting its interaction with effectors may be essential for therapeutic intervention. Here, we report that a protein-complex activated by the Ras effector p38γ MAPK is a novel therapeutic target for K-Ras-dependent colon cancer. Unbiased proteomic screening and immune-precipitation analyses identified p38γ interaction with heat shock protein 90 (Hsp90) and K-Ras in K-Ras MT, but not wild-type (WT), colon cancer cells, indicating a role of this complex in Ras-dependent growth. Further experiments showed that this complex requires p38γ and Hsp90 activity to maintain MT, but not WT, K-Ras protein expression. Additional studies demonstrated that this complex is activated by p38γ-induced Hsp90 phosphorylation at S595, which is important for MT K-Ras stability and for K-Ras dependent growth. Of most important, pharmacologically inhibition of Hsp90 or p38γ activity disrupts the complex, decreases K-Ras expression, and selectively inhibits the growth of K-Ras MT colon cancer in vitro and in vivo. These results demonstrated that the p38γ-activated ternary complex is a novel therapeutic target for K-Ras-dependent colon cancer.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | - Shixiu Wu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Gao Q, Zhao YJ, Wang XY, Guo WJ, Gao S, Wei L, Shi JY, Shi GM, Wang ZC, Zhang YN, Shi YH, Ding J, Ding ZB, Ke AW, Dai Z, Wu FZ, Wang H, Qiu ZP, Chen ZA, Zhang ZF, Qiu SJ, Zhou J, He XH, Fan J. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology 2014; 146:1397-1407. [PMID: 24503127 DOI: 10.1053/j.gastro.2014.01.062] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of intrahepatic cholangiocarcinoma (ICC), the second most common hepatic cancer, is poorly understood, and the incidence of ICC is increasing worldwide. We searched for mutations in human ICC tumor samples and investigated how they affect ICC cell function. METHODS We performed whole exome sequencing of 7 pairs of ICC tumors and their surrounding nontumor tissues to detect somatic alterations. We then screened 124 pairs of ICC and nontumor samples for these mutations, including 7 exomes. We compared mutations in PTPN3 with tumor recurrence in 124 patients and PTPN3 expression levels with recurrence in 322 patients (the combination of both in 86 patients). The functional effects of PTPN3 variations were determined by RNA interference and transgenic expression in cholangiocarcinoma cell lines (RBE, HCCC-9810, and Huh28). RESULTS Based on exome sequencing, pathways that regulate protein phosphorylation were among the most frequently altered in ICC samples and genes encoding protein tyrosine phosphatases (PTPs) were among the most frequently mutated. We identified mutations in 9 genes encoding PTPs in 4 of 7 ICC exomes. In the prevalence screen of 124 paired samples, 51.6% of ICCs contained somatic mutations in at least 1 of 9 PTP genes; 41.1% had mutations in PTPN3. Transgenic expression of PTPN3 in cell lines increased cell proliferation, colony formation, and migration. PTPN3(L232R) and PTPN3(L384H), which were frequently detected in ICC samples, were found to be gain-of-function mutations; their expression in cell lines further increased cell proliferation, colony formation, and migration. ICC-associated variants of PTPN3 altered phosphatase activity. Patients whose tumors contained activating mutations or higher levels of PTPN3 protein than nontumor tissues had higher rates of disease recurrence than patients whose tumors did not have these characteristics. CONCLUSIONS Using whole exome sequencing of ICC samples from patients, we found that more than 40% contain somatic mutations in PTPN3. Activating mutations in and high expression levels of PTPN3 were associated with tumor recurrence.
Collapse
Affiliation(s)
- Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Jun Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Ying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Jie Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zhi-Chao Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Yuan-Nv Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Jie Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Bin Ding
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Fei-Zhen Wu
- Laboratory of Epigenetics, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Ping Qiu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Ao Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Feng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China; Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Xiang-Huo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China; Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Suresh PS, Ma S, Migliaccio A, Chen G. Protein-Tyrosine Phosphatase H1 Increases Breast Cancer Sensitivity to Antiestrogens by Dephosphorylating Estrogen Receptor at Tyr537. Mol Cancer Ther 2013; 13:230-8. [DOI: 10.1158/1535-7163.mct-13-0610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Yang K, Liu Y, Liu Z, Liu J, Liu X, Chen X, Li C, Zeng Y. p38γ overexpression in gliomas and its role in proliferation and apoptosis. Sci Rep 2013; 3:2089. [PMID: 23807566 PMCID: PMC3695572 DOI: 10.1038/srep02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to confirm the biological role of p38γ in human gliomas. The expression profiles of p38γ and hTERT in human glioma samples were detected by Western Blot and immunohistochemistry. RNA interference was performed in U251 cells by p38γ silencing. Cell proliferation and apoptosis were assayed by CCK-8 and flow cytometric analysis, and then RNA and protein expression levels were measured by real-time RT-PCR and Western Blot, respectively. Telomerase activity assays and Caspase-3,-9 activation assays were also conducted. The results showed p38γ had a positive correlation with the glioma's malignancy grade and that the treatment of U251 cells with p38γ-siRNA inhibited proliferation and induced apoptosis. Correspondingly, hTERT expression and telomerase activity were down regulated and Caspase-3 and -9 activities were elevated. In conclusion, p38γ may serve as an oncogenic factor promoting the growth and progression of gliomas and may become a useful therapeutic target.
Collapse
Affiliation(s)
- Kui Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Harris LK, Frumm SM, Bishop AC. A general assay for monitoring the activities of protein tyrosine phosphatases in living eukaryotic cells. Anal Biochem 2013; 435:99-105. [PMID: 23333221 DOI: 10.1016/j.ab.2012.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are key signal-transduction regulators and have emerged as potential drug targets for inhibitor design. Here we report a yeast-based assay that provides a general means of assessing the activity and/or inhibition of essentially any classical PTP in living cells. The assay uses the activity of an exogenously expressed PTP to counter the activity of a coexpressed and toxic tyrosine kinase, such that only active PTPs are capable of rescuing growth. PTP activity gives rise to both increased growth and decreased phosphotyrosine levels; cellular PTP activity can therefore be monitored by either yeast-growth curves or anti-phosphotyrosine Western blots. We show that four PTPs (TCPTP, Shp2, PEST, PTPα) are capable of rescuing the effects of v-Src toxicity. Since these PTPs are chosen from four distinct subfamilies, it is likely that biologically and medicinally important PTPs from other subfamilies can similarly function in the cellular PTP assay. Because many small-molecule PTP inhibitors fail to penetrate cell membranes effectively, this cell-based assay has the potential to serve as a useful screening tool for determining the cellular efficacy of candidate inhibitors in a more biologically relevant context than can be provided by an in vitro PTP assay.
Collapse
Affiliation(s)
- Leigh K Harris
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA
| | | | | |
Collapse
|