1
|
Lopes M, Lund PJ, Garcia BA. Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC-MS/MS. J Proteome Res 2024; 23:5405-5420. [PMID: 39556659 PMCID: PMC11932154 DOI: 10.1021/acs.jproteome.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
2
|
Lopes M, Lund PJ, Garcia BA. An optimized and robust workflow for quantifying the canonical histone ubiquitination marks H2AK119ub and H2BK120ub by LC-MS/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.596744. [PMID: 38915586 PMCID: PMC11195131 DOI: 10.1101/2024.06.11.596744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
3
|
Franz P, Fierz B. Decoding Chromatin Ubiquitylation: A Chemical Biology Perspective. J Mol Biol 2024; 436:168442. [PMID: 38211893 DOI: 10.1016/j.jmb.2024.168442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene transcription, the regulation of deposition and removal of histone post-translational modifications (PTMs), such as acetylation, methylation, and phosphorylation, have been implicated in many chromatin regulation pathways. However, large PTMs such as ubiquitylation challenge research on many levels due to their chemical complexity. In recent years, chemical tools have been developed to generate chromatin in defined ubiquitylation states in vitro. Chemical biology approaches are now used to link specific histone ubiquitylation marks with downstream chromatin regulation events on the molecular level. Here, we want to highlight how chemical biology approaches have empowered the mechanistic study of chromatin ubiquitylation in the context of gene regulation and DNA repair with attention to future challenges.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat Chem Biol 2021; 17:403-411. [PMID: 33649601 PMCID: PMC8174649 DOI: 10.1038/s41589-021-00738-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Whole genome sequencing data mining efforts have revealed numerous histone mutations in a wide range of cancer types. These occur in all four core histones in both the tail and globular domains and remain largely uncharacterized. Here we used two high-throughput approaches, a DNA-barcoded mononucleosome library and a humanized yeast library, to profile the biochemical and cellular effects of these mutations. We identified cancer-associated mutations in the histone globular domains that enhance fundamental chromatin remodeling processes, histone exchange and nucleosome sliding, and are lethal in yeast. In mammalian cells, these mutations upregulate cancer-associated gene pathways and inhibit cellular differentiation by altering expression of lineage-specific transcription factors. This work represents a comprehensive functional analysis of the histone mutational landscape in human cancers and leads to a model in which histone mutations that perturb nucleosome remodeling may contribute to disease development and/or progression.
Collapse
|
5
|
Kasinath V, Beck C, Sauer P, Poepsel S, Kosmatka J, Faini M, Toso D, Aebersold R, Nogales E. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 2021; 371:371/6527/eabc3393. [PMID: 33479123 DOI: 10.1126/science.abc3393] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) cooperate to determine cell identity by epigenetic gene expression regulation. However, the mechanism of PRC2 recruitment by means of recognition of PRC1-mediated H2AK119ub1 remains poorly understood. Our PRC2 cryo-electron microscopy structure with cofactors JARID2 and AEBP2 bound to a H2AK119ub1-containing nucleosome reveals a bridge helix in EZH2 that connects the SET domain, H3 tail, and nucleosomal DNA. JARID2 and AEBP2 each interact with one ubiquitin and the H2A-H2B surface. JARID2 stimulates PRC2 through interactions with both the polycomb protein EED and the H2AK119-ubiquitin, whereas AEBP2 has an additional scaffolding role. The presence of these cofactors partially overcomes the inhibitory effect that H3K4me3 and H3K36me3 exert on core PRC2 (in the absence of cofactors). Our results support a key role for JARID2 and AEBP2 in the cross-talk between histone modifications and PRC2 activity.
Collapse
Affiliation(s)
- Vignesh Kasinath
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Curtis Beck
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Paul Sauer
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jennifer Kosmatka
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Toso
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Eva Nogales
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. .,Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
6
|
Krajewski WA. The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1. Biochim Biophys Acta Gen Subj 2019; 1864:129497. [PMID: 31785324 DOI: 10.1016/j.bbagen.2019.129497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. METHODS We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. RESULTS H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro. CONCLUSIONS AND GENERAL SIGNIFICANCE The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia..
| |
Collapse
|
7
|
Wang X, Long Y, Paucek RD, Gooding AR, Lee T, Burdorf RM, Cech TR. Regulation of histone methylation by automethylation of PRC2. Genes Dev 2019; 33:1416-1427. [PMID: 31488576 PMCID: PMC6771386 DOI: 10.1101/gad.328849.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
In this study, Wang et al. set out to identify the methylation site on the EZH2 subunit of the core PRC2 complex and its physiological importance. Using mass spectrometry analysis of recombinant human PRC2, they identified a conserved methylation loop in EZH2 that serves an autoregulatory role and allows PRC2 to modulate its histone methyltransferase activity by sensing histone H3 tails, SAM concentration, and potentially other effectors. Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that is critical for regulating transcriptional repression in mammals. Its catalytic subunit, EZH2, is responsible for the trimethylation of H3K27 and also undergoes automethylation. Using mass spectrometry analysis of recombinant human PRC2, we identified three methylated lysine residues (K510, K514, and K515) on a disordered but highly conserved loop of EZH2. Methylation of these lysines increases PRC2 histone methyltransferase activity, whereas their mutation decreases activity in vitro. De novo histone methylation in an EZH2 knockout cell line is greatly impeded by mutation of the automethylation lysines. EZH2 automethylation occurs intramolecularly (in cis) by methylation of a pseudosubstrate sequence on a flexible loop. This posttranslational modification and cis regulation of PRC2 are analogous to the activation of many protein kinases by autophosphorylation. We propose that EZH2 automethylation allows PRC2 to modulate its histone methyltransferase activity by sensing histone H3 tails, SAM concentration, and perhaps other effectors.
Collapse
Affiliation(s)
- Xueyin Wang
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| | - Yicheng Long
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| | - Richard D Paucek
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| | - Anne R Gooding
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| | - Thomas Lee
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| | - Rachel M Burdorf
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, 80309 USA
| |
Collapse
|
8
|
Krajewski WA, Li J, Dou Y. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics. Nucleic Acids Res 2019; 46:7631-7642. [PMID: 29931239 PMCID: PMC6125632 DOI: 10.1093/nar/gky526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
DNA in nucleosomes has restricted nucleosome dynamics and is refractory to DNA-templated processes. Histone post-translational modifications play important roles in regulating DNA accessibility in nucleosomes. Whereas most histone modifications function either by mitigating the electrostatic shielding of histone tails or by recruiting 'reader' proteins, we show that ubiquitylation of H2B K34, which is located in a tight space protected by two coils of DNA superhelix, is able to directly influence the canonical nucleosome conformation via steric hindrances by ubiquitin groups. H2B K34 ubiquitylation significantly enhances nucleosome dynamics and promotes generation of hexasomes both with symmetrically or asymmetrically modified nucleosomes. Our results indicate a direct mechanism by which a histone modification regulates the chromatin structural states.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow, 119334, Russia.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Krajewski WA, Vassiliev OL. Analysis of histone ubiquitylation by MSL1/MSL2 proteins in vitro. Arch Biochem Biophys 2019; 666:22-30. [PMID: 30930284 DOI: 10.1016/j.abb.2019.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022]
Abstract
Histone posttranslational modifications (PTM) control gene activity by targeting chromatin-regulatory proteins. By altering histone charges PTMs could also modulate inter- and intra-nucleosomal interactions, and thus affect chromatin high-order compaction and nucleosome stochastic folding, respectively. However, recently it has been shown that histone H2BK34- ubiquitylation (which is deposited in vivo by MOF-MSL) can destabilize one of the nucleosomal H2A-H2B dimers in symmetrically and (albeit to a lesser extend) asymmetrically modified nucleosomes, and thus promote formation of a hexasome particle. Here we have studied ubiquitylation patterns by purified MSL1/MSL2 using nucleosomes and different histone substrates. We have shown that H2B-ubiquitylation by MSL1/2 depends on substrate configuration. In addition, MSL1/2 efficiently ubiquitylate histone substrates but very poorly modify nucleosomes, which implies a requirement for nucleosome structural alteration for efficient ubiquitylation of H2BK34. Nucleosome modification by MSL1/MSL2 in vitro was analyzed directly using nucleosome gel-mobility shift assay, which suggested that MSL1/2 can deposit two ubiquitin moieties in one nucleosome.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Oleg L Vassiliev
- Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow, V-437, Russia
| |
Collapse
|
10
|
Morgan M, Jbara M, Brik A, Wolberger C. Semisynthesis of ubiquitinated histone H2B with a native or nonhydrolyzable linkage. Methods Enzymol 2019; 618:1-27. [PMID: 30850047 DOI: 10.1016/bs.mie.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Posttranslational modifications of histone proteins regulate all biological processes requiring access to DNA. Monoubiquitination of histone H2B is a mark of actively transcribed genes in all eukaryotes that also plays a role in DNA replication and repair. Solution and structural studies of the mechanism by which histone ubiquitination modulates these processes depend on the ability to generate homogeneous preparations of nucleosomes containing ubiquitin conjugated to a specific lysine residue. We describe here methods for generating milligram quantities of histone H2B with ubiquitin (Ub) conjugated to Lys 120 via either a nonhydrolyzable, dichloroacetone linkage or a cleavable isopeptide bond. H2B-Ub with an isopeptide linkage is generated by a combination of intein-fusion protein derivatization and native chemical ligation, yielding a fully native ubiquitinated lysine that can be cleaved by Ub isopeptidases. We also describe how to reconstitute nucleosomes containing ubiquitinated H2B.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Jezek M, Green EM. Histone Modifications and the Maintenance of Telomere Integrity. Cells 2019; 8:E199. [PMID: 30823596 PMCID: PMC6407025 DOI: 10.3390/cells8020199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/09/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomeres, the nucleoprotein structures at the ends of eukaryotic chromosomes, play an integral role in protecting linear DNA from degradation. Dysregulation of telomeres can result in genomic instability and has been implicated in increased rates of cellular senescence and many diseases, including cancer. The integrity of telomeres is maintained by a coordinated network of proteins and RNAs, such as the telomerase holoenzyme and protective proteins that prevent the recognition of the telomere ends as a DNA double-strand breaks. The structure of chromatin at telomeres and within adjacent subtelomeres has been implicated in telomere maintenance pathways in model systems and humans. Specific post-translational modifications of histones, including methylation, acetylation, and ubiquitination, have been shown to be necessary for maintaining a chromatin environment that promotes telomere integrity. Here we review the current knowledge regarding the role of histone modifications in maintaining telomeric and subtelomeric chromatin, discuss the implications of histone modification marks as they relate to human disease, and highlight key areas for future research.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
12
|
Krajewski WA. Effects of DNA Superhelical Stress on the Stability of H2B-Ubiquitylated Nucleosomes. J Mol Biol 2018; 430:5002-5014. [PMID: 30267746 DOI: 10.1016/j.jmb.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 01/31/2023]
Abstract
On the nucleosome level, histone posttranslational modifications function mainly as the regulatory signals; in addition, some posttranslational modifications can enhance nucleosome stochastic folding, which is restricted in "canonic" nucleosomes. Recently, it has been shown in vitro that symmetric or asymmetric nucleosome ubiquitylation at H2BK34 (and H2BK120, to a lesser extent) can destabilize one of the nucleosomal H2A-H2B dimers and promote nucleosome conversion to a hexasome particle [Krajewski et al. (2018). Nucleic Acids Res., 46, 7631-7642]. Such lability of H2Bub nucleosomes raises a question of whether they could accommodate transient changes in DNA torsional tensions, which are generated by virtually any process that manipulates DNA strands. Using positively or negatively supercoiled DNA minicircles and homogeneously-modified H2Bub histones, we have found that DNA topology could strongly and selectively affect nucleosome stability depending on its ubiquitylation state (here the term "nucleosome stability" means the nucleosome property to maintain its structural integrity and dynamics characteristic to "canonic" nucleosomes). The results point to a role for H2B ubiquitylation in amplifying or mitigating the effects of a DNA torque on the nucleosome stability and dynamics.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119334, Russia.
| |
Collapse
|
13
|
Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc Natl Acad Sci U S A 2018; 115:9228-9233. [PMID: 30150385 PMCID: PMC6140490 DOI: 10.1073/pnas.1802901115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin comprises the approximately 3 billion bases in the human genome and histone proteins. Histone posttranslational modifications (PTMs) regulate chromatin dynamics and protein transcription to expand the genetic code. Herein we describe the existence of Lys and Arg modifications on histones derived from a glycolytic by-product, methylglyoxal (MGO). These PTMs are abundant modifications, present at similar levels as those of modifications known to modulate chromatin function and leading to altered gene transcription. Using CRISPR-Cas9, we show that the deglycase DJ-1 protects histones from adduction by MGO. These findings demonstrate the existence of a previously undetected histone modification and provide a link between cellular metabolism and the histone code. Histone posttranslational modifications (PTMs) regulate chromatin dynamics, DNA accessibility, and transcription to expand the genetic code. Many of these PTMs are produced through cellular metabolism to offer both feedback and feedforward regulation. Herein we describe the existence of Lys and Arg modifications on histones by a glycolytic by-product, methylglyoxal (MGO). Our data demonstrate that adduction of histones by MGO is an abundant modification, present at the same order of magnitude as Arg methylation. These modifications were detected on all four core histones at critical residues involved in both nucleosome stability and reader domain binding. In addition, MGO treatment of cells lacking the major detoxifying enzyme, glyoxalase 1, results in marked disruption of H2B acetylation and ubiquitylation without affecting H2A, H3, and H4 modifications. Using RNA sequencing, we show that MGO is capable of altering gene transcription, most notably in cells lacking GLO1. Finally, we show that the deglycase DJ-1 protects histones from adduction by MGO. Collectively, our findings demonstrate the existence of a previously undetected histone modification derived from glycolysis, which may have far-reaching implications for the control of gene expression and protein transcription linked to metabolism.
Collapse
|
14
|
Leonen CJA, Upadhyay E, Chatterjee C. Studies of biochemical crosstalk in chromatin with semisynthetic histones. Curr Opin Chem Biol 2018; 45:27-34. [PMID: 29494828 DOI: 10.1016/j.cbpa.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/26/2023]
Abstract
Reversible post-translational modifications of histone proteins in eukaryotic chromatin are closely tied to gene function and cellular development. Specific combinations of histone modifications, or marks, are implicated in distinct DNA-templated processes mediated by a range of chromatin-associated enzymes that install, erase and interpret the histone code. Mechanistic studies of the precise biochemical relationship between sets of marks and their effects on chromatin function are significantly complicated by the dynamic nature and heterogeneity of marks in cellular chromatin. Protein semisynthesis is a chemical technique that enables the piecewise assembly of uniformly and site-specifically modified histones in quantities sufficient for biophysical and biochemical analyses. Recent pioneering efforts in semisynthesis have yielded access to histones site-specifically modified by entire proteins, such as ubiquitin (Ub) and the small ubiquitin-like modifier (SUMO). Herein, we highlight key studies of biochemical crosstalk involving Ub and SUMO in chromatin that were enabled by histone semisynthesis.
Collapse
Affiliation(s)
| | - Esha Upadhyay
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
15
|
Jbara M, Sun H, Kamnesky G, Brik A. Chemical chromatin ubiquitylation. Curr Opin Chem Biol 2018; 45:18-26. [PMID: 29459258 DOI: 10.1016/j.cbpa.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 12/01/2022]
Abstract
Histone modifications dynamically regulate chromatin structure and function, thereby mediating many processes that require access to DNA. Chemical protein synthesis has emerged as a powerful approach for generating homogeneously modified histone analogues in workable amounts for subsequent incorporation into nucleosome arrays for biochemical, functional and structural studies. This short review focuses on the strength of total chemical protein synthesis and semisynthetic approaches to generate ubiquitylated histones in their native or non-native forms and the utility of these analogues to decode the role of ubiquitylation in epigenetics.
Collapse
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel.
| |
Collapse
|
16
|
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. SCIENCE ADVANCES 2015; 1:e1500737. [PMID: 26665172 PMCID: PMC4672759 DOI: 10.1126/sciadv.1500737] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/17/2015] [Indexed: 05/14/2023]
Abstract
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Gloria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author. E-mail:
| |
Collapse
|
17
|
Bi X, Yang R, Feng X, Rhodes D, Liu CF. Semisynthetic UbH2A reveals different activities of deubiquitinases and inhibitory effects of H2A K119 ubiquitination on H3K36 methylation in mononucleosomes. Org Biomol Chem 2015; 14:835-9. [PMID: 26615908 DOI: 10.1039/c5ob02323h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a genetically incorporated azidonorleucine for ubiquitin installation, we prepared multi-milligram quantities of H2AK119ub (ubH2A). With a native isopeptide linkage, the synthetic ubH2A was used to study the activity of deubiquitinases and crosstalk between H2A ubiquitination and H3K36 methylation in the context of chemically defined mononucleosomes.
Collapse
Affiliation(s)
- Xiaobao Bi
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | | | | | |
Collapse
|
18
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Holt M, Muir T. Application of the protein semisynthesis strategy to the generation of modified chromatin. Annu Rev Biochem 2015; 84:265-90. [PMID: 25784050 DOI: 10.1146/annurev-biochem-060614-034429] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of trans-acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments.
Collapse
Affiliation(s)
- Matthew Holt
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544; ,
| | | |
Collapse
|
21
|
Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 2014; 7:1456-1470. [PMID: 24857660 PMCID: PMC4062935 DOI: 10.1016/j.celrep.2014.04.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 11/24/2022] Open
Abstract
The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications. Absence of DNA methylation recruits Polycomb complexes to pericentric heterochromatin H3K9me3 antagonizes activity of PRC2, but not PRC1, at pericentric heterochromatin CpG density and antagonism by H3 modifications define genome-wide Polycomb occupancy PRC1-mediated H2AK119u1 recruits PRC2 and H3K27me3
Collapse
|
22
|
Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 2014; 21:569-71. [PMID: 24837194 DOI: 10.1038/nsmb.2833] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/01/2014] [Indexed: 12/23/2022]
Abstract
A key step in gene repression by Polycomb is trimethylation of histone H3 K27 by PCR2 to form H3K27me3. H3K27me3 provides a binding surface for PRC1. We show that monoubiquitination of histone H2A by PRC1-type complexes to form H2Aub creates a binding site for Jarid2-Aebp2-containing PRC2 and promotes H3K27 trimethylation on H2Aub nucleosomes. Jarid2, Aebp2 and H2Aub thus constitute components of a positive feedback loop establishing H3K27me3 chromatin domains.
Collapse
|
23
|
Zhou J, Troyanskaya OG. Global quantitative modeling of chromatin factor interactions. PLoS Comput Biol 2014; 10:e1003525. [PMID: 24675896 PMCID: PMC3967939 DOI: 10.1371/journal.pcbi.1003525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. Chromatin, like many other molecular biological systems, is composed of multiple interacting factors. Our knowledge about chromatin factors is mostly qualitative, and such qualitative knowledge can be insufficient for predicting collective behaviors. It's also extremely challenging to study collective behaviors involving multiple interacting factors through genetic and biochemical experiments. An alternative approach is to leverage large-scale genome-wide chromatin profiles and statistical modeling to create predictive models and infer underlying interaction mechanisms based on these observed high-throughput data. In this study, we developed a novel maximum entropy-based modeling approach to quantitatively capture interactions between chromatin factors at the same genomic location, which we see as a step toward quantitative understanding of chromatin organization that involves a system of multiple interacting factors. We applied this quantitative model to successfully infer functional properties of chromatin including interactions between chromatin factors. Furthermore, the model predicts unmeasured chromatin profiles with high accuracy based on its inferred dependencies with other factors within and across cell-types. Thus our modeling approach effectively ultilizes large-scale chromatin profiles to dissect chromatin factor interactions and to make data-driven inferences about chromatin regulation.
Collapse
Affiliation(s)
- Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
From mammals to plants, the Polycomb Group (PcG) machinery plays a crucial role in maintaining the repression of genes that are not required in a specific differentiation status. However, the mechanism by which PcG machinery mediates gene repression is still largely unknown in plants. Compared to animals, few PcG proteins have been identified in plants, not only because just some of these proteins are clearly conserved to their animal counterparts, but also because some PcG functions are carried out by plant-specific proteins, most of them as yet uncharacterized. For a long time, the apparent lack of Polycomb Repressive Complex (PRC)1 components in plants was interpreted according to the idea that plants, as sessile organisms, do not need a long-term repression, as they must be able to respond rapidly to environmental signals; however, some PRC1 components have been recently identified, indicating that this may not be the case. Furthermore, new data regarding the recruitment of PcG complexes and maintenance of PcG repression in plants have revealed important differences to what has been reported so far. This review highlights recent progress in plant PcG function, focusing on the role of the putative PRC1 components.
Collapse
Affiliation(s)
- Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Avenida América Vespucio, 49, Isla de La Cartuja, 41092 Seville, Spain
| |
Collapse
|
25
|
Kim W, Choi M, Kim JE. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 2014; 13:726-38. [PMID: 24526115 PMCID: PMC3979909 DOI: 10.4161/cc.28104] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dot1/DOT1L catalyzes the methylation of histone H3 lysine 79 (H3K79), which regulates diverse cellular processes, such as development, reprogramming, differentiation, and proliferation. In regards to these processes, studies of Dot1/DOT1L-dependent H3K79 methylation have mainly focused on the transcriptional regulation of specific genes. Although the gene transcription mediated by Dot1/DOT1L during the cell cycle is not fully understood, H3K79 methylation plays a critical role in the progression of G 1 phase, S phase, mitosis, and meiosis. This modification may contribute to the chromatin structure that controls gene expression, replication initiation, DNA damage response, microtubule reorganization, chromosome segregation, and heterochromatin formation. Overall, Dot1/DOT1L is required to maintain genomic and chromosomal stability. This review summarizes the several functions of Dot1/DOT1L and highlights its role in cell cycle regulation.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Minji Choi
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| |
Collapse
|
26
|
Fierz B. Synthetic chromatin approaches to probe the writing and erasing of histone modifications. ChemMedChem 2014; 9:495-504. [PMID: 24497444 DOI: 10.1002/cmdc.201300487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Indexed: 11/11/2022]
Abstract
Posttranslational modifications (PTMs) of chromatin are involved in gene regulation, thereby contributing to cell differentiation, lineage determination, and organism development. Discrete chromatin states are established by the action of a large set of enzymes that catalyze the deposition, propagation, and removal of histone PTMs, thereby modulating gene expression. Given their central role in determining and maintaining cellular phenotype, as well as in controlling chromatin processes such as DNA repair, the dysregulation of these enzymes can have serious consequences, and can result in cancer and neurodegenerative diseases. Thus, such chromatin regulator proteins are promising drug targets. However, they are often present in large, modular protein complexes that specifically recognize target chromatin regions and exhibit intricate regulation through preexisting histone marks. This renders the study of their enzymatic mechanisms complex. Recent developments in the chemical production of defined chromatin substrates show great promise for improving our understanding of the activity of chromatin regulator complexes at the molecular level. Herein I discuss examples highlighting the application of synthetic chromatin to study the enzymatic mechanisms and regulatory pathways of these crucial protein complexes in detail, with potential implications for assay development in pharmacological research.
Collapse
Affiliation(s)
- Beat Fierz
- Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| |
Collapse
|
27
|
Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, Feng L, Shen X, Chen S, Li G, Zhu B. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem 2013; 288:30832-42. [PMID: 24019522 DOI: 10.1074/jbc.m113.475996] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.
Collapse
Affiliation(s)
- Gang Yuan
- From the College of Life Sciences, Beijing Normal University, Beijing, 100875
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Epigenetic studies are transforming our understanding of a variety of complex pathological conditions including cancer, autoimmune, and inflammatory diseases. A selection of the major recent advances in this area will be reviewed, focusing on the important emerging themes that are relevant to these diseases including inflammatory bowel disease (IBD). RECENT FINDINGS The main current themes that will be addressed on the role of epigenetics in disease pathogenesis include current understanding of the nature and function of histone modifications and DNA methylation; the connection between epigenetics and metabolic pathways; new studies on the mechanism of heritability of epigenetic changes; the role of stochastic noise and the expanding research on chromatin readers and their potential as selective therapeutic targets. The recent contribution of epigenetic modifications in defining the molecular basis of IBD and how such changes may act as fine-tuners of gene expression in these intestinal disorders are also discussed. SUMMARY Published evidence over the last 12-18 months indicates that targeting epigenetic factors can be efficacious in cancer and inflammatory disease. All the indications are that future research will continue to reveal new epigenetic targets and mechanisms that will advance the prospects for selective epigenetic therapy for IBD and other complex diseases.
Collapse
|
29
|
ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell 2013; 49:1108-20. [PMID: 23453805 DOI: 10.1016/j.molcel.2013.01.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 12/23/2022]
Abstract
Crosstalk between H2B ubiquitylation (H2Bub) and H3 K4 methylation plays important roles in coordinating functions of diverse cofactors during transcription activation. The underlying mechanism for this trans-tail signaling pathway is poorly defined in higher eukaryotes. Here, we show the following: (1) ASH2L in the MLL complex is essential for H2Bub-dependent H3 K4 methylation. Deleting or mutating K99 of the N-terminal winged helix (WH) motif in ASH2L abrogates H2Bub-dependent regulation. (2) Crosstalk can occur in trans and does not require ubiquitin to be on nucleosomes or histones to exert regulatory effects. (3) trans-regulation by ubiquitin promotes MLL activity for all three methylation states. (4) MLL3, an MLL homolog, does not respond to H2Bub, highlighting regulatory specificity for MLL family histone methyltransferases. Altogether, our results potentially expand the classic histone crosstalk to nonhistone proteins, which broadens the scope of chromatin regulation by ubiquitylation signaling.
Collapse
|
30
|
Sabra M, Texier P, El Maalouf J, Lomonte P. The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126:3664-77. [DOI: 10.1242/jcs.126003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease due to compensation deficit. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1-L. In vitro pull-down assays showed that SMN interacts with H3K79me1,2 via its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA.
Collapse
|