1
|
Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. J Biol Chem 2023; 299:104870. [PMID: 37247759 PMCID: PMC10404613 DOI: 10.1016/j.jbc.2023.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.
Collapse
Affiliation(s)
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | | |
Collapse
|
2
|
Qin Y, Yuan H, Chen X, Yang X, Xing Z, Shen Y, Dong W, An S, Qi Y, Wu H. SUMOylation Wrestles With the Occurrence and Development of Breast Cancer. Front Oncol 2021; 11:659661. [PMID: 33968766 PMCID: PMC8097099 DOI: 10.3389/fonc.2021.659661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has the highest incidence among cancers and is the most frequent cause of death in women worldwide. The detailed mechanism of the pathogenesis of breast cancer has not been fully elucidated, and there remains a lack of effective treatment methods for the disease. SUMOylation covalently conjugates a large amount of cellular proteins, and affects their cellular localization and biological activity to participate in numerous cellular processes. SUMOylation is an important process and imbalance of SUMOylation results in the progression of human diseases. Increasing evidence shows that numerous SUMOylated proteins are involved in the occurrence and development of breast cancer. This review summarizes a series of studies on protein SUMOylation in breast cancer in recent years. The study of SUMOylated proteins provides a comprehensive understanding of the pathophysiology of breast cancer and provides evolving therapeutic strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
3
|
Stokes S, Almire F, Tatham MH, McFarlane S, Mertens P, Pondeville E, Boutell C. The SUMOylation pathway suppresses arbovirus replication in Aedes aegypti cells. PLoS Pathog 2020; 16:e1009134. [PMID: 33351855 PMCID: PMC7802965 DOI: 10.1371/journal.ppat.1009134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/12/2021] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Mosquitoes are responsible for the transmission of many clinically important arboviruses that cause significant levels of annual mortality and socioeconomic health burden worldwide. Deciphering the mechanisms by which mosquitoes modulate arbovirus infection is crucial to understand how viral-host interactions promote vector transmission and human disease. SUMOylation is a post-translational modification that leads to the covalent attachment of the Small Ubiquitin-like MOdifier (SUMO) protein to host factors, which in turn can modulate their stability, interaction networks, sub-cellular localisation, and biochemical function. While the SUMOylation pathway is known to play a key role in the regulation of host immune defences to virus infection in humans, the importance of this pathway during arbovirus infection in mosquito vectors, such as Aedes aegypti (Ae. aegypti), remains unknown. Here we characterise the sequence, structure, biochemical properties, and tissue-specific expression profiles of component proteins of the Ae. aegypti SUMOylation pathway. We demonstrate significant biochemical differences between Ae. aegypti and Homo sapiens SUMOylation pathways and identify cell-type specific patterns of SUMO expression in Ae. aegypti tissues known to support arbovirus replication. Importantly, depletion of core SUMOylation effector proteins (SUMO, Ubc9 and PIAS) in Ae. aegypti cells led to enhanced levels of arbovirus replication from three different families; Zika (Flaviviridae), Semliki Forest (Togaviridae), and Bunyamwera (Bunyaviridae) viruses. Our findings identify an important role for mosquito SUMOylation in the cellular restriction of arboviruses that may directly influence vector competence and transmission of clinically important arboviruses. Half the world’s population is at risk of infection from arboviruses transmitted by mosquitoes. Deciphering the viral-host interactions that influence the outcome of arbovirus infection in mosquitoes is beneficial to the development of future vector control strategies to limit arbovirus transmission and viral emergence within the human population. Similar to humans, mosquitoes possess different immune pathways to limit the replication of arboviruses. While the Small Ubiquitin-like MOdifier (SUMO) pathway is known to play an important role in the regulation of immune defences to viral infection in humans, the influence of this pathway during arbovirus infection in mosquito cells is currently unknown. Here we define the conservation, biochemical activity, and tissue distribution of the core effector proteins of the Aedes aegypti SUMOylation pathway. We show that the mosquito SUMOylation pathway plays a broadly antiviral role against a wide range of clinically important arboviruses, including Zika, Semliki Forest, and Bunyamwera viruses. Our findings identify SUMOylation as an important component of the antiviral response to arbovirus infection in mosquito cells.
Collapse
Affiliation(s)
- Samuel Stokes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| |
Collapse
|
4
|
Zhao Q, Ma Y, Li Z, Zhang K, Zheng M, Zhang S. The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Department of Spine Center, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
5
|
Aichem A, Sailer C, Ryu S, Catone N, Stankovic-Valentin N, Schmidtke G, Melchior F, Stengel F, Groettrup M. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nat Commun 2019; 10:4452. [PMID: 31575873 PMCID: PMC6773726 DOI: 10.1038/s41467-019-12430-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The covalent attachment of the cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) to hundreds of substrate proteins leads to their rapid degradation by the 26 S proteasome independently of ubiquitylation. Here, we identify another function of FAT10, showing that it interferes with the activation of SUMO1/2/3 in vitro and down-regulates SUMO conjugation and the SUMO-dependent formation of promyelocytic leukemia protein (PML) bodies in cells. Mechanistically, we show that FAT10 directly binds to and impedes the activity of the heterodimeric SUMO E1 activating enzyme AOS1/UBA2 by competing very efficiently with SUMO for activation and thioester formation. Nevertheless, activation of FAT10 by AOS1/UBA2 does not lead to covalent conjugation of FAT10 with substrate proteins which relies on its cognate E1 enzyme UBA6. Hence, we report that one ubiquitin-like modifier (FAT10) inhibits the conjugation and function of another ubiquitin-like modifier (SUMO) by impairing its activation. FAT10 is an ubiquitin-like modifier that targets proteins to proteasomal degradation. Here, the authors show that FAT10 also regulates SUMO activation in vitro and in cells, providing evidence for functional crosstalk between two ubiquitin-like modifiers.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany.
| | - Carolin Sailer
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Gunter Schmidtke
- Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
6
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
7
|
Hepowit NL, de Vera IMS, Cao S, Fu X, Wu Y, Uthandi S, Chavarria NE, Englert M, Su D, Sӧll D, Kojetin DJ, Maupin-Furlow JA. Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea. FEBS J 2017; 283:3567-3586. [PMID: 27459543 DOI: 10.1111/febs.13819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/17/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
Here we provide the first detailed biochemical study of a noncanonical E1-like enzyme with broad specificity for cognate ubiquitin-like (Ubl) proteins that mediates Ubl protein modification and sulfur mobilization to form molybdopterin and thiolated tRNA. Isothermal titration calorimetry and in vivo analyses proved useful in discovering that environmental conditions, ATP binding, and Ubl type controlled the mechanism of association of the Ubl protein with its cognate E1-like enzyme (SAMP and UbaA of the archaeon Haloferax volcanii, respectively). Further analysis revealed that ATP hydrolysis triggered the formation of thioester and peptide bonds within the Ubl:E1-like complex. Importantly, the thioester was an apparent precursor to Ubl protein modification but not sulfur mobilization. Comparative modeling to MoeB/ThiF guided the discovery of key residues within the adenylation domain of UbaA that were needed to bind ATP as well as residues that were specifically needed to catalyze the downstream reactions of sulfur mobilization and/or Ubl protein modification. UbaA was also found to be Ubl-automodified at lysine residues required for early (ATP binding) and late (sulfur mobilization) stages of enzyme activity revealing multiple layers of autoregulation. Cysteine residues, distinct from the canonical E1 'active site' cysteine, were found important in UbaA function supporting a model that this noncanonical E1 is structurally flexible in its active site to allow Ubl~adenylate, Ubl~E1-like thioester and cysteine persulfide(s) intermediates to form.
Collapse
Affiliation(s)
- Nathaniel L Hepowit
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ian Mitchelle S de Vera
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Shiyun Cao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Xian Fu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Yifei Wu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sivakumar Uthandi
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Nikita E Chavarria
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Sӧll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Chemistry, Yale University, New Haven, CT, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA. .,Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|
9
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
10
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
11
|
Mergner J, Kuster B, Schwechheimer C. DENEDDYLASE1 Protein Counters Automodification of Neddylating Enzymes to Maintain NEDD8 Protein Homeostasis in Arabidopsis. J Biol Chem 2017; 292:3854-3865. [PMID: 28096463 DOI: 10.1074/jbc.m116.767103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the conjugation of the ubiquitin-like protein NEDD8 onto protein targets is an important post-translational modification. The best understood neddylation targets are the cullins, scaffold subunits of E3 ubiquitin ligases, where neddylation as well as deneddylation, facilitated by the protease activity of the CSN (COP9 signalosome), are required to control ubiquitin ligase assembly, function, and ultimately substrate degradation. Little is known about the role of other deneddylating enzymes besides CSN and the role of neddylation and deneddylation of their substrates. We previously characterized Arabidopsis thaliana mutants with defects in the conserved NEDD8-specific protease DEN1 (DENEDDYLASE1). These mutants display only subtle growth phenotypes despite the strong accumulation of a broad range of neddylated proteins. Specifically, we identified AXR1 (AUXIN-RESISTANT1), a subunit of the heterodimeric NAE (E1 NEDD8-ACTIVATING ENZYME), as highly neddylated in den1 mutants. Here, we examined the mechanism and consequences of AXR1 neddylation in more detail. We find that AXR1 as well as other neddylation enzymes are autoneddylated at multiple lysines. NAE autoneddylation can be linked to reduced NCE (E2 NEDD8-CONJUGATING ENZYME) NEDD8 thioester levels, either by critically reducing the pool of free NEDD8 or by reducing NAE activity. In planta, increasing NEDD8 gene dosage is sufficient to suppress den1 mutant phenotypes. We therefore suggest that DEN1 serves to recover diverted NEDD8 moieties from autoneddylated NAE subunits, and possibly also other neddylated proteins, to maintain NEDD8 pathway activity toward other NEDD8-dependent processes such as cullin E3 ligase regulation.
Collapse
Affiliation(s)
- Julia Mergner
- From the Chair of Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8 and.,the Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- the Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Claus Schwechheimer
- From the Chair of Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8 and
| |
Collapse
|
12
|
Jüdes A, Bruch A, Klassen R, Helm M, Schaffrath R. Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:554-564. [PMID: 28357324 PMCID: PMC5349211 DOI: 10.15698/mic2016.11.539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the S-transfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.
Collapse
Affiliation(s)
- André Jüdes
- Universität Kassel, Institut für Biologie, FG Mikrobiologie,
Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Alexander Bruch
- Universität Kassel, Institut für Biologie, FG Mikrobiologie,
Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Roland Klassen
- Universität Kassel, Institut für Biologie, FG Mikrobiologie,
Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Mark Helm
- Johannes Gutenberg Universität Mainz, Institut für Pharmazie und
Biochemie, Staudinger Weg 5, 55128 Mainz, Germany
| | - Raffael Schaffrath
- Universität Kassel, Institut für Biologie, FG Mikrobiologie,
Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
13
|
Wieczorek E, Kędracka–Krok S, Sołtys K, Jankowska U, Hołubowicz R, Seliga J, Ożyhar A. Is Transthyretin a Regulator of Ubc9 SUMOylation? PLoS One 2016; 11:e0160536. [PMID: 27501389 PMCID: PMC4976990 DOI: 10.1371/journal.pone.0160536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
Ageing and mutations of transthyretin (TTR), the thyroid hormones and retinol transporting protein lead to amyloidosis by destabilizing the structure of TTR. Because protein structure is regulated through posttranslational modifications, we investigated the Small Ubiquitin-like Modifier (SUMO)ylation of TTR. We chose the widely used Ubc9 fusion-directed SUMOylation system, which is based on a fusion of the SUMOylation substrate of interest with Ubc9, a sole SUMO conjugating enzyme. Surprisingly, despite our presumptions, we found that Ubc9 fused to TTR was SUMOylated at a unique set of lysine residues. Three unknown SUMOylation sites of Ubc9-K154, K18 and K65-were revealed by mass spectrometry (MS). The previously reported SUMOylation at K49 of Ubc9 was also observed. SUMOylation of the lysine residues of TTR fused to Ubc9 was hardly detectable. However, non-fused TTR was SUMOylated via trans-SUMOylation by Ubc9 fused to TTR. Interestingly, mutating the catalytic residue of Ubc9 fused to TTR did not result in complete loss of the SUMOylation signal, suggesting that Ubc9 linked to TTR is directly cross-SUMOylated by the SUMO-activating enzyme E1. Ubc9, TTR or fusion proteins composed of TTR and Ubc9 specifically affected the global SUMOylation of cellular proteins. TTR or Ubc9 alone increased global SUMOylation, whereas concomitant presence of TTR and Ubc9 did not further increase the amount of high-molecular weight (HMW) SUMO conjugates. Our data suggest that TTR may influence the SUMOylation of Ubc9, thereby altering signalling pathways in the cell.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
- * E-mail:
| | - Sylwia Kędracka–Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Sołtys
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| | - Urszula Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| | - Justyna Seliga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
| |
Collapse
|
14
|
A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation. PLoS One 2015; 10:e0143810. [PMID: 26633173 PMCID: PMC4669148 DOI: 10.1371/journal.pone.0143810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022] Open
Abstract
A variety of cellular pathways are regulated by protein modifications with ubiquitin-family proteins. SUMO, the Small Ubiquitin-like MOdifier, is covalently attached to lysine on target proteins via a cascade reaction catalyzed by E1, E2, and E3 enzymes. A major barrier to understanding the diverse regulatory roles of SUMO has been a lack of suitable methods to identify protein sumoylation sites. Here we developed a mass-spectrometry (MS) based approach combining chemical and enzymatic modifications to identify sumoylation sites. We applied this method to analyze the auto-sumoylation of the E1 enzyme in vitro and compared it to the GG-remnant method using Smt3-I96R as a substrate. We further examined the effect of smt3-I96R mutation in vivo and performed a proteome-wide analysis of protein sumoylation sites in Saccharomyces cerevisiae. To validate these findings, we confirmed several sumoylation sites of Aos1 and Uba2 in vivo. Together, these results demonstrate that our chemical and enzymatic method for identifying protein sumoylation sites provides a useful tool and that a combination of methods allows a detailed analysis of protein sumoylation sites.
Collapse
|
15
|
Alontaga AY, Ambaye ND, Li YJ, Vega R, Chen CH, Bzymek KP, Williams JC, Hu W, Chen Y. RWD Domain as an E2 (Ubc9)-Interaction Module. J Biol Chem 2015; 290:16550-9. [PMID: 25918163 DOI: 10.1074/jbc.m115.644047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
An RWD domain is a well conserved domain found through bioinformatic analysis of the human proteome sequence; however, its function has been unknown. Ubiquitin-like modifications require the catalysis of three enzymes generally known as E1, E2, and E3. We solved the crystal structure of the E2 for the small ubiquitin-like modifiers (SUMO) in complex with an RWD domain and confirmed the structure using solution NMR analysis. The binding surface of RWD on Ubc9 is located near the N terminus of Ubc9 that is known to be involved in noncovalent binding of the proteins in the conjugation machinery, including a domain of E1, SUMO, and an E3 ligase. NMR data indicate that the RWD domain does not bind to SUMO and E1. The interaction between RWD and Ubc9 has a Kd of 32 ± 4 μM. Consistent with the structure and binding affinity and in contrast to a previous report, the RWD domain and RWDD3 have minimal effects on global SUMOylation. The structural and biochemical information presented here forms the basis for further investigation of the functions of RWD-containing proteins.
Collapse
Affiliation(s)
| | | | - Yi-Jia Li
- From the Department of Molecular Medicine and
| | - Ramir Vega
- From the Department of Molecular Medicine and
| | | | | | | | - Weidong Hu
- the NMR Core Facility, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Yuan Chen
- From the Department of Molecular Medicine and
| |
Collapse
|
16
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
Subramonian D, Raghunayakula S, Olsen JV, Beningo KA, Paschen W, Zhang XD. Analysis of changes in SUMO-2/3 modification during breast cancer progression and metastasis. J Proteome Res 2014; 13:3905-18. [PMID: 25072996 DOI: 10.1021/pr500119a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SUMOylation is an essential posttranslational modification and regulates many cellular processes. Dysregulation of SUMOylation plays a critical role in metastasis, yet how its perturbation affects this lethal process of cancer is not well understood. We found that SUMO-2/3 modification is greatly up-regulated in metastatic breast cancer cells compared with nonmetastatic control cells. To identify proteins differentially modified by SUMO-2/3 between metastatic and nonmetastatic cells, we established a method in which endogenous SUMO-2/3 conjugates are labeled by stable isotope labeling by amino acids in cell culture (SILAC), immunopurified by SUMO-2/3 monoclonal antibodies and epitope-peptide elution, and analyzed by quantitative mass spectrometry. We identified 66 putative SUMO-2/3-conjugated proteins, of which 15 proteins show a significant increase/decrease in SUMO-2/3 modification in metastatic cells. Targets with altered SUMOylation are involved in cell cycle, migration, inflammation, glycolysis, gene expression, and SUMO/ubiquitin pathways, suggesting that perturbations of SUMO-2/3 modification might contribute to metastasis by affecting these processes. Consistent with this, up-regulation of PML SUMO-2/3 modification corresponds to an increased number of PML nuclear bodies (PML-NBs) in metastatic cells, whereas up-regulation of global SUMO-2/3 modification promotes 3D cell migration. Our findings provide a foundation for further investigating the effects of SUMOylation on breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Divya Subramonian
- Department of Biological Sciences, Wayne State University , 5047 Gullen Mall, Detroit, Michigan 48202, United States
| | | | | | | | | | | |
Collapse
|
18
|
Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 2014; 82:4154-68. [PMID: 25047847 DOI: 10.1128/iai.01984-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular Gram-negative bacterium that selectively infects mononuclear phagocytes. We recently reported that E. chaffeensis utilizes a type 1 secretion (T1S) system to export tandem repeat protein (TRP) effectors and demonstrated that these effectors interact with a functionally diverse array of host proteins. By way of these interactions, TRP effectors modulate host cell functions; however, the molecular basis of these interactions and their roles in ehrlichial pathobiology are not well defined. In this study, we describe the first bacterial protein posttranslational modification (PTM) by the small ubiquitin-like modifier (SUMO). The E. chaffeensis T1S effector TRP120 is conjugated to SUMO at a carboxy-terminal canonical consensus SUMO conjugation motif in vitro and in human cells. In human cells, TRP120 was selectively conjugated with SUMO2/3 isoforms. Disruption of TRP120 SUMOylation perturbed interactions with known host proteins, through predicted SUMO interaction motif-dependent and -independent mechanisms. E. chaffeensis infection did not result in dramatic changes in the global host SUMOylated protein profile, but a robust colocalization of predominately SUMO1 with ehrlichial inclusions was observed. Inhibiting the SUMO pathway with a small-molecule inhibitor had a significant impact on E. chaffeensis replication and recruitment of the TRP120-interacting protein polycomb group ring finger protein 5 (PCGF5) to the inclusion, indicating that the SUMO pathway is critical for intracellular survival. This study reveals the novel exploitation of the SUMO pathway by Ehrlichia, which facilitates effector-eukaryote interactions necessary to usurp the host and create a permissive intracellular niche.
Collapse
|
19
|
Guo C, Henley JM. Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life 2014; 66:71-7. [PMID: 24470405 DOI: 10.1002/iub.1244] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
How cell fate is determined following extreme stress is a core question in cell biology. This is particularly important in the brain where neuronal death following ischemic stroke is a major cause of disability. Over the last few years it has emerged that the SUMOylation status of an increasing number of substrate proteins plays a crucial role in cellular responses to environmental and metabolic stress. SUMOylation is a post-translational modification in which the 97-residue protein, SUMO (Small Ubiquitin-related MOdifier) is covalently attached to specific lysine residues in a target protein. Despite being covalent, it is a highly transient modification because of the actions of deSUMOylation enzymes, so SUMO conjugation acts as a rapidly reversible switch that can promote or inhibit protein interactions with the substrate protein. Overall, it appears that increased SUMOylation represents a cellular protective response. Here we discuss recent progress toward understanding the mechanisms, pathways, and roles of SUMOylation during and after severe metabolic stress.
Collapse
Affiliation(s)
- Chun Guo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
20
|
Kim YS, Keyser SGL, Schneekloth JS. Synthesis of 2',3',4'-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation. Bioorg Med Chem Lett 2014; 24:1094-7. [PMID: 24468414 DOI: 10.1016/j.bmcl.2014.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 01/22/2023]
Abstract
Protein sumoylation is a dynamic posttranslational modification involved in diverse biological processes during cellular homeostasis and development. Recently sumoylation has been shown to play a critical role in cancer, although to date there are few small molecule probes available to inhibit enzymes involved in the SUMO conjugation process. As part of a program to identify and study inhibitors of sumoylation we recently reported the discovery that 2',3',4'-trihydroxyflavone (2-D08) is a cell permeable, mechanistically unique inhibitor of protein sumoylation. The work reported herein describes an efficient synthesis of 2-D08 as well as a structurally related but inactive isomer. We also report an unanticipated Wessely-Moser rearrangement that occurs under vigorous methyl ether deprotection conditions. This rearrangement likely gave rise to 2-D08 during a deprotection step, resulting in 2-D08 appearing as a contaminant in a screening well from a commercial supplier.
Collapse
Affiliation(s)
- Yeong Sang Kim
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - Samantha G L Keyser
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, 376 Boyles St., Frederick, MD 21702, USA.
| |
Collapse
|
21
|
Castaño-Miquel L, Seguí J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. MOLECULAR PLANT 2013; 6:1646-60. [PMID: 23482370 DOI: 10.1093/mp/sst049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sumoylation is an essential posttranslational modification that participates in many biological processes including stress responses. However, little is known about the mechanisms that control Small Ubiquitin-like MOdifier (SUMO) conjugation in vivo. We have evaluated the regulatory role of the heterodimeric E1 activating enzyme, which catalyzes the first step in SUMO conjugation. We have established that the E1 large SAE2 and small SAE1 subunits are encoded by one and three genes, respectively, in the Arabidopsis genome. The three paralogs genes SAE1a, SAE1b1, and SAE1b2 are the result of two independent duplication events. Since SAE1b1 and SAE1b2 correspond to two identical copies, only two E1 small subunit isoforms are present in vivo: SAE1a and SAE1b. The E1 heterodimer nuclear localization is modulated by the C-terminal tail of the SAE2 subunit. In vitro, SUMO conjugation rate is dependent on the SAE1 isoform contained in the E1 holoenzyme and our results suggest that downstream steps to SUMO-E1 thioester bond formation are affected. In vivo, SAE1a isoform deletion in T-DNA insertion mutant plants conferred sumoylation defects upon abiotic stress, consistent with a sumoylation defective phenotype. Our results support previous data pointing to a regulatory role of the E1 activating enzyme during SUMO conjugation and provide a novel mechanism to control sumoylation in vivo by diversification of the E1 small subunit.
Collapse
Affiliation(s)
- Laura Castaño-Miquel
- Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
23
|
Watts FZ. Starting and stopping SUMOylation. What regulates the regulator? Chromosoma 2013; 122:451-63. [PMID: 23812602 DOI: 10.1007/s00412-013-0422-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/17/2022]
Abstract
A large number of proteins are modified post-translationally by the ubiquitin-like protein (Ubl) SUMO. This process, known as sumoylation, regulates the function, localisation and activity of target proteins as part of normal cellular metabolism, e.g., during development, and through the cell cycle, as well as in response to a range of stresses. In order to be effective, the sumoylation pathway itself must also be regulated. This review describes how the SUMOylation process is regulated. In particular, regulation of the SUMO conjugation and deconjugation machinery at the level of transcription and by post-translational modifications is discussed.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK,
| |
Collapse
|
24
|
Kumar A, Ito A, Hirohama M, Yoshida M, Zhang KYJ. Identification of Sumoylation Activating Enzyme 1 Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2013; 53:809-20. [DOI: 10.1021/ci300618e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ashutosh Kumar
- Zhang Initiative Research Unit, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory/Chemical
Genomics Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikako Hirohama
- Chemical Genetics Laboratory/Chemical
Genomics Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory/Chemical
Genomics Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kam Y. J. Zhang
- Zhang Initiative Research Unit, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan
| |
Collapse
|
25
|
Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 2013; 13:755-66. [PMID: 23175280 DOI: 10.1038/nrm3478] [Citation(s) in RCA: 503] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins is highly dynamic, and both SUMO-protein conjugation and cleavage can be regulated. Protein desumoylation is carried out by SUMO proteases, which control cellular mechanisms ranging from transcription and cell division to ribosome biogenesis. Recent advances include the discovery of two novel classes of SUMO proteases, insights regarding SUMO protease specificity, and revelations of previously unappreciated SUMO protease functions in several key cellular pathways. These developments, together with new connections between SUMO proteases and the recently discovered SUMO-targeted ubiquitin ligases (STUbLs), make this an exciting period to study these enzymes.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
26
|
Truong K, Lee TD, Li B, Chen Y. Sumoylation of SAE2 C terminus regulates SAE nuclear localization. J Biol Chem 2012; 287:42611-9. [PMID: 23095757 DOI: 10.1074/jbc.m112.420877] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
SUMOylation occurs predominantly in the nucleus, but non-nuclear proteins can also be SUMOylated. It is unclear how intracellular trafficking of the SUMOylation enzymes is regulated to catalyze SUMOylation in different cellular compartments. Here we report that the SAE2 subunit of human SUMO activation enzyme (SAE) underwent rapid nucleocytoplasmic shuttling and its nuclear accumulation depended on SUMO modification at the C terminus. The SUMOylation sites included three Lys residues on the bipartite nuclear localization sequence (NLS) and two Lys residues outside of but adjacent to the NLS, and their SUMOylation was catalyzed by Ubc9. Because SAE2 forms a tight heterodimer with SAE1 and it controls the trafficking of the heterodimer, this study has identified the mechanism used to localize SAE to the nucleus. Similar mechanisms are likely to exist for other proteins that depend on SUMOylation for nuclear localization.
Collapse
Affiliation(s)
- Khue Truong
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
27
|
Vranych CV, Merino MC, Zamponi N, Touz MC, Rópolo AS. SUMOylation in Giardia lamblia: A Conserved Post-Translational Modification in One of the Earliest Divergent Eukaryotes. Biomolecules 2012; 2:312-30. [PMID: 24970140 PMCID: PMC4030834 DOI: 10.3390/biom2030312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications are able to regulate protein function and cellular processes in a rapid and reversible way. SUMOylation, the post-translational modification of proteins by the addition of SUMO, is a highly conserved process that seems to be present in modern cells. However, the mechanism of protein SUMOylation in earlier divergent eukaryotes, such as Giardia lamblia, is only starting to become apparent. In this work, we report the presence of a single SUMO gene encoding to SUMO protein in Giardia. Monoclonal antibodies against recombinant Giardia SUMO protein revealed the cytoplasmic localization of native SUMO in wild-type trophozoites. Moreover, the over-expression of SUMO protein showed a mainly cytoplasmic localization, though also neighboring the plasma membrane, flagella, and around and even inside the nuclei. Western blot assays revealed a number of SUMOylated proteins in a range between 20 and 120 kDa. The genes corresponding to putative enzymes involved in the SUMOylation pathway were also explored. Our results as a whole suggest that SUMOylation is a process conserved in the eukaryotic lineage, and that its study is significant for understanding the biology of this interesting parasite and the role of post-translational modification in its evolution.
Collapse
Affiliation(s)
- Cecilia V Vranych
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - María C Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| |
Collapse
|