1
|
Fidelito G, Todorovski I, Cluse L, Vervoort SJ, Taylor RA, Watt MJ. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth. Cell Rep 2025; 44:115470. [PMID: 40146774 DOI: 10.1016/j.celrep.2025.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonie Cluse
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Melbourne Urological Research Alliance (MURAL), Monash University, Clayton, VIC 3168, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia.
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Raynor A, Lebredonchel É, Foulquier F, Fenaille F, Bruneel A. Diagnostic and Therapeutic Approaches in Congenital Disorders of Glycosylation. Handb Exp Pharmacol 2025. [PMID: 40119203 DOI: 10.1007/164_2025_745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Congenital disorders of glycosylation (CDG) constitute an increasing group of inborn metabolic disorders, with more than 170 described diseases to date. A disturbed glycosylation process characterizes them, with molecular defects localized in distinct cell compartments. In CDG, N-glycosylation, O-glycosylation, glycosylation of lipids (including phosphatidylinositol) as well as the glycosaminoglycan synthesis can be affected. Owing to the importance of glycosylation for the function of concerned proteins and lipids, glycosylation defects have diverse clinical consequences. CDG affected individuals often present with a non-specific multivisceral syndrome including neurological involvement, intellectual disability, dysmorphia, and hepatopathy. As CDG are rare diseases frequently lacking distinctive symptoms, biochemical and genetic testing bear important and complementary diagnostic roles.After an introduction on glycosylation and CDG, we review current biomarkers and analytical techniques in the field. Furthermore, we illustrate their interests in the follow-up of proven therapeutic approaches including D-mannose in MPI-CDG, D-galactose in PGM1-CDG, and manganese (MnSO4) in TMEM165-CDG.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France.
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
3
|
Shirakura T, Krishnamoorthy L, Paliwal P, Hird G, McCluskie K, McWilliams P, He M, Ismaili MHA. In vitro treatment with liposome-encapsulated Mannose-1-phosphate restores N-glycosylation in PMM2-CDG patient-derived fibroblasts. Mol Genet Metab 2024; 143:108531. [PMID: 39053125 DOI: 10.1016/j.ymgme.2024.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao He
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
4
|
Hjazi A, Maroto CG, Rodriguez-Gutierrez ME, Appiah M, Ignat A, Mobayen G, Page T, McKinnon TAJ. The proteasome inhibitor carfilzomib exerts anti-inflammatory and antithrombotic effects on the endothelium. J Thromb Haemost 2024; 22:1867-1879. [PMID: 38608731 DOI: 10.1016/j.jtha.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Carfilzomib (CFZ) is a second-generation proteasome inhibitor used to treat multiple myeloma. Potent inhibition of the proteasome results in chronic proteotoxic endoplasmic reticulum (ER) stress, leading to apoptosis. While CFZ has improved survival rates in multiple myeloma, it is associated with an increased risk of cardiovascular adverse effects. While this has been putatively linked to cardiotoxicity, CFZ could potentially also exhibit adverse effects on the endothelium. OBJECTIVES To investigate the effects of CFZ on the endothelium. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with CFZ, and expression of relevant markers of ER stress, inflammation, and thrombosis was measured and functionally assessed. RESULTS CFZ failed to induce ER stress in HUVECs but induced the expression of Kruppel-like factor 4, endothelial nitric oxide synthase, tissue plasminogen activator, and thrombomodulin and reduced tumor necrosis factor alpha (TNFα)-mediated intercellular adhesion molecule 1 and tissue factor expression, suggesting a potential protective effect on the endothelium. Consistent with these observations, CFZ reduced leukocyte adhesion under shear stress and reduced factor Xa generation and fibrin clot formation on the endothelium following TNFα treatment and inhibited von Willebrand factor (VWF) and angiopoietin-2 exocytosis from Weibel-Palade bodies. Subsequently, CFZ inhibited the formation of VWF-platelet strings, and moreover, media derived from myeloma cell lines induced VWF release, a process also inhibited by CFZ. CONCLUSION These data demonstrate that CFZ is unable to induce ER stress in confluent resting endothelial cells and can conversely attenuate the prothrombotic effects of TNFα on the endothelium. This study suggests that CFZ does not negatively alter HUVECs, and proteasome inhibition of the endothelium may offer a potential way to prevent thrombosis.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Celia Gonzalez Maroto
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Maria Elena Rodriguez-Gutierrez
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Michael Appiah
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Ana Ignat
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Golzar Mobayen
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Theresa Page
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Thomas A J McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
5
|
Corona-Rivera JR, Martínez-Duncker I, Morava E, Ranatunga W, Salinas-Marin R, González-Jaimes AM, Castillo-Reyes KA, Peña-Padilla C, Bobadilla-Morales L, Corona-Rivera A, Orozco-Vela M, Brukman-Jiménez SA. TRAPPC11-CDG muscular dystrophy: Review of 54 cases including a novel patient. Mol Genet Metab 2024; 142:108469. [PMID: 38564972 DOI: 10.1016/j.ymgme.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
| | - Eva Morava
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wasantha Ranatunga
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberta Salinas-Marin
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ana María González-Jaimes
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Katia Alejandra Castillo-Reyes
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucina Bobadilla-Morales
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mireya Orozco-Vela
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sinhue Alejandro Brukman-Jiménez
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
7
|
Zhao P, Hu Y, Hu J, Li C, Huang Y, Zhang L, Luo S, Zhu H, Jiang J, He X. Identification and characterization of a new variation in DPM2 gene in two Chinese siblings with mild intellectual impairment. Front Genet 2023; 14:930692. [PMID: 37152991 PMCID: PMC10154465 DOI: 10.3389/fgene.2023.930692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of metabolic disorders caused by abnormal protein or lpid glycosylation. DPM2 is one subunit of a heterotrimeric complex for dolichol-phosphatemannose synthase (DPMS), a key enzyme in glycosylation, and only four patients with DPM2-CDG have been reported. Methods: Whole-exome sequencing (WES) was performed in a Chinese family having two siblings with a mild form of DPM2-CDG with developmental delay, mild intellectual disability, hypotonia, and increased serum creatine kinase. Sanger sequencing was used to validate the variants identified in the siblings and their parents. In vitro functional study was performed. Results: A homozygous mutation, c.197G>A (p.Gly66Glu) in exon 4 of DPM2 (NM_003863) was identified by whole exome sequencing (WES). In vitro functional analysis demonstrated that this variant increased the expression level of DPM2 protein and western blot revealed a significant decrease in ICAM1, a universal biomarker for hypoglycosylation in patients with CDG, suggesting abnormal N-linked glycosylation. We also reviewed the 4 previously reported patients carrying homozygous or compound heterozygous variants of DMP2 gene, and found that patients with variants within the region encoding the first domain had more severe clinical symptoms than those with variants within the second domain. However, the actual genotype-phenotype relationship needs more study. Discussion: Overall, our study broadens the variant spectrum of DPM2 gene, attempts to explain the different phenotypes in patients with different DPM2 variants, and emphasizes the need of further functional studies to understand the underlying pathophysiology of the phenotypic heterogeneity.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Hu
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Rehabilitation Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Li
- Department of Neuroelectrophysiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Zhu
- Rehabilitation Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| | - Jun Jiang
- Department of Neuroelectrophysiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| | - Xuelian He
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Jun Jiang, ; Xuelian He,
| |
Collapse
|
8
|
TRAPPC9-CDG: A novel congenital disorder of glycosylation with dysmorphic features and intellectual disability. Genet Med 2022; 24:894-904. [PMID: 35042660 DOI: 10.1016/j.gim.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.
Collapse
|
9
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
10
|
Ligezka AN, Radenkovic S, Saraswat M, Garapati K, Ranatunga W, Krzysciak W, Yanaihara H, Preston G, Brucker W, McGovern RM, Reid JM, Cassiman D, Muthusamy K, Johnsen C, Mercimek-Andrews S, Larson A, Lam C, Edmondson AC, Ghesquière B, Witters P, Raymond K, Oglesbee D, Pandey A, Perlstein EO, Kozicz T, Morava E. Sorbitol Is a Severity Biomarker for PMM2-CDG with Therapeutic Implications. Ann Neurol 2021; 90:887-900. [PMID: 34652821 DOI: 10.1002/ana.26245] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Center, VIB-KU Leuven, Leuven, Belgium
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.,Institute of Bioinformatics, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.,Institute of Bioinformatics, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Wirginia Krzysciak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - William Brucker
- Department of Pediatrics, Human Genetics, Rhode Island Hospital, Providence, RI
| | - Renee M McGovern
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Joel M Reid
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN
| | - David Cassiman
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Leuven, Belgium.,Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Genetics, University of Alberta, Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA
| | - Andrew C Edmondson
- Section of Biochemical Genetics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bart Ghesquière
- Department of Oncology, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Center, VIB-KU Leuven, Leuven, Belgium
| | - Peter Witters
- Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.,Department of Paediatrics, Metabolic Disease Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Parrado A, Rubio G, Serrano M, De la Morena-Barrio ME, Ibáñez-Micó S, Ruiz-Lafuente N, Schwartz-Albiez R, Esteve-Solé A, Alsina L, Corral J, Hernández-Caselles T. Dissecting the transcriptional program of phosphomannomutase 2 deficient cells: B-LCL as a valuable model for congenital disorders of glycosylation studies. Glycobiology 2021; 32:84-100. [PMID: 34420056 DOI: 10.1093/glycob/cwab087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) include 150 disorders constituting in genetically and clinically heterogeneous diseases, showing significant glycoprotein hypoglycosylation that leads to pathological consequences on multiple organs and systems which underlying mechanisms are not yet understood. A few cellular and animal models have been used to study specific CDG characteristics although they have given limited information due to the few CDG mutations tested and the still missing comprehensive molecular and cellular basic research. Here we provide specific gene expression profiles, based on RNA microarray analysis, together with some biochemical and cellular characteristics of a total of 9 control EBV-transformed lymphoblastoid B cell lines (B-LCL) and 13 CDG B-LCL from patients carrying severe mutations in the PMM2 gene, strong serum protein hypoglycosylation and neurological symptoms. Significantly dysregulated genes in PMM2-CDG cells included those regulating stress responses, transcription factors, glycosylation, motility, cell junction and, importantly, those related to development and neuronal differentiation and synapse such as CA2 and ADAM23. PMM2-CDG associated biological consequences involved the unfolded protein response, RNA metabolism and the endoplasmic reticulum, Golgi apparatus and mitochondria components. Changes in transcriptional and CA2 protein levels are consistent with CDG physiopathology. These results demonstrate the global transcriptional impact in phosphomannomutase 2 deficient cells, reveal CA2 as a potential cellular biomarker and confirm B-LCL as an advantageous model for CDG studies.
Collapse
Affiliation(s)
- Antonio Parrado
- Immunology Service, Virgen de la Arrixaca University Clinic Hospital, IMIB-Arrixaca, Murcia, Spain
| | - Gonzalo Rubio
- Department of Biochemistry and Molecular Biology (B) and Immunology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, U-703 Center for Biomedical Research on Rare Diseases, CIBERER, Barcelona, Spain
| | - María Eugenia De la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Spain
| | - Salvador Ibáñez-Micó
- Pediatric Neurology Unit, Virgen de la Arrixaca University Clinic Hospital, Murcia, Spain
| | - Natalia Ruiz-Lafuente
- Immunology Service, Virgen de la Arrixaca University Clinic Hospital, IMIB-Arrixaca, Murcia, Spain
| | | | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Spain
| | - Trinidad Hernández-Caselles
- Department of Biochemistry and Molecular Biology (B) and Immunology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
13
|
Courage C, Oliver KL, Park EJ, Cameron JM, Grabińska KA, Muona M, Canafoglia L, Gambardella A, Said E, Afawi Z, Baykan B, Brandt C, di Bonaventura C, Chew HB, Criscuolo C, Dibbens LM, Castellotti B, Riguzzi P, Labate A, Filla A, Giallonardo AT, Berecki G, Jackson CB, Joensuu T, Damiano JA, Kivity S, Korczyn A, Palotie A, Striano P, Uccellini D, Giuliano L, Andermann E, Scheffer IE, Michelucci R, Bahlo M, Franceschetti S, Sessa WC, Berkovic SF, Lehesjoki AE. Progressive myoclonus epilepsies-Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. Am J Hum Genet 2021; 108:722-738. [PMID: 33798445 DOI: 10.1016/j.ajhg.2021.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/05/2021] [Indexed: 02/04/2023] Open
Abstract
Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.
Collapse
Affiliation(s)
- Carolina Courage
- Folkhälsan Research Center, Helsinki 00290, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Karen L Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia; Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Jillian M Cameron
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Mikko Muona
- Folkhälsan Research Center, Helsinki 00290, Finland; Blueprint Genetics, Espoo 02150, Finland
| | - Laura Canafoglia
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | | | - Edith Said
- Section of Medical Genetics, Mater dei Hospital, Msida MSD2090, Malta; Department of Anatomy and Cell Biology, University of Malta, Msida MSD2090, Malta
| | - Zaid Afawi
- Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva 8410402, Israel
| | - Betul Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey
| | | | - Carlo di Bonaventura
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy
| | - Hui Bein Chew
- Genetics Department, Kuala Lumpur Hospital, Ministry of Health Malaysia, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Istituto Neurologico Carlo Besta Milan 20133, Italy
| | - Patrizia Riguzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna 40139, Italy
| | - Angelo Labate
- Institute of Neurology, University Magna Græcia, Catanzaro 88100, Italy
| | - Alessandro Filla
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Anna T Giallonardo
- Neurology Unit, Human Neurosciences Department, Sapienza University, Rome 00185, Italy
| | - Geza Berecki
- Ion Channels and Disease Group, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher B Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petah Tiqvah 4922297, Israel
| | - Amos Korczyn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 60198, Israel
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki 00290, Finland; Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA 02114, USA; The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Boston, MA 02142, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "G. Gaslini," Genova 16147, Italy
| | - Davide Uccellini
- Neurology - Neurophysiology Unit, ASST dei Sette Laghi, Galmarini Tradate Hospital, Tradate 21049, Italy
| | - Loretta Giuliano
- Dipartimento "G.F. Ingrassia," Università degli Studi di Catania, Catania 95131, Italy
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Hospital and Institute, Montreal, QC H3A 2B4, Canada; Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia; The Florey Institute, Parkville, VIC 3052, Australia
| | - Roberto Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unit of Neurology, Bellaria Hospital, Bologna 40139, Italy
| | - Melanie Bahlo
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Silvana Franceschetti
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia.
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki 00290, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
14
|
Radenkovic S, Fitzpatrick-Schmidt T, Byeon SK, Madugundu AK, Saraswat M, Lichty A, Wong SYW, McGee S, Kubiak K, Ligezka A, Ranatunga W, Zhang Y, Wood T, Friez MJ, Clarkson K, Pandey A, Jones JR, Morava E. Expanding the clinical and metabolic phenotype of DPM2 deficient congenital disorders of glycosylation. Mol Genet Metab 2021; 132:27-37. [PMID: 33129689 PMCID: PMC7855207 DOI: 10.1016/j.ymgme.2020.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic alterations in the DPM2 gene have been previously described in patients with hypotonia, progressive muscle weakness, absent psychomotor development, intractable seizures, and early death. We identified biallelic DPM2 variants in a 23-year-old male with truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting. His clinical presentation was much less severe than that of the three previously described patients. This is the second report on this ultra-rare disorder. Here we review the characteristics of previously reported individuals with a defect in the DPM complex while expanding the clinical phenotype of DPM2-Congenital Disorders of Glycosylation. In addition, we offer further insights into the pathomechanism of DPM2-CDG disorder by introducing glycomics and lipidomics analysis.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Metabolomics Expertise Center, CCB, KU Leuven-VIB, Leuven, Belgium; Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Leuven, Belgium.
| | | | - Seul Kee Byeon
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA
| | - Anil K Madugundu
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayank Saraswat
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Sunnie Y W Wong
- Tulane University Medical School, New Orleans, LA, USA; Stanford University, CA, USA
| | | | | | - Anna Ligezka
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | | | - Yuebo Zhang
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Tim Wood
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Akhilesh Pandey
- Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA; Mayo Clinic, Center for Individualized Medicine, Rochester, MN, USA
| | | | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory of Medical Pathology, Rochester, MN, USA
| |
Collapse
|
15
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
CDG biochemical screening: Where do we stand? Biochim Biophys Acta Gen Subj 2020; 1864:129652. [DOI: 10.1016/j.bbagen.2020.129652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
|
17
|
Čechová A, Altassan R, Borgel D, Bruneel A, Correia J, Girard M, Harroche A, Kiec-Wilk B, Mohnike K, Pascreau T, Pawliński Ł, Radenkovic S, Vuillaumier-Barrot S, Aldamiz-Echevarria L, Couce ML, Martins EG, Quelhas D, Morava E, de Lonlay P, Witters P, Honzík T. Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosylation. J Inherit Metab Dis 2020; 43:671-693. [PMID: 32266963 PMCID: PMC7574589 DOI: 10.1002/jimd.12241] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.
Collapse
Affiliation(s)
- Anna Čechová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ruqaiah Altassan
- Medical Genetic Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Delphine Borgel
- Service d’Hématologie Biologique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Paris, France
| | - Arnaud Bruneel
- Department of Biochemistry, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
- INSERM UMR1193, Mécanismes Cellulaires et Moléculaires de l’Adaptation au Stress et Cancérogenèse, Université Paris-Saclay, Châtenay-Malabry, France
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Muriel Girard
- Reference Center of Liver Diseases, Necker Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Descartes, Paris, France
| | - Annie Harroche
- Hemophilia Care Centre, Hematology Unit, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Beata Kiec-Wilk
- Department of Metabolic Diseases JUMC, Krakow and NSSU University Hospital, Krakow, Poland
| | - Klaus Mohnike
- Department of Paediatrics, Otto-von-Guericke University, Magdeburg, Germany
| | - Tiffany Pascreau
- Service d’Hématologie Biologique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Paris, France
| | - Łukasz Pawliński
- Department of Metabolic Diseases JUMC, Krakow and NSSU University Hospital, Krakow, Poland
| | - Silvia Radenkovic
- Metabolomics Expertise Center, CCB-VIB, Leuven, Belgium
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sandrine Vuillaumier-Barrot
- Department of Biochemistry, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
- INSERM U1149, Centre de Recherche sur l’Inflammation (CRI) and Universitá Paris 7 Denis Diderot, Paris, France
| | - Luis Aldamiz-Echevarria
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, Linked Clinical Group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Maria Luz Couce
- Department of Pediatrics, Congenital Metabolic Unit, University Clinical Hospital of Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, Santiago de Compostela, Spain
| | - Esmeralda G. Martins
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Dulce Quelhas
- Centro de Genética Médica Jacinto de Magalhães, Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar Universitário do Porto (CHUP), Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, Necker Hospital, APHP, University Paris Descartes, Filière G2M, MetabERN, Paris, France
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tomáš Honzík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Ng BG, Lourenço CM, Losfeld ME, Buckingham KJ, Kircher M, Nickerson DA, Shendure J, Bamshad MJ, University of Washington Center for Mendelian Genomics, Freeze HH. Mutations in the translocon-associated protein complex subunit SSR3 cause a novel congenital disorder of glycosylation. J Inherit Metab Dis 2019; 42:993-997. [PMID: 30945312 PMCID: PMC6739144 DOI: 10.1002/jimd.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
The translocon-associated protein (TRAP) complex facilitates the translocation of proteins across the endoplasmic reticulum membrane and associates with the oligosaccharyl transferase (OST) complex to maintain proper glycosylation of nascent polypeptides. Pathogenic variants in either complex cause a group of rare genetic disorders termed, congenital disorders of glycosylation (CDG). We report an individual who presented with severe intellectual and developmental disabilities and sensorineural deafness with an unsolved type I CDG, and sought to identify the underlying genetic basis. Exome sequencing identified a novel homozygous variant c.278_281delAGGA [p.Glu93Valfs*7] in the signal sequence receptor 3 (SSR3) subunit of the TRAP complex. Biochemical studies in patient fibroblasts showed the variant destabilized the TRAP complex with a complete loss of SSR3 protein and partial loss of SSR1 and SSR4. Importantly, all subunit levels were corrected by expression of wild-type SSR3. Abnormal glycosylation status in fibroblasts was confirmed using two markers proteins, GP130 and ICAM1. Our findings confirm mutations in SSR3 cause a novel CDG. A novel frameshift variant in the translocon associated protein, SSR3, disrupts the stability of the TRAP complex and causes a novel Congenital Disorder of Glycosylation.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Charles Marques Lourenço
- Clinical Genetics and Neurogenetics, Centro Universitario Estacio de Ribeirao Preto, Ribeirao Preto, Brazil
| | - Marie-Estelle Losfeld
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Corresponding author: Hudson H. Freeze PhD, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd. La Jolla, CA 92037, Phone: 858-646-3142;
| |
Collapse
|
19
|
Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, Sabbagh L, Himmelreich N, Poschet G, Windmolders P, Verheijen J, Witters P, Altassan R, Honzik T, Eminoglu TF, James PM, Edmondson AC, Hertecant J, Kozicz T, Thiel C, Vermeersch P, Cassiman D, Beamer L, Morava E, Ghesquière B. The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG. Am J Hum Genet 2019; 104:835-846. [PMID: 30982613 DOI: 10.1016/j.ajhg.2019.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Matthew J Bird
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim L Emmerzaal
- Department of Anatomy, Radboud University Medical Centre, Donders Institute for Brain Cognition and Behaviour, 6535 HR Nijmegen, the Netherlands
| | - Sunnie Y Wong
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA
| | - Catarina Felgueira
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Leila Sabbagh
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA
| | - Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department I, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jan Verheijen
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter Witters
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ruqaiah Altassan
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Medical Genetics Department, Montréal Children's Hospital, McGill University, Montreal, QC H4A3J1, Canada
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Tuba F Eminoglu
- Department of Pediatric Metabolism and Nutrition, Ankara University School of Medicine, 06560 Ankara, Turkey
| | - Phillip M James
- Phoenix Children's Medical Group, Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jozef Hertecant
- Department of Pediatrics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Centre, Donders Institute for Brain Cognition and Behaviour, 6535 HR Nijmegen, the Netherlands; Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA; Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department I, University of Heidelberg, 69120 Heidelberg, Germany
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lesa Beamer
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Eva Morava
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife 2018; 7:38309. [PMID: 30311906 PMCID: PMC6185108 DOI: 10.7554/elife.38309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ekin Ucuncu
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Lam Son Nguyen
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Michael Nicouleau
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Joanna Lipecka
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde I, University of Heidelberg, Heidelberg, Germany
| | - François Foulquier
- Université Lille, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Lille, France
| | | | | | - Laurence Colleaux
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Cantagrel
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
21
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
22
|
Aksoy I, Utami KH, Winata CL, Hillmer AM, Rouam SL, Briault S, Davila S, Stanton LW, Cacheux V. Personalized genome sequencing coupled with iPSC technology identifies GTDC1 as a gene involved in neurodevelopmental disorders. Hum Mol Genet 2017; 26:367-382. [PMID: 28365779 DOI: 10.1093/hmg/ddw393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023] Open
Abstract
The cellular and molecular mechanisms underlying neurodevelopmental conditions such as autism spectrum disorders have been studied intensively for decades. The ability to generate patient-specific induced pluripotent stem cells (iPSCs) now offers a novel strategy for modelling human diseases. Recent studies have reported the derivation of iPSCs from patients with neurological disorders. The key challenge remains the demonstration of disease-related phenotypes and the ability to model the disease. Here we report a case study with signs of neurodevelopmental disorders (NDDs) harbouring chromosomal rearrangements that were sequenced using long-insert DNA paired-end tag (DNA-PET) sequencing approach. We identified the disruption of a specific gene, GTDC1. By deriving iPSCs from this patient and differentiating them into neural progenitor cells (NPCs) and neurons we dissected the disease process at the cellular level and observed defects in both NPCs and neuronal cells. We also showed that disruption of GTDC1 expression in wild type human NPCs and neurons showed a similar phenotype as patient's iPSCs. Finally, we utilized a zebrafish model to demonstrate a role for GTDC1 in the development of the central nervous system. Our findings highlight the importance of combining sequencing technologies with the iPSC technology for NDDs modelling that could be applied for personalized medicine.
Collapse
Affiliation(s)
- Irene Aksoy
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore.,University of Lyon, University Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Kagistia H Utami
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore
| | - Cecilia L Winata
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore.,International Institute of Molecular and Cell Biology, Warsaw, Poland.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Axel M Hillmer
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore
| | - Sigrid L Rouam
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore
| | - Sylvain Briault
- Service de Génétique INEM UMR7355 CNRS-University, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, Singapore
| | - Lawrence W Stanton
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Valere Cacheux
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, Singapore
| |
Collapse
|
23
|
Van Damme T, Gardeitchik T, Mohamed M, Guerrero-Castillo S, Freisinger P, Guillemyn B, Kariminejad A, Dalloyaux D, van Kraaij S, Lefeber DJ, Syx D, Steyaert W, De Rycke R, Hoischen A, Kamsteeg EJ, Wong SY, van Scherpenzeel M, Jamali P, Brandt U, Nijtmans L, Korenke GC, Chung BHY, Mak CCY, Hausser I, Kornak U, Fischer-Zirnsak B, Strom TM, Meitinger T, Alanay Y, Utine GE, Leung PKC, Ghaderi-Sohi S, Coucke P, Symoens S, De Paepe A, Thiel C, Haack TB, Malfait F, Morava E, Callewaert B, Wevers RA. Mutations in ATP6V1E1 or ATP6V1A Cause Autosomal-Recessive Cutis Laxa. Am J Hum Genet 2017; 100:216-227. [PMID: 28065471 DOI: 10.1016/j.ajhg.2016.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/08/2016] [Indexed: 02/03/2023] Open
Abstract
Defects of the V-type proton (H+) ATPase (V-ATPase) impair acidification and intracellular trafficking of membrane-enclosed compartments, including secretory granules, endosomes, and lysosomes. Whole-exome sequencing in five families affected by mild to severe cutis laxa, dysmorphic facial features, and cardiopulmonary involvement identified biallelic missense mutations in ATP6V1E1 and ATP6V1A, which encode the E1 and A subunits, respectively, of the V1 domain of the heteromultimeric V-ATPase complex. Structural modeling indicated that all substitutions affect critical residues and inter- or intrasubunit interactions. Furthermore, complexome profiling, a method combining blue-native gel electrophoresis and liquid chromatography tandem mass spectrometry, showed that they disturb either the assembly or the stability of the V-ATPase complex. Protein glycosylation was variably affected. Abnormal vesicular trafficking was evidenced by delayed retrograde transport after brefeldin A treatment and abnormal swelling and fragmentation of the Golgi apparatus. In addition to showing reduced and fragmented elastic fibers, the histopathological hallmark of cutis laxa, transmission electron microscopy of the dermis also showed pronounced changes in the structure and organization of the collagen fibers. Our findings expand the clinical and molecular spectrum of metabolic cutis laxa syndromes and further link defective extracellular matrix assembly to faulty protein processing and cellular trafficking caused by genetic defects in the V-ATPase complex.
Collapse
Affiliation(s)
- Tim Van Damme
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Thatjana Gardeitchik
- Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Miski Mohamed
- Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Peter Freisinger
- Childrens' Hospital, Klinikum am Steinenberg, Reutlingen 72764, Germany
| | - Brecht Guillemyn
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | | | - Daisy Dalloyaux
- Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Sanne van Kraaij
- Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Neurology, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Delfien Syx
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Wouter Steyaert
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; Inflammation Research Center, VIB, Ghent 9000, Belgium
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Sunnie Y Wong
- Hayward Genetics Center, Tulane University Medical School, New Orleans, LA 70112, USA
| | - Monique van Scherpenzeel
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Neurology, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Semnan 36156, Iran
| | - Ulrich Brandt
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Leo Nijtmans
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - G Christoph Korenke
- Department of Neuropediatrics, Children's Hospital Klinikum Oldenburg, Oldenburg 26133, Germany
| | - Brian H Y Chung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Christopher C Y Mak
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ingrid Hausser
- Institute of Pathology, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin 13353, Germany; Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin 13353, Germany; Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics, Acibadem University School of Medicine, Istanbul 34752, Turkey
| | - Gulen E Utine
- Pediatric Genetics Unit, Department of Pediatrics, Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine, Ankara 06100, Turkey
| | - Peter K C Leung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | - Paul Coucke
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Klinik Kinderheilkunde I, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany; Institute of Human Genetics, Technische Universität München, Munich 81675, Germany; Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium
| | - Eva Morava
- Hayward Genetics Center, Tulane University Medical School, New Orleans, LA 70112, USA; Department of Pediatrics, University Hospital Leuven, Leuven 3000, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent 9000, Belgium.
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands.
| |
Collapse
|
24
|
García-López R, de la Morena-Barrio ME, Alsina L, Pérez-Dueñas B, Jaeken J, Serrano M, Casado M, Hernández-Caselles T. Natural Killer Cell Receptors and Cytotoxic Activity in Phosphomannomutase 2 Deficiency (PMM2-CDG). PLoS One 2016; 11:e0158863. [PMID: 27415628 PMCID: PMC4944953 DOI: 10.1371/journal.pone.0158863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
Background PMM2-CDG is the most common N-glycosylation defect and shows an increased risk of recurrent and/or severe, sometimes fatal, infections in early life. We hypothesized that natural killer (NK) cells, as important mediators of the immune response against microbial pathogens and regulators of adaptive immunity, might be affected in this genetic disorder. Objective To evaluate possible defects on PMM2-CDG NK peripheral blood cell number, killing activity and expression of membrane receptors. Methods We studied fresh and activated NK cells from twelve PMM2-CDG cells. The number and expression of lymphoid surface receptors were studied by flow cytometry. The NK responsiveness (frequency of degranulated NK cells) and killing activity against K562 target cells was determined in the NK cytotoxicity assay. Results We found an increase of blood NK cells in three patients with a severe phenotype. Two of them, who had suffered from moderate/severe viral infections during their first year of life, also had reduced T lymphocyte numbers. Patient activated NK cells showed increased expression of CD54 adhesion molecule and NKG2D and NKp46 activating receptors. NKp46 and 2B4 expression was inversely correlated with the expression of NKG2D in activated PMM2-CDG cells. Maximal NK activity against K562 target cells was similar in control and PMM2-CDG cells. Interestingly, the NK cell responsiveness was higher in patient cells. NKG2D and specially CD54 increased surface expression significantly correlated with the increased NK cell cytolytic activity according to the modulation of the killer activity by expression of triggering receptors and adhesion molecules. Conclusions Our results indicate that hypoglycosylation in PMM2-CDG altered NK cell reactivity against target cells and the expression of CD54 and NKG2D, NKp46 and 2B4 activating receptors during NK cell activation. This suggests a defective control of NK cell killing activity and the overall anti-viral immune response in PMM2-CDG patients. The present work improves our understanding of the immunological functions in PMM2-CDG and possibly in other CDG-I types.
Collapse
Affiliation(s)
- Roberto García-López
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Facultad de Medicina, IMIB-University of Murcia, Murcia, Spain
| | - María Eugenia de la Morena-Barrio
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Murcia, Spain
- CIBERER, Valencia, Spain
| | - Laia Alsina
- Sección de Alergia e Inmunología Clínica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Belén Pérez-Dueñas
- Departamento de Neurología Infantil, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jaak Jaeken
- Center for Metabolic Diseases, Universitair Ziekenhuis Gasthuisberg, KULeuven, Leuven, Belgium
| | - Mercedes Serrano
- Departamento de Neurología Infantil, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercedes Casado
- Departamento de Bioquímica Clínica y Neuropediatría, Hospital Sant Joan de Deu CIBERER-ISCIII, Barcelona, Spain
| | - Trinidad Hernández-Caselles
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Facultad de Medicina, IMIB-University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
25
|
Sabry S, Vuillaumier-Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Héron D, Dorison N, Mignot C, Seta N, Chantret I, Dupré T, Moore SEH. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J Rare Dis 2016; 11:84. [PMID: 27343064 PMCID: PMC4919849 DOI: 10.1186/s13023-016-0468-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. RESULTS Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-(3)H]mannose labeled glycoprotein to [2-(3)H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient. The patient also harboured the homozygous ALG6(F304S) variant, which does not cause CDG but has been reported to be more frequent in PMM2-CDG patients with severe/fatal disease than in those with moderate presentations. WES did not reveal other strong candidate causal genes. CONCLUSIONS We describe a patient presenting with severe multisystem disease associated with DHDDS deficiency. As retinitis pigmentosa is the only clinical sign in previously reported cases, this report broadens the spectrum of phenotypes associated with this condition.
Collapse
Affiliation(s)
- S Sabry
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,Université Pierre et Marie Curie, Paris 6, Paris, France.,Biochemical Genetics Department, Human Genetics Division, National Research Center NRC, Cairo, Egypt
| | - S Vuillaumier-Barrot
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - E Mintet
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - M Fasseu
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - V Valayannopoulos
- Département de Pédiatrie, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - D Héron
- Département de Génétique & Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Pitié Salpétrière, Paris, France.,Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France
| | - N Dorison
- Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France
| | - C Mignot
- Département de Génétique & Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Pitié Salpétrière, Paris, France.,Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France.,Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - N Seta
- AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France.,Université Paris Descartes, Paris, France
| | - I Chantret
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - T Dupré
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - S E H Moore
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France. .,Université Denis Diderot, Paris 7, Paris, France.
| |
Collapse
|
26
|
Thiesler CT, Cajic S, Hoffmann D, Thiel C, van Diepen L, Hennig R, Sgodda M, Weiβmann R, Reichl U, Steinemann D, Diekmann U, Huber NMB, Oberbeck A, Cantz T, Kuss AW, Körner C, Schambach A, Rapp E, Buettner FFR. Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Mol Cell Proteomics 2016; 15:1435-52. [PMID: 26785728 PMCID: PMC4824866 DOI: 10.1074/mcp.m115.054122] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/08/2023] Open
Abstract
PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors and in vitro differentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCs in vitro. Knock-down of PMM2 by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.
Collapse
Affiliation(s)
- Christina T Thiesler
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Samanta Cajic
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Dirk Hoffmann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Thiel
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Laura van Diepen
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - René Hennig
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Malte Sgodda
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Weiβmann
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Udo Reichl
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Doris Steinemann
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖‖Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Nicolas M B Huber
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Astrid Oberbeck
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Cantz
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ¶¶Translational Hepatology and Stem Cell Biology, Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas W Kuss
- ‡‡Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University, 17475 Greifswald, Germany
| | - Christian Körner
- **Center for Child and Adolescent Medicine, Department Kinderheilkunde I, 69120 Heidelberg, Germany
| | - Axel Schambach
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; ‖Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Erdmann Rapp
- ¶Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; §§glyXera GmbH, 39120 Magdeburg, Germany
| | - Falk F R Buettner
- From the ‡REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; §Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
27
|
Program Overview * Conference Program * Conference Posters * Conference Abstracts. Glycobiology 2014. [DOI: 10.1093/glycob/cwu087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H, Hodaňová K, Barešová V, Sovová J, Jozsef L, Ondrušková N, Hansíková H, Honzík T, Zeman J, Hůlková H, Wen R, Kmoch S, Sessa WC. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab 2014; 20:448-57. [PMID: 25066056 PMCID: PMC4161961 DOI: 10.1016/j.cmet.2014.06.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/28/2014] [Accepted: 06/14/2014] [Indexed: 11/20/2022]
Abstract
Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Kariona A Grabińska
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, DUMC 2927, Durham, NC 27710, USA
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hartmannová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Kateřina Hodaňová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Veronika Barešová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jana Sovová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Levente Jozsef
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA
| | - Nina Ondrušková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Hana Hansíková
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Jiří Zeman
- Department of Pediatrics, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Helena Hůlková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic.
| | - William C Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Aikawa JI, Takeda Y, Matsuo I, Ito Y. Trimming of glucosylated N-glycans by human ER α1,2-mannosidase I. ACTA ACUST UNITED AC 2014; 155:375-84. [DOI: 10.1093/jb/mvu008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S, Raymond K, He P, Ichikawa M, Veltman J, Huijben K, Shin YS, Sharma V, Adamowicz M, Lammens M, Reunert J, Witten A, Schrapers E, Matthijs G, Jaeken J, Rymen D, Stojkovic T, Laforêt P, Petit F, Aumaître O, Czarnowska E, Piraud M, Podskarbi T, Stanley CA, Matalon R, Burda P, Seyyedi S, Debus V, Socha P, Sykut-Cegielska J, van Spronsen F, de Meirleir L, Vajro P, DeClue T, Ficicioglu C, Wada Y, Wevers RA, Vanderschaeghe D, Callewaert N, Fingerhut R, van Schaftingen E, Freeze HH, Morava E, Lefeber DJ, Marquardt T. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 2014; 370:533-42. [PMID: 24499211 PMCID: PMC4373661 DOI: 10.1056/nejmoa1206605] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).
Collapse
|
31
|
He P, Srikrishna G, Freeze HH. N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response. Glycobiology 2014; 24:392-8. [PMID: 24474243 DOI: 10.1093/glycob/cwu006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) result from mutations in various N-glycosylation genes. The most common type, phosphomannomutase-2 (PMM2)-CDG (CDG-Ia), is due to deficient PMM2 (Man-6-P → Man-1-P). Many patients die from recurrent infections, but the mechanism is unknown. We found that glycosylation-deficient patient fibroblasts have less intercellular adhesion molecule-1 (ICAM-1), and because of its role in innate immune response, we hypothesized that its reduction might help explain recurrent infections in CDG patients. We, therefore, studied mice with mutations in Mpi encoding phosphomannose isomerase (Fru-6-P → Man-6-P), the cause of human MPI-CDG. We challenged MPI-deficient mice with an intraperitoneal injection of zymosan to induce an inflammatory response and found decreased neutrophil extravasation compared with control mice. Immunohistochemistry of mesenteries showed attenuated neutrophil egress, presumably due to poor ICAM-1 response to acute peritonitis. Since phosphomannose isomerase (MPI)-CDG patients and their cells improve glycosylation when given mannose, we provided MPI-deficient mice with mannose-supplemented water for 7 days. This restored ICAM-1 expression on mesenteric endothelial cells and enhanced transendothelial migration of neutrophils during acute inflammation. Attenuated inflammatory response in glycosylation-deficient mice may result from a failure to increase ICAM-1 on the vascular endothelial surface and may help explain recurrent infections in patients.
Collapse
Affiliation(s)
- Ping He
- Genetic Disease Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
32
|
Duplomb L, Duvet S, Picot D, Jego G, El Chehadeh-Djebbar S, Marle N, Gigot N, Aral B, Carmignac V, Thevenon J, Lopez E, Rivière JB, Klein A, Philippe C, Droin N, Blair E, Girodon F, Donadieu J, Bellanné-Chantelot C, Delva L, Michalski JC, Solary E, Faivre L, Foulquier F, Thauvin-Robinet C. Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 2013; 23:2391-9. [PMID: 24334764 DOI: 10.1093/hmg/ddt630] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.
Collapse
Affiliation(s)
- Laurence Duplomb
- Génétique et Anomalies du Développement, EA4271, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
34
|
Cline A, Gao N, Flanagan-Steet H, Sharma V, Rosa S, Sonon R, Azadi P, Sadler KC, Freeze HH, Lehrman MA, Steet R. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Mol Biol Cell 2012; 23:4175-87. [PMID: 22956764 PMCID: PMC3484097 DOI: 10.1091/mbc.e12-05-0411] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PMM2-CDG patients have phosphomannomutase (Pmm2) deficiency, with developmental and N-linked glycosylation defects attributed to depletion of mannose-1-phosphate and downstream lipid-linked oligosaccharides (LLOs). This, the first PMM2-CDG zebrafish model, shows, unexpectedly, that accumulation of the Pmm2 substrate mannose-6-phosphate explains LLO deficiency. Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.
Collapse
Affiliation(s)
- Abigail Cline
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|